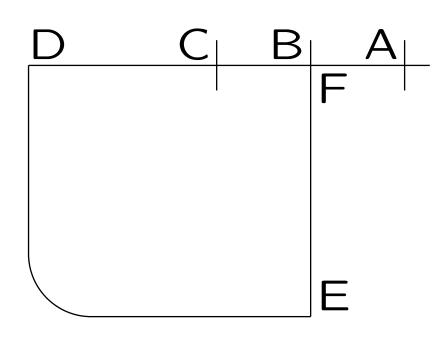
Local Metrical and Global Topological Maps in the Hybrid Spatial Semantic Hierarchy

> Benjamin Kuipers, Joseph Modayil, Patrick Beeson, Matt MacMahon, Francesco Savelli

Intelligent Robotics Lab Department of Computer Sciences University of Texas at Austin

Overview

- High-resolution, online metrical mapping methods
 - Increasingly more efficient for many environments
 - Difficulties scaling to larger, more complex environments
- Topological mapping methods
 - Scale to environments of great size and structural complexity due to compactness
 - Symbol grounding issues affect map-building efficiency and robustness


Goal

 Create an online hybrid mapping method that combines the strengths of high-resolution metrical mapping and topological mapping, while avoiding their weaknesses.

Approach

- Factor space into two scales, each providing a different kind of uncertainty.
- Small-scale space
 - □ Space within the local surround: e.g. this room
 - Local metrical uncertainty
 - Incremental localization, obstacle avoidance
 - Occupancy grids
- Large-scale space
 - □ Space beyond the horizon: e.g. the French Quarter
 - Structural uncertainty
 - Loop closing, relocalization
 - Topological maps via Spatial Semantic Hierarchy

Structural Uncertainty Example

 Take a large loop, where global metrical uncertainty becomes very large.

F=A, F=B, F=C,
 F≠A ∧ F≠B ∧ F≠C

- Larger environments make this scenario more common.
 - Nested loops
 - Spiral structures

Online Loop Closing in Metrical Maps

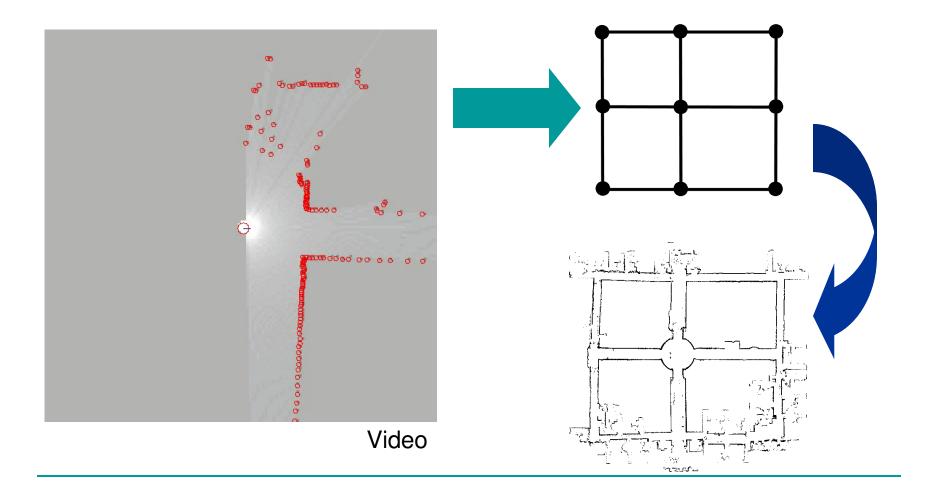
Single map hypothesis

- Incorrect loop closing
 - Overly simple, overly complex maps.
- □ If a wrong map is detected,
 - Where was the incorrect loop closure made?
 - How can the map be fixed?

State-of-the-Art Online Metrical Mapping

Multiple map hypotheses

- □ N particles, each with its own high-resolution map
- K structural loop closing hypotheses
- Cost vs. particle depletion
 - Fixed number of particles O(N): particle depletion problems
 - Increasing particles with structural uncertainty O(NK): resource limitations
 - Nested loops cause all K hypotheses to branch.

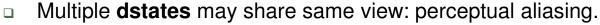

Our Approach to Loop Closing

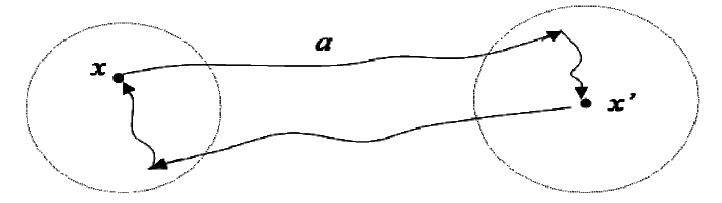
 Topological maps represent the global structure as a graph of places and paths.
 Factored from metrical uncertainty.

Factored Approach

- To aid in symbol grounding and low-level control, we still use metrical maps as models to describe the "scrolling" local surround.
 - M particles in local metrical map for incremental localization.
 - □ M << N
- Factoring structural uncertainty from local metrical uncertainty: O(M+K).
 - Loop closing hypotheses are efficiently computed by tree of topological maps.

Combining Mapping Methods




Spatial Semantic Hierarchy

- SSH is a theory of knowledge of large-scale space: the "cognitive map" [Kuipers, AIJ, 2000]
 Control, Causal, Topological, Metrical
- Formal, non-monotonic logical theory for topological map-building [Remolina and Kuipers, AIJ, 2004]
 - Axioms to generate map hypotheses, check maps for consistency, order maps by minimality criterion.


Abstracting the Continuous World

- SSH has weak assumptions about sensors
- Trajectory-following control through qualitatively uniform regions.
 e.g. corridor-following, wall-following
- Hill-climb to distinctive state (x,y,θ) at a place.
 - e.g. Voronoi point with orientation
- Each distinctive state has a single view, abstracted from sensory snapshot.

Causal Map-Building

- When arriving at a dstate with view v, every previously visited dstate with same view is considered.
 - This dstate could also be novel.
 - Done for every map hypothesis.
 - Many of these hypotheses are discarded due to axioms of the formal logic.

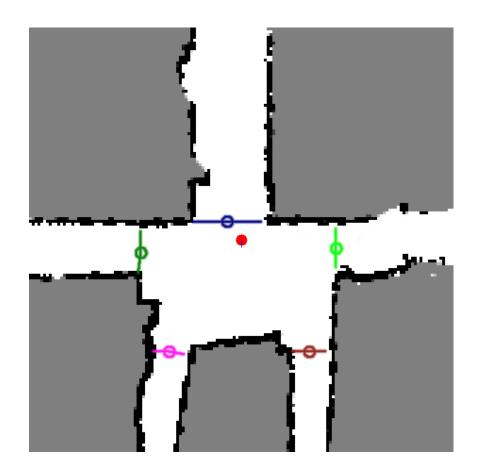
Topological Map Building Overview

- Topological map (places, paths, order, connectivity, containment) built on top of causal map (dstates and actions).
 - Dstates connected by turns define a place and the paths that intersect at that place.
 - Dstates connected by travels define an order of places along a path.

Extending the Basic SSH

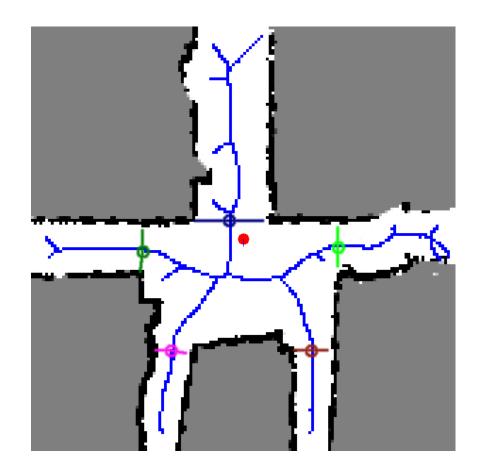
- Use information about the local metrical surround.
- Eliminate the need for hill-climbing
 Localization is handled incrementally
- Local topology of place can be extracted from the local metrical map.
- Local topology is a reliable view of a place.
 - Places have "views" instead of dstates.
 - Matching places instead of dstates creates far fewer maps.

Plan Overview

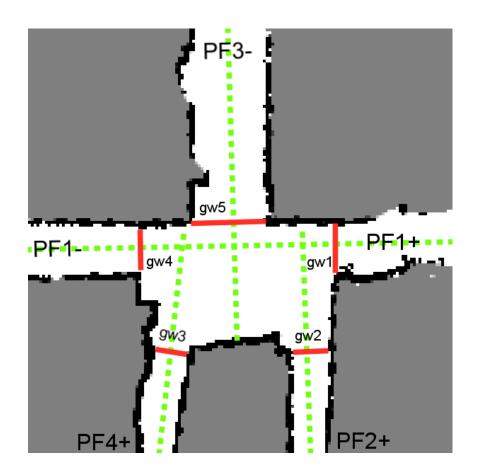

 Use scrolling, local metrical maps for description of local surround.

At a place:

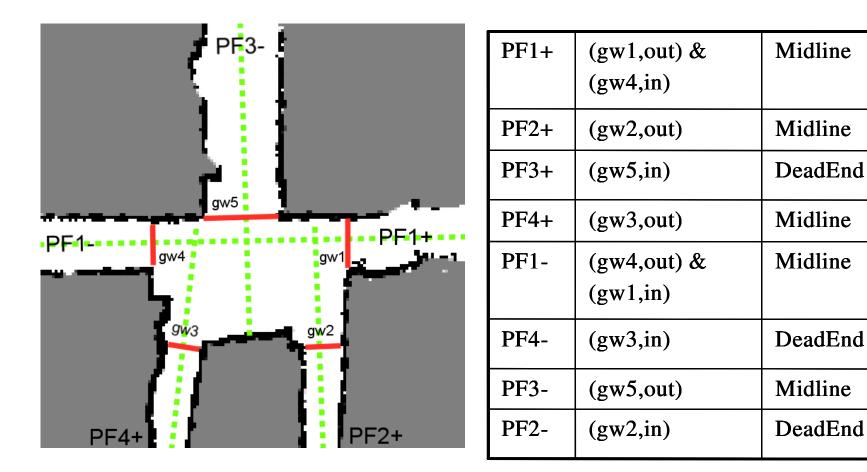
- 1. Extract local topology from metrical map
 - Gateways, path fragments, small-scale star
- 2. Use local topology to ground large-scale space semantics
 - Large-scale star, dstates, places, paths


Gateways

- Boundaries between qualitatively different regions of the environment
 - Boundaries between trajectory-following and hill-climbing applicability
 - Each gateway has two directions, inward and outward.


Current Implementation

- Gateways are "constrictions" in the Medial Axis of place neighborhoods
 - Corridor environments
- In non-enclosed environments, generalize gateways based on other control laws.


Path Fragments

- Portions of large-scale topological paths that are grounded in smallscale space
- Each path fragment is associated with one or two gateways

Small-Scale Star

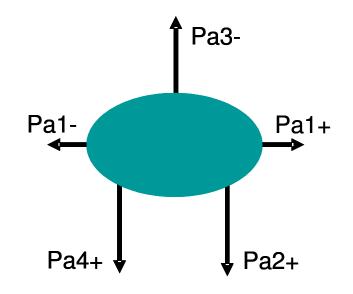
•Symbolic description within the small-scale ontology

Plan Overview

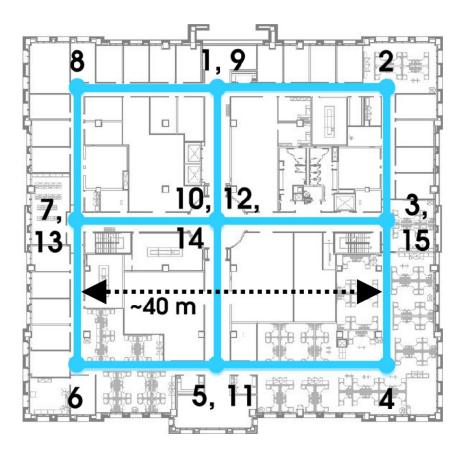
 Use scrolling, local metrical maps for description of local surround.

- At a place:
 - 1. Extract local topology from metrical map
 - Gateways, path fragments, small-scale star
 - 2. Use local topology to ground large-scale space semantics
 - Large-scale star, dstates, places, paths

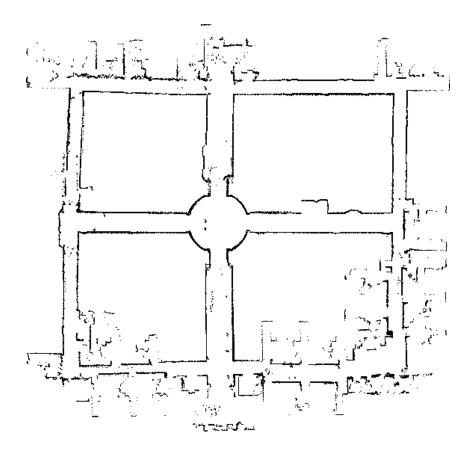
Binding Small-scale to Large-scale


Small-scale star \rightarrow Large-scale star					
PF1+	(gw1,out) & (gw4,in)	Midline	ds1	Pa1, +	
PF2+	(gw2,out)	Midline	ds2	Pa2, +	
PF3+	(gw5,in)	DeadEnd	ds3	Pa3, +	Endpoint
PF4+	(gw3,out)	Midline	ds4	Pa4, +	
PF1-	(gw4,out) & (gw1,in)	Midline	ds5	Pa1, -	
PF4-	(gw3,in)	DeadEnd	ds6	Pa4, -	Endpoint
PF3-	(gw5,out)	Midline	ds7	Pa3, -	
PF2-	(gw2,in)	DeadEnd	ds8	Pa2, -	Endpoint

Overview of New Topological Map Building


- 1. Identify gateways and path fragments
- 2. Generate small-scale star
- 3. Match current place to any previously visited places that have the same small-scale star.
 - Metrical map may provide more information to eliminate some models.
 - Creates large-scale star bindings.
 - Causal map falls out of topological map.

Large-scale Local Topology


Real World Experiment

- 9 places, 6 paths, 14 actions
- Multiple nested loops
- 4 unique small-scale stars (local topologies)
- 46 possible topological maps, given the experience
 - 136 maps in entire tree
- Minimality ordering identifies the correct topological structure.
- Calculated in ~200 ms on Pentium III 450 MHz

Global Metrical Representation

- If desired, a global metrical map is efficiently computed when using a topological map as a skeleton
 - [Modayil, Beeson, and Kuipers, submitted]
- Minutes to complete

Recap of Previous Work

- High-resolution metrical maps (sensors → global metrical description)
 - Work well in local, simple regions
 - Loop closing in increasingly large environments can miss the correct structural layout of the environment.
- Previous SSH implementations (sensors → global symbolic description)
 - Hill-climbing to dstates, views generated from images at dstates
 - Move directly from sensors and effectors to large-scale space semantics
 - Efficiently determine correct topological layout

The Hybrid SSH:

The Best of Both Worlds

- Local metrical maps for metrical uncertainty
 - Factors metrical uncertainty out of global structural uncertainty
 - Localization w/out physical hill-climbing
 - Low-level obstacle avoidance
- Topological maps for structural uncertainty
 - Local topology descriptions that serve as views are created reliably
 - Views of places reduces model search
 - o Active exploration for hypothesis elimination
 - o Hierarchical implementations
- sensors → local metrical description → local symbolic description
 → global symbolic description → global metrical description

The End