Bootstrap Learning for Place Recognition

Benjamin Kuipers Patrick Beeson

University of Texas at Austin

Place Recognition

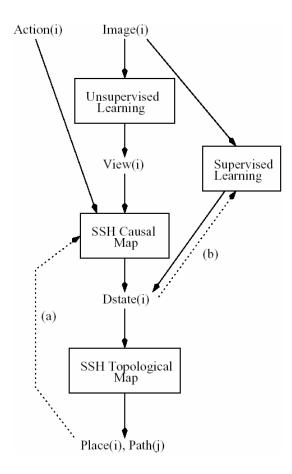
- Identify current position and orientation
 - from sensory image
 - "global localization"
- Problem 1: *Perceptual aliasing*.
 Different places look the same.
- Problem 2: *Image variability*.
 The same place looks different.
- Rich sensors make variability more important.

Solution: Bootstrap Learning

- Use an unsupervised learning method
 Cluster sensory images into views
- to prepare for a deductive method
 Build a causal/topological map
- that supports a supervised learning method

 Nearest neighbor
- that achieves high performance.
 - Two real-world robot experiments.

Bootstrap Learning Diagram



Only Learn Distinctive Places

- A *distinctive state* is the isolated fixed-point of a hill-climbing control law.
 - distinctive place and orientation.
- A causal link *<x*,*a*,*x*'> asserts:
 - -x and x' are distinctive states (dstates),
 - Action *a* consists of trajectory-following then hillclimbing, leading *reliably* from *x* to *x*'.
- Part of the Spatial Semantic Hierarchy (SSH).

Contrast with Occupancy Grids

Occupancy grids

- Single global frame of reference
- Designed for rangesensors.
- Problematic to define p(o|x,m) for image o.

Topological maps

- Multiple local frames of reference
- No assumption about sensors.
- Reasonable definition of p(vlx,m), clustering images o to views v.

(1) Unsupervised Learning:Cluster Images to Views

- An *image* is a sensory snapshot.
 - A view is a cluster of similar images.
- Cluster images so aggressively that:
 - Image variability is eliminated, but
 - Perceptual aliasing is increased.
- SSH map-building requires:
 - a distinctive state has a unique view, but
 - multiple dstates can have the same view.

Markov Localization

- Within current map *m*
 - Update location belief distribution: $p(x \mid m) \rightarrow p(x' \mid a, o, m)$
 - After action *a*: p(x'|x, a, m)
 - After sensory image o: p(o | x', m)
 - Normalization constant: α

$$p(x'|a, o, m) = \alpha p(o | x', m) \int p(x'|x, a, m) p(x | m) dx$$

Markov Simplified

- Markov localization is useful for both occupancy grids and topological maps.
- Markov update is greatly simplified in the topological map.
 - Many fewer states,
 - Reliable actions,
 - Sensory images clustered to views.

Reliable Actions

• The causal link $\langle x, a, x' \rangle \Rightarrow p(x' | x, a, m) = 1$

while $x'' \neq x' \Longrightarrow p(x''|x, a, m) = 0$

• Simplifies the Markov update equation: from: $p(x'|a, o, m) = \alpha p(o|x', m) \int p(x'|x, a, m) p(x|m) dx$

to:

$$p(x'|a, o, m) = \alpha p(o | x', m) \sum \left\{ p(x | m) : \langle x, a, x' \rangle \right\}$$

Cluster Images into Views

- p(o|x,m) is too small to be meaningful.
 - A sensory image *o* is very high-dimensional.
 - Cluster into a small set of views *v*.
 - p(v|x,m) is meaningful, and can be estimated.
- Since a dstate has one view $p(x'|a, v, m) = \alpha p(v | x', m) \sum \left\{ p(x | m) : \langle x, a, x' \rangle \right\}$

becomes $p(x'|a, v, m) = \alpha \sum \left\{ p(x|m) : \langle x, a, x' \rangle \land view(x', v) \right\}$

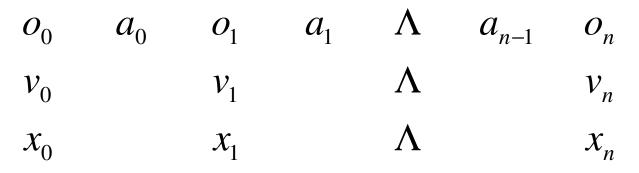
• Prior uncertainty is carried forward and pruned.

How Many Clusters? How Much Perceptual Aliasing?

- Use *k*-means clustering. Search for *k*.
- Agent uses the *decision metric* M:
 - Rewards tight clusters, and clear separation.
 - Agent select *k* that gives largest value of M.
- Researchers use *evaluation metric* U:
 Information dstate *x* provides about view *v*.
- Ideal result: largest k for which U=1.

(2) Explore the Environment:Build Causal/Topological Map

- Alternating sequence of images and actions.
 - Cluster images to views. Define dstates.



- Minimize model: dstates, paths, places. [Remolina & Kuipers, IJCAI-2001]
- Exploration eliminates uncertainty, and labels each image with the correct dstate.

(3) Supervised Learning to Recognize Dstates from Images

- Subtle discriminating features are lost in the noise to an unsupervised learner.
- With a supervisory signal,
 - the noise washes out, and
 - the subtle but true feature is reinforced.
- We use *nearest neighbor* learning:
 - Accuracy rises rapidly to 100%
 - because the sensory signal is very rich.

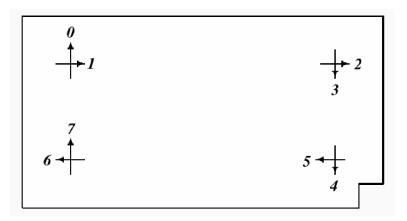
Physical Robot Experiments

- Lassie
 - RWI Magellan Pro
 - Sonar ring to avoid obstacles.
 - Laser range-finder gives sensory images.

 $o_i \in \Re^{180}$

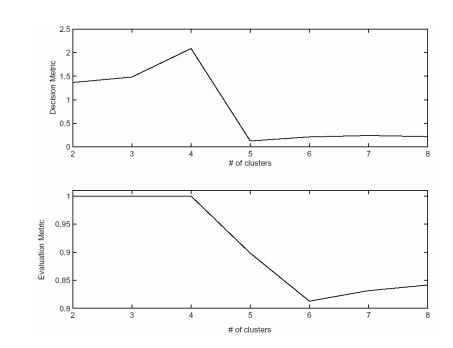
Experiment 1: A Super-Simple Environment

- The simplest environment with
 - perceptual aliasing and image variability,
 - masking a true discriminating feature.



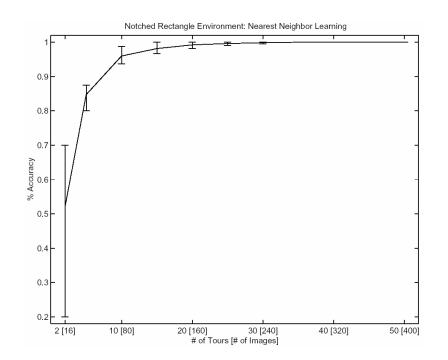
Experiment 1: Clustering and Mapping

- 50 clockwise cycles, 200 images.
- Decision metric picks *k*=4 clusters (views).
- Evaluation metric confirms optimality.
- Mapper identifies
 - 8 dstates,
 - 4 places, 4 paths.



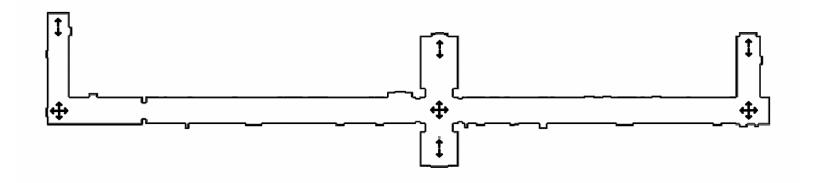
Experiment 1: Place Recognition from Images

- 10-fold cross validation.
- Accuracy rises rapidly to 100%.



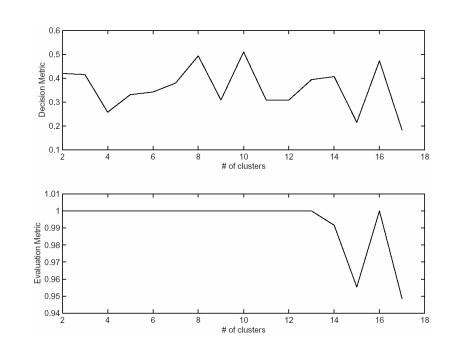
Experiment 2: Natural Office Environment

- Classroom building: 80 m long, cluttered.
 - Map has 20 dstates, 7 places, 4 paths.
- Image variability is the major problem.



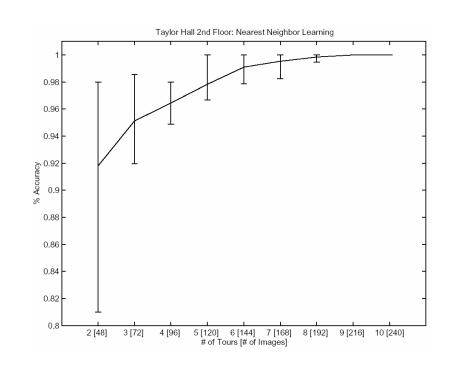
Experiment 2: Clustering and Mapping

- 10 circuits, 240 images
- Decision metric picks k=10 clusters (views)
- Evaluation metric says k=13 would work.
- Mapper identifies
 - 20 dstates
 - 7 places, 4 paths



Experiment 2: Place Recognition from Images

- 10-fold cross validation
- Accuracy rises rapidly to 100%.
- Rich sensory images support better recognition



Future Work

- Extend to visual sensors.
 - Representation does not rely on range sensors.
 - cf. [Ulrich & Nourbakhsh, 2000]
- Eliminate need for physical hill-climbing.
 - Exploit strengths of *local* metrical maps.
- Error recovery when reliable actions fail.
 - Fall back to Markov localization, temporarily.

Conclusions

- Bootstrap learning works:
 - Unsupervised clustering abstracts the world.
 - Deductive inference builds a correct model.
 - Supervised learning with accurate labels gives high performance from real inputs.