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Goal

• Intelligent Wheelchair

– Provides:
• Safe execution of 

commands

• Perception

• Communication

– Benefits:
• Mobility impaired

• Visually impaired

• Cognitively impaired
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Wheelchair Research Issues

• Wheelchair Hardware
– Sensors, power consumption, etc.

• Interface Hardware
– Varies by disability, personal preference, etc.

• Low-level Control
– Velocities to motor voltages, safe/comfortable acceleration

• Knowledge Representation
– Perception, navigation, spatial concepts, mixed autonomy

• User community studies
– Usefulness, trust, cost
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Interface Goals

• “Dock at my desk.”

• “Enter restroom stall.”

• “Go to the end of the hallway.”

• “Take the next left.”

• “Go right at the ‘T’ intersection.”

• “Go to the Psychology building.”

• “Stop at the water fountain.”

• “Take the scenic route.”
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Representation Independence

• We want the spatial reasoning system to 
be independent of:

– Specific interface with user

– Specific robot platform/sensors
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Talk Overview

1. Knowledge Representation 

2. Pilot Experiments
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Current focus

• Knowledge representation should facilitate:
– Modeling of environment

– Safe navigation

– Communication

– Mixed autonomy

• High-precision control (small, precise spaces)
– Bathroom stalls, office navigation/desk docking, etc.

• Low-precision control (large-scale spaces)
– Obstacle avoidance in hallways, turning corners, etc.
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Progress

• This talk:

– Spatial reasoning framework

• The Hybrid Spatial Semantic Hierarchy (HSSH)

– Experimental results

• Wheelchair navigation with simulated low-vision users

• Related work from our lab:

– Natural language route instructions

– 3D safety

– Object / Place learning
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State of the art in mobile robotics

• Mobile robot research is largely 
focused on SLAM (simultaneous 
localization and mapping).

• Most SLAM implementations create a 
monolithic representation of space

– Metrical map
– Single frame of reference
– e.g. occupancy grids, landmark maps

Issues:

• Closing large loops 
– Heuristic
– Long compute times

• Interaction
– Exploring a new environment
– Blind users
– Planning
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Hybrid Spatial Semantic Hierarchy

• Factor spatial reasoning about the environment into reasoning at four levels

– local metrical – models obstacle locations in local surround

– local topology – models symbolic structure of local surround

– global topology – models global symbolic structure of  

entire environment

– global metrical – models global layout of obstacle locations 
• Largely unnecessary, but often useful if it exists

• Each level has its own ontology / language
– Inspired by human cognitive behaviors

• More robust and efficient than a single, monolithic representation, but also 
more useful to provide human-robot interaction.

– Better than a single, large occupancy grid representation

Small-scale 

models

Large-scale 

models

}

}
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HSSH Diagram

+
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Local Metrical Level

• Environment is modeled 
as a bounded metrical 

map of small-scale space 

within the agent’s 
perceptual surround.

– Scrolls with the agent’s 
motion

– Not tied to a global frame 
of reference. 

– Useful for “situational 
awareness” of the 
immediate surround.
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Local Metrical Control

• Driver uses the joystick. 

– Robot checks commands 
against the local map for 
safety. 

• Driver may specify a 

target or direction of 

motion within the local 
map. 

– Robot plans hazard-
avoiding motion toward that 
target.
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Local geometry � local topology

• Compute “gateways”

• Gateways help define 

“places”
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Local Topology Level

• Environment is 

modeled as a set of 

discrete decision 

points, linked by 

actions

– Turn selects among 
options at a decision 

point

– Travel moves to the 

next decision point.
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Local Topology Control

• Driver specifies turn 
actions at decision 
points.
– Turning actually 

corresponds to 
selecting a gateway 
location and 
performing control at 
the local metrical level.

– Travel moves from a 
gateway to the next 
place.
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Local topology � global topology

• Detect loop closures 

based on matching 

local topology and 

local metrical models.

• Build tree of possible 

topological maps and 

use simplest model 

as current best guess.
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Global Topology Level

• Environment is 

modeled as a network 

of places, on 

extended paths, 

contained in regions

– Efficient route planning 
in large environments

• graph search
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Global Topology Control

• Driver specifies a destination place in a 
topological map, by name or in a 
schematic diagram (like a subway map).

1. Robot plans a route to that goal

2. Route is translated into a sequence of local 

topology travel/turn commands

3. Route is executed by hazard-avoiding 

control laws in the local metrical model
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Global topology � global metrical

• Use local metrical 
information between 

topological places to find 

global metrical layout of 
places.

• Build global metrical map 

on top of the topological 
skeleton.

– More computationally 
efficient than other 
methods
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Global Metrical Level

• Environment has a geometric model in a single global 
frame of reference. 
– Useful for  route optimization when available, but not necessary

for large-scale navigation.

Control

• Driver clicks on a global metrical map
– Robot plans a route to that destination in the topological map, 

then completes its route in the local metrical model.

• Driver specifies a saved destination that may not 
correspond to a “place”, but has a location in the global 
map (e.g., “Go to the charger.”).
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Talk Overview

1. Knowledge Representation 

2. Pilot Experiments
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Background

• Wheelchair software is 
written for and tested on 

actual robotics platforms.

• To safely simulate 
disabled users, we port 

the code to a virtual 
environment.

– Also useful for safely 
evaluating new ideas.
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VR Setup

• Wheelchair software runs on 
“virtual wheelchair” in a virtual 
3D maze environment.

– Human avatars act as 
obstacles.

– Virtual “laser scanner” at shin 
height

– Users eye level at about chest 
height

• We test two perceptual 
conditions

– Normal vision

– Degraded vision
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Pilot Study Interfaces

• 3 Navigation interfaces:

– Manual (Joystick)
• No intelligence

• Joystick directly commands motion

– Control (Joystick)
• Uses local metrical model

• Throttles velocities in hazard situations

• Disregards unsafe actions

– Command (GUI Interface)
• Commands local topology level

• “Go to next decision point”, “turn left”, etc.

– Not tested:
• Topological / Global metrical navigation
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Experimental Questions

• Effect of Degraded Vision 
– Does reducing the visual information by adding fog make the 

task more difficult?

• Benefit of Assisted Joystick Control 
– Is performance better with local metrical control (collision 

avoidance)?

• Benefit of Local Topology Navigation 
– Does the navigation improve by using local topology knowledge 

in the wheelchair?

• User gives discrete commands

• Wheelchair performs navigation between decision points
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Experiment Details

• 4 conditions
– Normal vision: Manual interface (no safety)

– Degraded vision: Manual interface (no safety)

– Degraded vision: Control interface (safety)

– Degraded vision: Command interface (decision graph 
w/ safety)

• 3 subjects
– Each subject made 5 runs in each condition

• 20 total runs

– 20 runs were randomized for each subject
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Experimental Details cont’d

• A run consisted of moving 
between 5 randomly 

chosen locations in the 

environment.

– Natural language feedback

• Subjects knew 

environment beforehand

– Avatars were randomly 
distributed for each run.
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Qualitative Results
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Quantitative Results
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Future Work (Robot)

• Evaluate global topological 
navigation
– User decides final location

– Fully autonomous navigation 
by robot

– Larger environments

• Evaluate interface devices with 
intelligent wheelchair platform
– Force-feedback joystick

– Touch screen

– Natural language

• High-precision control
– Create 2½ D local metrical 

models from vision.
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Future Work (VR)

• Continue low-vision experiments

– Better simulation of low-vision

– Using real wheelchair and head-
mounted VR display

• Other measurements

– Cognitive load

– Stress

• Evaluate wheelchair for users with 
other disabilities

– Fully blind

– Quadriplegic

– Memory loss / Alzheimer's



The End

http://www.cs.utexas.edu/~robot


