Online Generalized Network Design Under (Dis)Economies of Scale

Viswanath Nagarajan, Lily Wang

Industrial and Operations Engineering
University of Michigan

viswa@umich.edu
lilyxy@umich.edu

Online Multicommodity Flow

- Directed graph $G=(V, E)$
- Each request i has a
- source s_{i}
- destination t_{i}
- demand $d_{i} \geq 1$
- Energy costs are sum of cost functions $f_{e}\left(\ell_{e}\right)$, where ℓ_{e} is the total demand going through edge e
- Goal: minimize total energy cost to route requests

Convex

Concave

(Dis)Economy of Scale

(D)oS Function

In our setting, each edge cost is

$$
f_{e}\left(\ell_{e}\right)= \begin{cases}0 & \text { if } \ell_{e}=0 \\ \sigma_{e}+\ell_{e}^{\alpha_{e}} & \text { if } \ell_{e}>0\end{cases}
$$

We define $q_{e}=\sigma_{e}^{1 / \alpha_{e}}$ and

$$
q=\max _{e \in E} q_{e}
$$

Online Multicommodity Flow Example

Online Multicommodity Flow Example

Online Multicommodity Flow Example

Previous Results: Multicommodity Flow

Function	Offline	Online
Concave	[Chekuri, Hajiaghayi, Kortsarz, Salavatipour, '10]	[Awerbuch, Azar '97]
Convex	[Andrews, Anta, Zhang, Zhao '12]	[Gupta, Krishnaswamy, Pruhs '12]
	[Makarychev, Sviridenko '18]	
(D)oS	[Andrews, Antonakopoulos, Zhang '16]	[Antoniadis, Im, Krishnaswamy, Moseley, Nagarajan, Pruhs, Stein, '20]

- All the above results are for undirected networks.
- Recently [Emek, Kutten, Lavi, Shi '20] obtained (offline) approximation algorithms even for directed networks.

Result for Multicommodity flow

Theorem

Deterministic online algorithm for multicommodity flow with competitive ratio $O\left(q+(\mathrm{e} \alpha)^{\alpha}\right)$ where cost functions are (Dis)Economies of scale.

- First online result for (D) oS costs in directed graphs
- Matches the offline bound of [Emek, Kutten, Lavi, Shi '20]
- Tight result in online setting

Our Setting - Online Generalized Network Design

- Input: set of E resources and N requests
- Each request i is associated with replies \mathcal{P}_{i} which can satisfy i and weight vector w_{i} with $w_{i, e}$ representing load on resource e.
- Load on each resource e is $\ell_{e}=\sum_{i: e \in p_{i}} w_{i, e}$
- Want to minimize total cost $\sum_{e \in E} f_{e}\left(\ell_{e}\right)$ with (D)oS functions

Our Results

Theorem (upper bound)

There is a polynomial time $O\left(q \tau+(\mathrm{e} \alpha \tau)^{\alpha}\right)$-competitive deterministic online algorithm for GND assuming a τ-approximation algorithm for the min-cost oracle.

- The min cost oracle finds a τ-approximate min-cost reply from \mathcal{P}_{i} for any single request i efficiently.
- The previous online multicommodity flow competitive ratio of $O\left(q+(e \alpha)^{\alpha}\right)$ follows from this result and having an exact min-cost oracle for online multicommodity flow.

Theorem (lower bound)

Any deterministic online algorithm has competitive ratio $\Omega\left(q+(1.44 \alpha)^{\alpha}\right)$.

Overview

- Simplify (D)oS cost functions
- Convex program and dual
- Fractional online algorithm
- Integrality gap
- Integer online algorithm
- Lower bound

Simplifying DoS cost functions

We model (D)oS cost functions as

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ \sigma+x^{\alpha} & \text { if } x>0\end{cases}
$$

Can approximate by a convex power function by a loss factor of $2 q$, with $q:=\sigma^{1 / \alpha}$ using the function

$$
h(x):=q^{\alpha-1} \cdot x+x^{\alpha}
$$

Simplifying (D)oS cost functions

Lemma
For $x \in\{0\} \cup \mathbb{R}_{\geq 1}$, we have

$$
\frac{1}{2} \cdot h(x) \leq f(x) \leq \max \{q, 1\} q^{\alpha-1} \cdot x+x^{\alpha}=\max \{q, 1\} \cdot h(x)
$$

Proof.

Simplifying (D)oS cost functions

Lemma

For $x \in\{0\} \cup \mathbb{R}_{\geq 1}$, we have

$$
\frac{1}{2} \cdot h(x) \leq f(x) \leq \max \{q, 1\} q^{\alpha-1} \cdot x+x^{\alpha}=\max \{q, 1\} \cdot h(x)
$$

Proof.
If $x<q, h(x)=q^{\alpha-1} \cdot x+x^{\alpha} \leq q^{\alpha}+x^{\alpha}=\sigma+x^{\alpha}=f(x)$.

Simplifying (D)oS cost functions

Lemma

For $x \in\{0\} \cup \mathbb{R}_{\geq 1}$, we have

$$
\frac{1}{2} \cdot h(x) \leq f(x) \leq \max \{q, 1\} q^{\alpha-1} \cdot x+x^{\alpha}=\max \{q, 1\} \cdot h(x)
$$

Proof.

If $x<q, h(x)=q^{\alpha-1} \cdot x+x^{\alpha} \leq q^{\alpha}+x^{\alpha}=\sigma+x^{\alpha}=f(x)$.
If $x \geq q, h(x)=q^{\alpha-1} \cdot x+x^{\alpha} \leq 2 x^{\alpha} \leq 2\left(x^{\alpha}+\sigma\right)=2 f(x)$

Simplifying (D)oS cost functions

Lemma

For $x \in\{0\} \cup \mathbb{R}_{\geq 1}$, we have

$$
\frac{1}{2} \cdot h(x) \leq f(x) \leq \max \{q, 1\} q^{\alpha-1} \cdot x+x^{\alpha}=\max \{q, 1\} \cdot h(x)
$$

Proof.

$$
\begin{aligned}
& \text { If } x<q, h(x)=q^{\alpha-1} \cdot x+x^{\alpha} \leq q^{\alpha}+x^{\alpha}=\sigma+x^{\alpha}=f(x) . \\
& \text { If } x \geq q, h(x)=q^{\alpha-1} \cdot x+x^{\alpha} \leq 2 x^{\alpha} \leq 2\left(x^{\alpha}+\sigma\right)=2 f(x)
\end{aligned}
$$

For the second inequality, we have

$$
\max \{q, 1\} q^{\alpha-1} \cdot x+x^{\alpha} \geq q^{\alpha} \cdot x+x^{\alpha}=\sigma x+x^{\alpha} \geq \sigma+x^{\alpha}=f(x)
$$

Algorithm for Convex Sums of Powers

- We simplified (D)oS into sum of power functions (convex)

Algorithm for Convex Sums of Powers

- We simplified (D) oS into sum of power functions (convex)
- Consider cost functions $g_{e}\left(\ell_{e}\right)=c_{e} \cdot \ell_{e}^{\alpha_{e}}$

Assume that $\alpha_{e} \geq 1$

Algorithm for Convex Sums of Powers

- We simplified (D)oS into sum of power functions (convex)
- Consider cost functions $g_{e}\left(\ell_{e}\right)=c_{e} \cdot \ell_{e}^{\alpha_{e}}$

Assume that $\alpha_{e} \geq 1$

- Obtain an α^{α} competitive algorithm for a fractional relaxation.

Algorithm for Convex Sums of Powers

- We simplified (D)oS into sum of power functions (convex)
- Consider cost functions $g_{e}\left(\ell_{e}\right)=c_{e} \cdot \ell_{e}^{\alpha_{e}}$ Assume that $\alpha_{e} \geq 1$
- Obtain an α^{α} competitive algorithm for a fractional relaxation.
- Extend to get $(\mathrm{e} \alpha)^{\alpha}$ competitive algorithm for the integral problem

Fractional Online Algorithm

Convex program relaxation for GND:

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} \cdot\left(\sum_{i=1}^{N} w_{i, e} \sum_{p \in \mathcal{P}_{i}: e \in p} x_{i, p}\right)^{\alpha_{e}} \\
\text { s.t. } & \sum_{p \in \mathcal{P}_{i}} x_{i, p} \geq 1, \quad \forall i \in[N] \\
& x \geq 0
\end{array}
$$

Fractional Online Algorithm

For the analysis, will use dual convex program for GND:

$$
\begin{array}{lll}
\max & \sum_{i=1}^{N} y_{i}-\sum_{e \in E \backslash E_{1}} \frac{c_{e} \alpha_{e}}{\beta_{e}} \cdot z_{e}^{\beta_{e}} & \\
\text { s.t. } & \sum_{e \in p} w_{i, e} c_{e} \alpha_{e} \cdot z_{e} \geq y_{i}, \quad \forall p \in \mathcal{P}_{i}, \forall i \in[N] \\
& z_{e} \leq 1, & \forall e \in E_{1} \\
& y, z \geq 0 . &
\end{array}
$$

Lemma

For any primal $x \in(P)$ and dual $(y, z) \in(D)$ solutions,
$\sum_{e \in E} c_{e} \cdot\left(\sum_{i=1}^{N} w_{i, e} \sum_{p \in \mathcal{P}_{i}: e \in p} x_{i, p}\right)^{\alpha_{e}} \geq \sum_{i=1}^{N} y_{i}-\sum_{e \in E \backslash E_{1}} \frac{c_{e} \alpha_{e}}{\beta_{e}} \cdot z_{e}^{\beta_{e}}$.

Fractional Online Algorithm

Upon arrival of request i, do the following:
For each continuous time $t \in[0,1]$:

- Choose reply $p^{*} \in \mathcal{P}_{i}$ using the min-cost oracle under costs $d_{e}=\alpha_{e} c_{e} \cdot \ell_{e}^{\alpha_{e}-1} \cdot w_{i, e}$ for each $e \in E$, where ℓ_{e} is the current fractional load on e.
- Raise primal variable $x_{i, p^{*}}$ at rate one, i.e. $\frac{\partial}{\partial t} x_{i, p^{*}}=1$

The fractional online algorithm has competitive ratio at most α^{α} where $\alpha=\max _{e \in E} \alpha_{e}$.

Integrality Gap

Example where fractional relaxation has a large integrality gap:

Let all costs be $f(x)=x^{2}$ with a single request, and n edges. If we divide the request up uniformly, total cost is $1 / n$. In the integer setting, the total cost is 1 .

Stronger Relaxation

Convex program relaxation for GND:

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} \cdot\left(\sum_{i=1}^{N} w_{i, e} \sum_{p \in \mathcal{P}_{i}: e \in p} x_{i, p}\right)^{\alpha_{e}}+\sum_{e \in E} \frac{c_{e} \alpha_{e}}{\mathrm{e}^{\alpha}} \cdot \sum_{i=1}^{N} w_{i, e}^{\alpha_{e}} \sum_{p \in \mathcal{P}_{i}: \in \in p} x_{i, p} \\
\text { s.t. } & \sum_{p \in \mathcal{P}_{i}} x_{i, p} \geq 1, \quad \forall i \in[N] \\
& \times \geq 0 .
\end{array}
$$

- Optimal convex program value at most $\left(1+\alpha \mathrm{e}^{-\alpha}\right) \cdot O P T \leq 2 \cdot O P T$.

Integer Online Algorithm

Upon the arrival of request i, we do the following:

- Choose reply $p_{i} \in \mathcal{P}_{i}$ using the min-cost oracle under the costs

$$
\psi_{e}=\alpha_{e} c_{e} \cdot \ell_{e}^{\alpha_{e}-1} \cdot w_{i, e}+\frac{\rho}{\mathrm{e}^{\alpha}} \cdot c_{e} \alpha_{e} w_{i, e}^{\alpha_{e}}, \text { for each } e \in E
$$

where $\ell_{e}:=\sum_{j<i: \in \in p_{j}} w_{j, e}$ is the current load on e.

Lower Bound

Machine Scheduling

- $\Omega\left((1.44 \alpha)^{\alpha}\right)$ lower bound from restricted assignment scheduling with ℓ_{p}-norm load balancing (Caragiannis, 2008)
Online Directed Steiner Tree
- Similar idea as $\Omega(q)$ lower bound (Faloutsos, Pankaj, Sevcik, 2002)

Conclusion

Conclusion

- GND and multicommodity flow

Conclusion

- GND and multicommodity flow
- Convex program and dual

Conclusion

- GND and multicommodity flow
- Convex program and dual
- Fractional and Integer algorithms
- Future work: primal-dual algorithms with convex programs for more general problems?

Conclusion

- GND and multicommodity flow
- Convex program and dual
- Fractional and Integer algorithms
- Future work: primal-dual algorithms with convex programs for more general problems?
- Thanks for watching!

