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Overall Goal

� Safe navigation of a wheelchair robot in a 

large scale urban environment

� This work addresses safety

� Approach: Use 2D local metrical maps to 

represent the navigability of the 3D 

environment



Safe Navigation for a Wheelchair Robot

� Why 2D local 
metrical maps are 
sufficient

– For safety only local 
surroundings matter

– Wheelchair moves 

on a 2-manifold



Safe Navigation for a Wheelchair Robot

� Advantages of 
using 2D local 
metrical maps

– Computation stays 
bounded

– Don’t mix safety 
issues with global 
mapping issues

2D scrolling local metrical map 
constructed using lasers



Safe Navigation for a Wheelchair Robot

� Multimodal 
sensing is required

– Sensors have 
limitations & 
strengths

2D lasers do not see table top but 
stereo does



Safe Navigation for a Wheelchair Robot

� Why multimodal 
sensing is required

– Sensors have 
limitations & 
strengths

Lasers, stereo fail to distinguish 
sidewalk from mud, but color does



Safe Navigation for a Wheelchair Robot

� Why multimodal 
sensing is required

– Sensors have 
limitations & 
strengths

Lasers, stereo do not detect glass but 
bump & sonar sometimes detect it



Approach

� Represent the environment using local 2D metrical 

maps annotated with safety information

– called local safety maps

� Use lasers (2D) & stereo to build safety maps of level 

environments (for now)

� Use an existing hybrid mapping framework to build 
global maps for large scale navigation

– [Kuipers, et. al, ICRA ‘04]



Outline

� The environment and the local safety map

� Constructing the local safety map

� Results and conclusions



The Environment

� Wheelchair accessible urban environment

– conforms to the Americans with Disabilities Act

� Environment has pedestrians and low speed 

traffic

– e.g. a University campus



Fixed obstacles

Inclines

Overhangs

Drop-offs

Urban Environment: Features relevant to safety
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Urban Environment: Features relevant to safety

Narrow regions

Invisible obstaclesRough/uneven surfaces

Dynamic obstacles



Safety Classification

� Obstacles (“Can’t go there”)

– fixed, dynamic, etc

� Hazards (“Shouldn’t go there”)

– overhangs, drop offs, etc

� Caution areas (“Slow down”)

– inclines, narrow regions, etc

� Unknown areas (“Stop, look, & listen”)

– insufficient data

� Safe areas (“Full speed ahead”)



The Local Safety Map

safety map = f (agent, environment)

World cross-section
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The Local Safety Map

Project objects/features perpendicular to local ground plane

safety map = f (agent, environment)

World cross-section



The Local Safety Map

Map plane

Project further to the map plane to define distinct regions

safety map = f (agent, environment)

World cross-section



The Local Safety Map

Classify regions to get safety map

safety map = f (agent, environment)

World cross-section

Map



The Local Safety Map: Example

Green – Safe

Black – Obstacle

Red – Hazard

Gray – Unknown
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Constructing the Local Safety Map

1. Use lasers for localization with respect to the 
local surroundings

2. Build geometric models of the local 
surroundings using lasers and stereo

3. Construct safety map by projecting the 
models onto the ground plane & classifying 
projected regions



Lasers: Localization & 2D metric map

� Standard particle filter 
based SLAM algorithm 

– Accurate 3 dof 
localization

– 2D occupancy grid    
map Tables



Stereo: 3D point cloud

1. 3D point landmarks obtained in robot’s egocentric 
reference frame using

� dense (correlation-based) stereo or,

� feature-based stereo (SIFT [Lowe, IJCV, ’04])

2. Landmark locations transformed from egocentric to 
local map reference frame using laser localization

3. Observed landmarks matched to existing 
landmarks using a Bayesian method

4. Landmark locations updated and tracked using 
Kalman filters



Bayesian Data Association

� For each existing landmark, LP ,

– find the current observation, LO* , that maximizes the 

probability that the observation and landmark match:

LO* =  arg max  p (LO = LP | XO, XP, VO, VP) 

LO

– where, the probability of a match is computed based on the 
observation’s and landmark’s

� locations (XO , XP), and 

� visual properties (VO ,VP)



Bayesian Data Association

� For Gaussian error models: 

maximizing matching probability = minimizing                   
(square of) the Mahalanobis distance

LO* =   arg min  (XO – XP)T(ΣO + ΣP)-1(XO – XP)  +  (VO – VP)TΣ-1(VO – VP)                
LO

� Also use Mahalanobis distance for identifying new 
landmarks and eliminating false observations

� Previous work: [Reid, TAC, ‘79], [Dissanayake, et. al, 
TRA, ‘01]



Bayesian Data Association

Existing Landmark



Bayesian Data Association

Observations



Bayesian Data Association

Match



Bayesian Data Association

Kalman filter update



Bayesian Data Association

Temporary landmarks



Bayesian Data Association

Observe



Bayesian Data Association

Match



Bayesian Data Association

Update



Bayesian Data Association



Bayesian Data Association

Observe



Bayesian Data Association

Match



Bayesian Data Association

Update



Bayesian Data Association

Now a 

Landmark !

Eliminated !



Mahalanobis Distance Removes False Observations

Mahalanobis distance Euclidean distance

Stereo 3D point cloud (in blue) constructed using 2 different metrics 
overlaid on a 2D laser map (in red)



Stereo: Good 3D models obtained



Current Rules for Obtaining the Safety Map

� Project geometric model onto the ground plane

� Classify projected regions in the plane as

– an obstacle

� if detected by stereo to be above the ground plane, and

� if detected by lasers

– a hazard (overhang)

� if detected by stereo to be above the ground plane, and

� if invisible to lasers

– safe

� if detected by stereo to be on the ground plane or if not 

detected at all, and

� if invisible to lasers

– unknown

� if not detected by lasers and stereo
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Results: Safety maps of the lab



Using lasers only Using stereo only

Results: Safety maps of the lab

Made using lasers & stereo Manually annotated

Legend: Safe, Obstacle, Hazard, Unknown



Results: Safety maps of the lab

Made using only lasers Made using only stereo

Legend: Safe, Obstacle, Hazard, Unknown

Tables Tables



Evaluating the Safety Maps: Precision & Recall

� Precision: Ratio of all cells marked safe by the robot, that are 
actually safe

– Precision = #TP / (#TP + #FP)

� Recall: Ratio of all cells that are actually safe, that are marked 
safe by the robot

– Recall = #TP / (#TP + #FN)

� F: Combined measure of precision & recall

– F = 2 x #TP / (2 x #TP + #FP + #FN)

� Where,

– TP (True Positive):  cell marked safe and is actually safe

– FP (False Positive): cell marked safe but is actually unsafe

– FN (False Negative): cell marked unsafe but is actually safe



Evaluating the Safety Maps: Results

� Laser map 

– Very high recall (~1): safe areas rarely marked as unsafe

– Low precision: overhangs not detected

� Stereo map

– High precision (~0.95) : most objects detected

– Low recall due to noise

� Laser & stereo map 

– Improves stereo recall 

– Improves laser precision 

– Has highest F measure



Conclusions

� 2D local safety maps are sufficient for safe 

navigation for a wheelchair robot

� Multimodal sensing is necessary for 

constructing the local safety maps

� Mahalanobis distance is an effective metric 

for dense stereo data association



Future Work

� Using other visual cues, in addition to stereo, to 
learn safety classification
– e.g., color and texture

� [Ulrich & Nourbakhsh, AAAI `00]

� [Saxena, Chung, & Ng, NIPS `05]

� Extending to non-level (inclined) environments
– 6 dof localization using lasers and vision

� Auto-calibrating the sensors against each other

� Optimizing for real-time performance



Thank you

Questions? 

http://www.cs.utexas.edu/~qr/robotics


