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Online Multicommodity Flow

Directed graph G = (V ,E )
Each request i has a

source si
destination ti
demand di ≥ 1

Energy costs are sum of cost functions fe(`e), where `e is the
total demand going through edge e
Goal: minimize total energy cost to route requests
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(D)oS Function

In our setting, each edge cost is

fe(`e) =

{
0 if `e = 0
σe + `αe

e if `e > 0

We define qe = σ
1/αe
e and

q = max
e∈E

qe
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Online Multicommodity Flow Example
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Previous Results: Multicommodity Flow

Function Offline Online

Concave [Chekuri, Hajiaghayi, Kortsarz, Salavatipour, ’10] [Awerbuch, Azar ’97]

Convex [Andrews, Anta, Zhang, Zhao ’12] [Gupta, Krishnaswamy, Pruhs ’12]

[Makarychev, Sviridenko ’18]

(D)oS [Andrews, Antonakopoulos, Zhang ’16] [Antoniadis, Im, Krishnaswamy,

Moseley, Nagarajan, Pruhs, Stein, ’20]

All the above results are for undirected networks.

Recently [Emek, Kutten, Lavi, Shi ’20] obtained (offline) approximation
algorithms even for directed networks.
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Result for Multicommodity flow

Theorem

Deterministic online algorithm for multicommodity flow with
competitive ratio O(q + (eα)α) where cost functions are
(Dis)Economies of scale.

First online result for (D)oS costs in directed graphs

Matches the offline bound of [Emek, Kutten, Lavi, Shi ’20]

Tight result in online setting
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Our Setting - Online Generalized Network Design

Input: set of E resources and N requests

Each request i is associated with replies Pi which can satisfy i
and weight vector wi with wi ,e representing load on resource e.

Load on each resource e is `e =
∑

i :e∈pi wi ,e

Want to minimize total cost
∑

e∈E fe(`e) with (D)oS
functions
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Our Results

Theorem (upper bound)

There is a polynomial time O(qτ + (eατ)α)-competitive
deterministic online algorithm for GND assuming a
τ -approximation algorithm for the min-cost oracle.

The min cost oracle finds a τ -approximate min-cost reply from
Pi for any single request i efficiently.

The previous online multicommodity flow competitive ratio of
O(q + (eα)α) follows from this result and having an exact
min-cost oracle for online multicommodity flow.

Theorem (lower bound)

Any deterministic online algorithm has competitive ratio
Ω(q + (1.44α)α).
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Overview

Simplify (D)oS cost functions

Convex program and dual

Fractional online algorithm

Integrality gap

Integer online algorithm

Lower bound
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Simplifying DoS cost functions

We model (D)oS cost functions as

f (x) =

{
0 if x = 0
σ + xα if x > 0

,

Can approximate by a convex power function by a
loss factor of 2q, with q := σ1/α using the
function

h(x) := qα−1 · x + xα
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Simplifying (D)oS cost functions

Lemma

For x ∈ {0} ∪ R≥1, we have

1

2
· h(x) ≤ f (x) ≤ max{q, 1}qα−1 · x + xα = max{q, 1} · h(x).

Proof.

If x < q, h(x) = qα−1 · x + xα ≤ qα + xα = σ + xα = f (x).
If x ≥ q, h(x) = qα−1 · x + xα ≤ 2xα ≤ 2(xα + σ) = 2f (x)

For the second inequality, we have

max{q, 1}qα−1 · x + xα ≥ qα · x + xα = σx + xα ≥ σ+ xα = f (x).

17 / 26



Simplifying (D)oS cost functions

Lemma

For x ∈ {0} ∪ R≥1, we have

1

2
· h(x) ≤ f (x) ≤ max{q, 1}qα−1 · x + xα = max{q, 1} · h(x).

Proof.

If x < q, h(x) = qα−1 · x + xα ≤ qα + xα = σ + xα = f (x).

If x ≥ q, h(x) = qα−1 · x + xα ≤ 2xα ≤ 2(xα + σ) = 2f (x)

For the second inequality, we have

max{q, 1}qα−1 · x + xα ≥ qα · x + xα = σx + xα ≥ σ+ xα = f (x).

17 / 26



Simplifying (D)oS cost functions

Lemma

For x ∈ {0} ∪ R≥1, we have

1

2
· h(x) ≤ f (x) ≤ max{q, 1}qα−1 · x + xα = max{q, 1} · h(x).

Proof.

If x < q, h(x) = qα−1 · x + xα ≤ qα + xα = σ + xα = f (x).
If x ≥ q, h(x) = qα−1 · x + xα ≤ 2xα ≤ 2(xα + σ) = 2f (x)

For the second inequality, we have

max{q, 1}qα−1 · x + xα ≥ qα · x + xα = σx + xα ≥ σ+ xα = f (x).

17 / 26



Simplifying (D)oS cost functions

Lemma

For x ∈ {0} ∪ R≥1, we have

1

2
· h(x) ≤ f (x) ≤ max{q, 1}qα−1 · x + xα = max{q, 1} · h(x).

Proof.

If x < q, h(x) = qα−1 · x + xα ≤ qα + xα = σ + xα = f (x).
If x ≥ q, h(x) = qα−1 · x + xα ≤ 2xα ≤ 2(xα + σ) = 2f (x)

For the second inequality, we have

max{q, 1}qα−1 · x + xα ≥ qα · x + xα = σx + xα ≥ σ+ xα = f (x).

17 / 26



Algorithm for Convex Sums of Powers

We simplified (D)oS into sum of power functions (convex)

Consider cost functions ge(`e) = ce · `αe
e

Assume that αe ≥ 1

Obtain an αα competitive algorithm for a fractional relaxation.

Extend to get (eα)α competitive algorithm for the integral
problem

18 / 26



Algorithm for Convex Sums of Powers

We simplified (D)oS into sum of power functions (convex)

Consider cost functions ge(`e) = ce · `αe
e

Assume that αe ≥ 1

Obtain an αα competitive algorithm for a fractional relaxation.

Extend to get (eα)α competitive algorithm for the integral
problem

18 / 26



Algorithm for Convex Sums of Powers

We simplified (D)oS into sum of power functions (convex)

Consider cost functions ge(`e) = ce · `αe
e

Assume that αe ≥ 1

Obtain an αα competitive algorithm for a fractional relaxation.

Extend to get (eα)α competitive algorithm for the integral
problem

18 / 26



Algorithm for Convex Sums of Powers

We simplified (D)oS into sum of power functions (convex)

Consider cost functions ge(`e) = ce · `αe
e

Assume that αe ≥ 1

Obtain an αα competitive algorithm for a fractional relaxation.

Extend to get (eα)α competitive algorithm for the integral
problem

18 / 26



Fractional Online Algorithm

Convex program relaxation for GND:

min
∑
e∈E

ce ·

 N∑
i=1

wi ,e

∑
p∈Pi :e∈p

xi ,p

αe

s.t.
∑
p∈Pi

xi ,p ≥ 1, ∀i ∈ [N]

x ≥ 0.
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Fractional Online Algorithm

For the analysis, will use dual convex program for GND:

max
N∑
i=1

yi −
∑

e∈E\E1

ceαe

βe
· zβee

s.t.
∑
e∈p

wi ,eceαe · ze ≥ yi , ∀p ∈ Pi , ∀i ∈ [N]

ze ≤ 1, ∀e ∈ E1

y, z ≥ 0.

Lemma

For any primal x ∈ (P) and dual (y , z) ∈ (D) solutions,

∑
e∈E

ce ·

 N∑
i=1

wi ,e

∑
p∈Pi :e∈p

xi ,p

αe

≥
N∑
i=1

yi −
∑

e∈E\E1

ceαe

βe
· zβee .
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Fractional Online Algorithm

Upon arrival of request i , do the following:
For each continuous time t ∈ [0, 1]:

Choose reply p∗ ∈ Pi using the min-cost oracle under costs
de = αece · `αe−1

e · wi ,e for each e ∈ E ,
where `e is the current fractional load on e.

Raise primal variable xi ,p∗ at rate one, i.e. ∂
∂t xi ,p∗ = 1

The fractional online algorithm has competitive ratio at most αα

where α = maxe∈E αe .
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Integrality Gap

Example where fractional relaxation has a large integrality gap:

Let all costs be f (x) = x2 with a single request, and n edges.
If we divide the request up uniformly, total cost is 1/n. In the
integer setting, the total cost is 1.
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Stronger Relaxation

Convex program relaxation for GND:

min
∑
e∈E

ce ·

 N∑
i=1

wi,e

∑
p∈Pi :e∈p

xi,p

αe

+
∑
e∈E

ceαe

eα
·

N∑
i=1

wαe
i,e

∑
p∈Pi :e∈p

xi,p

s.t.
∑
p∈Pi

xi,p ≥ 1, ∀i ∈ [N]

x ≥ 0.

Optimal convex program value at most
(1 + αe−α) · OPT ≤ 2 · OPT .
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Integer Online Algorithm

Upon the arrival of request i , we do the following:

Choose reply pi ∈ Pi using the min-cost oracle under the costs

ψe = αece · `αe−1
e · wi ,e +

ρ

eα
· ceαew

αe
i ,e , for each e ∈ E ,

where `e :=
∑

j<i :e∈pj wj ,e is the current load on e.
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Lower Bound

Machine Scheduling

Ω((1.44α)α) lower bound from restricted assignment
scheduling with `p-norm load balancing (Caragiannis, 2008)

Online Directed Steiner Tree

Similar idea as Ω(q) lower bound (Faloutsos, Pankaj, Sevcik,
2002)
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Conclusion

GND and multicommodity flow

Convex program and dual

Fractional and Integer algorithms

Future work: primal-dual algorithms with convex programs for
more general problems?

Thanks for watching!
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