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Online Multicommodity Flow

@ Directed graph G = (V,E)
@ Each request i has a
e source s;
e destination t;
e demand d; > 1
@ Energy costs are sum of cost functions f.(¢c), where £, is the
total demand going through edge e
@ Goal: minimize total energy cost to route requests
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(D)oS Function
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In our setting, each edge cost is
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Online Multicommodity Flow Example
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Previous Results: Multicommodity Flow

Function Offline Online
ConcaVe [Chekuri, Hajiaghayi, Kortsarz, Salavatipour, '10] [Awerbuch, Azar '97]
COnVeX [Andrews, Anta, Zhang, Zhao '12] [Gupta, Krishnaswamy, Pruhs '12]

[Makarychev, Sviridenko '18]

(D)OS [Andrews, Antonakopoulos, Zhang '16] [Antoniadis, Im, Krishnaswamy,

Moseley, Nagarajan, Pruhs, Stein, '20]

@ All the above results are for undirected networks.

@ Recently (Emek, Kutten, Lavi, shi 20 obtained (offline) approximation
algorithms even for directed networks.
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Result for Multicommodity flow

Theorem

Deterministic online algorithm for multicommodity flow with
competitive ratio O(q + (ex)®) where cost functions are
(Dis)Economies of scale.

o First online result for (D)oS costs in directed graphs
@ Matches the offline bound of [Emek, Kutten, Lavi, Shi 20]

o Tight result in online setting

12/26



Our Setting - Online Generalized Network Design

@ Input: set of E resources and N requests
@ Each request i is associated with replies P; which can satisfy i

and weight vector w; with w; . representing load on resource e.
o Load on each resource e is le =}, .c,

e Want to minimize total cost ) fe(£e) with (D)oS
functions

Wi e

(Dis)Economy
of Scale

fe

load
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Our Results

Theorem (upper bound)

There is a polynomial time O(g7 + (eaT)®)-competitive
deterministic online algorithm for GND assuming a
T-approximation algorithm for the min-cost oracle.

@ The min cost oracle finds a T-approximate min-cost reply from
P; for any single request i efficiently.

@ The previous online multicommodity flow competitive ratio of
O(q + (ea)®) follows from this result and having an exact
min-cost oracle for online multicommodity flow.

Theorem (lower bound)

Any deterministic online algorithm has competitive ratio
Q(g + (1.440)°).
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Overview

Simplify (D)oS cost functions
Convex program and dual
Fractional online algorithm
Integrality gap

Integer online algorithm

Lower bound
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Simplifying DoS cost functions

We model (D)oS cost functions as /

f(x):{o if x=0

o+x% ifx>0"

Can approximate by a convex power function by a
loss factor of 2q, with g := o*/® using the
function
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Simplifying (D)oS cost functions

Lemma

For x € {0} UR>1, we have

~h(x) < f(x) < max{q,1}¢* 1 - x + x* = max{q, 1} - h(x).

N —
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Simplifying (D)oS cost functions

Lemma

For x € {0} UR>1, we have

% ~h(x) < f(x) < max{q,1}¢* 1 - x + x* = max{q, 1} - h(x).

Proof.

If x < g, h(x) =g* 1 - x+x*<g*+x=0+x* = f(x).
If x> q, h(x) = g1 - x +x® < 2x* < 2(x* + o) = 2f(x)

For the second inequality, we have
max{q, 1}g% 1 x +x% > g% - x + x* = ox + x> > 0+ x* = f(x).

Ol
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Algorithm for Convex Sums of Powers
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Algorithm for Convex Sums of Powers

e We simplified (D)oS into sum of power functions (convex)

o Consider cost functions ge(fe) = ce - £2°
Assume that ae > 1

@ Obtain an a® competitive algorithm for a fractional relaxation.

e Extend to get (e)® competitive algorithm for the integral
problem
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Fractional Online Algorithm

Convex program relaxation for GND:

N
min g Ce - E Wi e g Xi p
i=1

ecE pEP;:ecp

st. > xp=1,  Vie[N]
pPEP;

x > 0.
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Fractional Online Algorithm

For the analysis, will use dual convex program for GND:

N
ceoze
yi — .
2= 2

eEE\El
s.t. Z Wi eCeOle - Ze = Vi, Vp € Pj, Vi € [N]
ecp
Ze <1, Ve € E
y,z > 0.

For any primal x € (P) and dual (y, z) € (D) solutions,

e

N CeX
e-te
E Ce * E Wi e E Xi.p E E -zfe.
i=1

ecE i=1 pEP;:e€Ep ecE\E;
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Fractional Online Algorithm

Upon arrival of request /, do the following:
For each continuous time t € [0, 1]:

@ Choose reply p* € P; using the min-cost oracle under costs
de = ateCe - 0271 - w; . for each e € E,
where /. is the current fractional load on e.

@ Raise primal variable x; o« at rate one, i.e. %x,-,p* =1

The fractional online algorithm has competitive ratio at most a®
where @ = maxeck Qe.
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Integrality Gap

Example where fractional relaxation has a large integrality gap:

Let all costs be f(x) = x? with a single request, and n edges.
If we divide the request up uniformly, total cost is 1/n. In the
integer setting, the total cost is 1.
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Stronger Relaxation

Convex program relaxation for GND:

Qe
N N
. CeCle e
min Ce - Wi e Xi,p + e Wi e Xip
i=1 i=1

eckE pEP;e€p eckE pEP;e€p

st. Y xip>1,  Vie[N]
PEP;

x > 0.

@ Optimal convex program value at most
(14 ae @) - OPT <2-OPT.
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Integer Online Algorithm

Upon the arrival of request i/, we do the following:

@ Choose reply p; € P; using the min-cost oracle under the costs
Yo = eCo - 1271w + L o for each e € E
e = QeCe - U Wie + 5 - CetteW;, for each e )

where (e 1= )

j<i-ecp; Wie IS the current load on e.
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Machine Scheduling

o Q((1.44c)*) lower bound from restricted assignment
scheduling with £,-norm load balancing (Caragiannis, 2008)

Online Directed Steiner Tree

e Similar idea as Q(q) lower bound (Faloutsos, Pankaj, Sevcik,
2002)
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Future work: primal-dual algorithms with convex programs for
more general problems?
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@ GND and multicommodity flow
@ Convex program and dual

@ Fractional and Integer algorithms
°

Future work: primal-dual algorithms with convex programs for
more general problems?

Thanks for watching!
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