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Abstract—An intelligent agent, embedded in the physical
world, will receive a high-dimensional ongoing stream of low-
level sensory input. In order to understand and manipulate
the world, the agent must be capable of learning high-level
concepts. Object is one such concept. We are developing the
Object Semantic Hierarchy (OSH), which consists of multiple
representations with different ontologies. The OSH factors the
problems of object perception so that intermediate states of
knowledge about an object have natural representations, with
relatively easy transitions from less structured to more structured
representations. Each layer in the hierarchy builds an explanation
of the sensory input stream, in terms of a stochastic model
consisting of a deterministic model and an unexplained ‘noise”
term. Each layer is constructed by identifying new invariants
from the previous layer. In the final model, the scene is explained
in terms of constant background and object models, and low-
dimensional pose trajectories of the observer and the foreground
objects.

The object representations in the OSH range from 2D views, to
2D planar components with 3D poses, to structured 3D models
of objects. This paper describes the framework of the Object
Semantic Hierarchy, and presents the current implementation
and experimental results.

I. INTRODUCTION

An intelligent agent must be able to perceive and reason
robustly about its world in terms of objects, among other
foundational concepts. The robot can draw on rich data for
object perception from continuous sensory input, in contrast
to the usual formulation that focuses on objects in isolated
still images. Additionally, the robot needs multiple object
representations to deal with different tasks and/or different
classes of objects [15].

We are developing the Object Semantic Hierarchy
(OSH) [31] to build a collection of object representations at
different layers, motivated by the work of the Spatial Semantic
Hierarchy (SSH) which consists of multi-level representations
of large-scale space [13], [14], [1].

The framework of the OSH is shown in Fig. 1. The OSH
has two types of layers: the object layers and the model layers.
The object layers describe how the static background and
each foreground object are individuated, and the model layers
describe how the model for the static background and for
each foreground object evolves from less structured to more
structured representations.

In the object layers, the agent starts by constructing a con-
stant model of the static background world, where foreground
objects are treated as noise. Then the foreground objects
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Fig. 1. The framework of the OSH (best viewed in color). The agent initially
treats everything in the sensory stream as noise. By repeatedly identifying new
invariants to reduce the noise, the agent progressively builds models for the
background world and foreground objects. For the background world or each
foreground object, the model evolves from 2D2D to 2D3D to 3D3D (see text
for details).

are progressively individuated from the background and their
models are constructed while they are tracked over time.
Hierarchical models are created by repeatedly constructing and
refining stochastic models of the observation stream generated
by the agent’s sensors in the environment. Such a stochastic
model has the form z; = M; + ¢, where M; is a deterministic
model explaining the contents of the observation stream z,
and ¢ = z; — M, is the residual between explanation and
observation, interpreted as noise. At each layer, new invariants
are identified within the data described by ¢, leading to
a revised model M/ and ideally a reduced level of noise
€’ = z;— M. In the end, the uncertainty in the sensory stream
is factored into a collection of relatively compact representa-
tions: static background model, pose trajectory of the observer,
constant foreground object models, pose trajectories of the
foreground objects, and any remaining noise. The “blooming,
buzzing confusion” of the initial pixel-level input is concisely
explained in terms of a relatively small number of object-level



concepts and relations.

In the model layers, the static background is treated as
just another object. The construction of the static background
model is taken in the same way as of any foreground object
model. Each object model contains the following layers:

(a) 2D object in 2D space: a sparse set of constant 2D object
views, and the time-variant 2D object poses;

(b) 2D object in 3D space: a small collection of constant 2D
components, with their individual time-variant 3D poses;

(c) 3D object in 3D space: the same collection of constant
2D components but with invariant relations among their
3D poses, and the time-variant 3D pose of the object as a
whole.

The idea of the model layers is that early stages of analysis
can robustly derive certain properties of the visual scene, that
are then used as assumptions to make later processing layers
simpler and more robust. When and if later layers fail, the
earlier layers still allow objects to be tracked in the image,
until they are more accessible to the more sophisticated kinds
of analysis.

This paper describes the framework of the Object Semantic
Hierarchy, and presents the current implementation and exper-
imental results.

II. RELATED WORK

Modayil and Kuipers [19], [20] developed a method
whereby a learning agent can autonomously learn object
models, by detecting, tracking, and characterizing clusters of
foreground “pixels” in the sensory stream. Their agent is a
mobile robot that receives a stream of sensory information
from a laser range-finder. It is assumed that the agent has
learned the structure of its sensory array using the methods of
Pierce and Kuipers [22]. In our work, we adopt the “model
learning through tracking” strategy [19], [20] to build object
models, but the input data is extended to camera images.

A lot of work has focused on learning object models
from databases of static images under different viewpoints
and different backgrounds [8], [30], [23], [4], [26], [21].
Our method differs from these in that object models are
learned from continuous sensory input, where fine temporal
granularity reduces the problem of correspondences between
consecutive or nearby frames in the sensory stream and active
control of perception allows the agent to obtain the right sort
of information to build structured models from the sensory
stream.

Marr and Nishihara [18] proposed a hierarchical repre-
sentation for 3D object shape models and an approach to
object recognition where the basic shape components are 3D
cylinders. Biederman [3] also used a structural object descrip-
tion where basic components are 2D geons such as blocks,
cylinders, spheres and wedges. In these representations, the
discrimination among objects in the same category is difficult,
since objects are modeled as a small set of components
with simple shape descriptors. In the proposed OSH, detailed
information is preserved as a normal view for each 2D planar
surface, which makes our system more discriminative.

Various other 3D models have been proposed for object
representation such as voxels, polygon meshes, or depth
maps [24]. These representations describe objects at the pixel
level of micro elements, whereas the goal of our work is to
describe objects by identifying large-scale invariants. Both the
constellation-of-planes in the OSH and the composition-of-
geons in [3] are ways to address that goal.

Bouchard and Triggs [4] proposed a hierarchical model of
object parts and subparts, with the object at the top level, and
local image features at the bottom. While this method deals
with a large number of local features, the number of parts at
each level needs to be manually tuned and only three layers
(object, part and feature) were tested in their experiments.
Sudderth et al. [26] presented a hierarchical model for objects,
the parts composing them, and the scenes surrounding them.
Each object category has its own distribution over a set of
parts which describes the expected appearance and location in
the object centered coordinates, and parts are shared between
objects. Parikh and Chen [21] presented hierarchical semantics
of objects (hSOs) that capture relationships among multiple
objects in a scene as observed by their relative positions in a
collection of images. This hierarchy is a decomposition of
the scene in terms of multiple objects. All these methods
build a hierarchical representation for objects, but none of
them includes 3D object models. Unlike these hierarchical
object representations [4], [26], [21], [33], [7] which focused
on building object models in the 2D image space, the OSH
contains both 2D models in the image space and 3D models
in the world frame.

III. THE OBJECT SEMANTIC HIERARCHY

The Object Semantic Hierarchy is a hierarchical compu-
tational model of the background world and the foreground
objects, consisting of multi-layer representations.

As shown in Fig. 1, the OSH has two types of layers: the
object layers and the model layers. In the object layers, the
static background and foreground objects are progressively
individuated by repeatedly identifying new invariants from the
previous layer. In the model layers, the model for the static
background and for each foreground object is refined from less
structured to more structured representations.

The sensory stream is ultimately explained in a fairly simple
representation which contains only constant background and
object models, and low-dimensional pose trajectories of the
observer and the foreground objects.

In the object layers, the agent starts by building a constant
model of the static background world, where foreground
objects are treated as noise. Once the background model
is built as an explanation of its sensory stream, the agent
continues to progressively individuate foreground objects by
identifying new invariants within the discrepancy between the
agent’s explanation and observation.

Layer 0: Noisy world
The agent perceives its environment through a high dimen-
sional pixel-level sensory stream. In this layer, everything is



considered as noise.

2t = €9 (D

where z; is the sensor input at time ¢, and ¢y is a random
variable that represents the sensor input but treats it as noise.

Layer 1: Static background

In its learning process, the agent starts by constructing a
constant model of the background world, treating any fore-
ground objects as noise.

zp = Gi(M° ) + & 2)

where M? is the static background model, x; is the agent’s
observing pose, (GG is a function mapping the background
model M? to a 2D image given the observer’s pose z;, and
€1 represents the actual discrepancy between the prediction of
the model G (M?, z;) and what is actually observed z;.

Layer 2: Foreground object 1

After the static background model is constructed, new
invariants are identified within the data described by €;. The
identified invariants contribute the first foreground object.

Zt :Gl(Mb,l‘t)+G2(Mf,y1t)+€2 (3)

where M7 is the constant model for the first foreground object,
y1+ is the object’s pose, G5 is a function mapping the object
model M7 to a 2D image given yy;, and ey is the remaining
noise. The plus sign is an operator that layers the foreground
object image on top of the background image.

Layer n: Foreground object n-1

At Layer n, the agent continues to identify new invariants
within the noise term €, in the previous layer, and constructs
a model for the n — 1*" foreground object.

Zt = Gl(Mb7l’t) + GQ(Mf,ylt) =+ ...+
Gn(Mg—l?y(nfl)t) + €n €]

where M¢_, is the constant model for the n — 1" foreground
object, y(n—1) is the object’s pose, G, is a function mapping
the object model M;,_; to a 2D image given y,_1);, and €,
is the remaining noise.

In the model layers, the static background model and each
foreground object model have the following layers: 2D object
in 2D space, 2D object in 3D space, and 3D object in 3D
space. Here an object can be either the background world
or any foreground object. In other words, the background
world is treated as just another object. The object pose of
the background world in the egocentric frame of reference is
an implicit representation for the agent’s observing pose in the
allocentric frame of reference.

While the agent always tries to build all the model layers
for an object, it can fall back to the already-constructed layers
if at a certain layer the transition to the next is not feasible.

Thus, the agent will still be able to work under lower-level
models when higher-level models are not available.

Layer 2D2D: 2D object in 2D space

From the high-dimensional pixel-level object image stream,
the agent identifies a sparse set of 2D object views as the object
model v. The multi-view object representation has been shown
very useful for object recognition [6], [29], [16].

The 2D object view model is described by

v = {v1, V2, .y Upo } 5)

where n" is the number of the object views. The object views
are connected by shared image features and/or the agent’s
motor signals.

The view model v should satisfy two constraints: (i) v is
sparse compared to all the input object images, and (ii) v is
complete such that any observed object image can be generated
from v.

At each time step ¢, within the object model v, we locate
the view that has closest observing pose with the new input
image, by checking the overlapping ratio between each view
and the input image. This located view is called the base view.
The homography transformation between the input image and
the base view, plus the pointer to the base view, is defined
as the 2D object pose y;. With this y;, any observed object
image can be reconstructed as an image transformed from the
base view and the neighboring views of the base view.

Now we have

2z =Gy (’1)7 yf) + €& (6)

where G, is a function mapping v to an image under y;, and
€, 1s the remaining noise.

In Eq. 6, the object image stream is decomposed into the
constant 2D object view model v, dynamic 2D object pose y; ,
plus the remaining noise.

Layer 2D3D: 2D object in 3D space

Psychological experiments have shown that humans focus
their study time on object views that are close to planar views
(such as front, back, and side views) and ignore other views
when actively interacting with objects [12].

Based on the 2D2D layer, we identify new invariants as
a collection of constant 2D components, which are planar or
approximately planar surfaces embedded in 3D space and are
denoted by

c={c1, ., Cne} @)

where n° is the number of components, and each component in
c is represented by its normal view. A normal view is defined
as the component image that is observed when the optical axis
is aligned with the normal of the component surface.

The object view model v in the 2D2D layer can then be
described by

v = Gy(c,q) (8)

where ¢ are the 3D poses of the components appearing in the
2D views in v, and G| is a function mapping ¢ and ¢ to v.



Let y; denote the dynamic 3D component poses. The 2D
object pose y; in the 2D2D layer and the component poses ¢
in Eq. 8 can both be represented as functions of yf. Thus, by
combining Eq. 6 and Eq. 8, we get

2t = Gv (Gq(cv q)a y;]) + €&
= Gele,yf) + e ©)

where G, is a function mapping c to an image under y;, and
€. 1s the remaining noise. Note that y{ contains a history of
the 3D poses for each individual component, where the 3D
poses between different components are not related yet.

In Eq. 9, the object image stream is decomposed into
the constant 2D object component model ¢, dynamic 3D
component poses i, plus the remaining noise.

Layer 3D3D: 3D Object in 3D space

Compared to the multi-view representation in the 2D2D
layer, a structured description of objects allows the agent to
evaluate components and their relations independently [11].
In addition, a structured description tends to be more concise
than the multi-view representation.

We now begin to relate individual components to each other,
to create a fixed 3D structure with a number of different com-
ponents. The relation between the 3D poses of two components
is invariant under the assumption of rigid object.

Yy = Gp(p,y7) (10

where y? is the object’s 3D pose at ¢, p = {p1, ..., pne } are the
3D poses of the components with respect to the object pose
y¢, and G, is a function that maps p to yf under yy. All the
changing component poses in Eq. 9 are explained in terms of
the changing pose of the 3D object as a whole.

We define the 3D object model in 3D space as

o={cp} (1D
where both ¢ and p are constant.
By combining Eq. 9, Eq. 10, and Eq. 11, we get
Zt = GC(Ca Gp(p7yg))+ec
= Go(0,y7) + € (12)

where G, is a function mapping the 3D object model o to an
image under the 3D object pose y¢, and ¢, is the remaining
noise.

In Eq. 12, the object image stream is decomposed into the
constant 3D object model o, dynamic 3D object pose y{, plus
the remaining noise.

The transformation functions G, G., G,, G4 and G
are summarized in Table I. Each of these functions is a
well-understood transformation matrix [9], [17]. Table II is a
summary of the information that is acquired at different layers.

In the model layers, we have described object poses as y;,
yi and y7 in the agent’s egocentric frame of reference. For
the static background as a special object, vy, y; and y; are
implicit representations for the agent’s observing pose in the
allocentric frame of reference. In later discussion, we will use

TABLE I
SUMMARY OF TRANSFORMATION FUNCTIONS

Function | Description
G Given the constant 2D object view model and the dynamic
v 2D object pose, predict sensor input.
G Given the constant 2D component models and the dynamic
¢ 3D component poses, predict sensor input.
G Given the constant 3D object model and the dynamic 3D
° object pose, predict sensor input.
G Given the models of a set of 2D components and their poses,
g predict 2D views in image space.
G Given 3D object pose, and 3D component poses wrt object
P frame, predict 3D component poses in world frame.
TABLE II
ACQUIRED INFORMATION IN THE OSH
Layer Acquired information
2D2D v - constant 2D object view model
y; - dynamic 2D object pose
2D3D c - constant 2D object component models
y¢ - dynamic 3D component poses
o - constant 3D object model
3D3D yy - dynamic 3D object pose

x¢, z¢ and ¢ to denote the agent’s observing pose in different
model layers in the OSH (Fig. 2).
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Fig. 2. The model layers in the OSH. The background model and foreground
object models {v,c, o0} are constant. The observer’s pose {z},z{,x{} and
the foreground object poses {y},y5,y; } are time-variant. The 2D2D model
is guaranteed to be built, and the 2D3D and 3D3D models will be built when
the agent has necessary resources available.

IV. CONSTRUCTION OF THE OSH

In this section, we describe our current implementation of
the OSH, and present experimental results.

A. Static Background Model

The static background environment usually has more com-
plex structure than foreground objects. While our ultimate goal
is to build a full 3D3D model for the background environment,
we only seek to construct a 2D2D background model in this
paper.

We previously used the Gaussian mixture model
(GMM) [25] to build a pixel-level background image



and wash out noises due to dynamic changes, where the
observing pose is assumed fixed [31].

When the observing pose is dynamic, the variant GMM
method by stitching images in a single view [5], [27], [2],
[28], [10] suffers from accumulated image registration error.
Instead, we identify a sparse set of views as the 2D2D
background model v, where these views are connected by ho-
mography transformations. The homography transformations
are obtained based on the robot’s motor signals and the shared
image features between overlapping views. When a new input
image has small or no overlapping with all views in the 2D2D
background model, the image is added to the model as a new
view. If the input image has a large overlapping with a view
in the model, the image is used to update the view.

Fig. 3. A box is moving around in front of a webcam mounted on a pan tilt
unit.

At each time step, within the 2D2D background view model,
we find the base view that has the largest overlapping ratio
with the new input image. Features are detected and matched
between the input image and the base view. A homography
matrix is calculated between these features. This homography
matrix, together with the pointer to the base view, is the agent’s
observing pose x; (here z; is actually the observing pose xy
in the 2D2D layer in the OSH).

Fig. 4. 2D view examples in the 2D2D background model. The views
correspond to different observing poses. The black holes in the images are
due to permanent occlusion by foreground objects which are treated as noise.

Fig. 3 shows a simple robot which has a webcam mounted
on a pan tilt unit. This setup is different from a general pan
tilt camera in that the optical center of the webcam will have
translations when the pan tilt unit moves beyond the horizontal
plane. The robot has access to its motor signals, that is, pan
and tilt positions of the camera.

To construct the 2D view model for the static background,
the agent needs to be able to identify which part in each

Fig. 5. Typical views in the 2D2D object model for a checker box. Rows
1-3 show the original images, the ground truth foreground objects, and the
segmented 2D views for the foreground objects respectively.

input image comes from the background (the remaining part is
treated as noise). Motor signals allow the robot to predict the
motion patterns of background features. In contrast, the motion
patterns of non-background features will be different from the
predictions because they have independent motions from the
robot. This observation provides us a way to cluster image
features based on their discrepancy with their predictions.
Based on this observation, we first detect sparse features and
label them as background features and non-background fea-
tures. Then we propagate their labels to all pixels in the input
image. This method segments an image into background pixels
and non-background pixels based on only a few neighboring
frames. It is robust to illumination changes, adapts fast to
the environment, and does not suffer from accumulated image
registration error.

Fig. 4 shows some view examples in the constructed 2D2D
background model for the scenario in Fig. 3.

Fig. 6. 2D2D object models for a tea box and a toy pig (only a part of the
2D views are shown). Top row: original images, middle row: ground truth
object views, bottom row: segmented 2D views for the foreground objects.

B. Foreground Object Model

a) 2D2D foreground object model: Once the background
model is constructed, foreground object pixels can be indi-
viduated from the background. For each new input image,



Fig. 7. Tracked components and reconstructed images. The left two columns show the tracked components and the right two show the reconstructed images
at the 2D3D layer. The part that does not correspond to any component on the foreground object is shown in the average color of that part.

we detect sparse features and match them with the 2D2D
background model. Those features that violate the background
model are labeled as foreground features. Then the labels are
propagated to all image pixels.

Within the 2D foreground object images where the back-
ground pixels have been filtered out, the 2D2D foreground
object model v and the object pose ¥} are obtained in a similar
way as in the 2D2D background model construction. Fig. 5
shows some typical views in the 2D2D object model for a
checker box which we have seen in Fig. 3. The 2D2D models
for two other objects are shown in Fig. 6.

b) 2D3D foreground object model: In the foreground
object image sequence, we track individual components c
and estimate their 3D poses y;. The tracking method uses
both local point features and boundary features, and the pose
estimation method (WINEP) provides an optimal solution
based on all the observed frames (see [32] for details).

While the conventional homography decomposition method
for plane pose estimation takes two input frames and provides
two physically possible solutions, the WINEP method is based
on all the observations up to the current frame, and guarantees
a unique Bayesian optimal solution. Since this estimation
method is recursive such that at each time step only the current
observation is used to update the estimation, the computational
cost at each time step does not grow with the increasing
number of past frames.

Fig. 7 shows some tracking examples and reconstructed
images. Fig. 8 shows the estimation errors of the normals of

a tracked component.

After the 3D poses y; are estimated, the normal views for
the tracked components ¢ can be constructed accordingly. In
Fig. 9 we show the normal views for a few components.

o 20 w0 £ 00 120
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Fig. 8. Normal estimation errors for the conventional homography decom-
position method (HD) and the WINEP method (PM). The error is computed
as the 2-norm of the difference between the estimated normal and the ground
truth normal. See [32] for details.

V. CONCLUSION AND FUTURE WORK

We have presented the Object Semantic Hierarchy, which
is a multi-layer representation for the background world and
foreground objects. The input sensory stream is ultimately
explained in a fairly simple representation which contains
only constant models and a trajectory of low dimensional
parameters.

We have described our current implementation of the back-
ground 2D2D model, foreground 2D2D model, and foreground
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Fig. 9. The normal views for some tracked components. The components’ 3D
poses are estimated in the 2D3D layer, and their normal views are constructed
accordingly.

2D3D model in the OSH. Our ultimate goal is to build
full 3D3D models for both the background world and the
foreground objects. Savarese ef al. [23] proposed a method to
represent 3D objects by linking together diagnostic parts from
different viewing points, where parts are large discriminative
regions and connected by their mutual homographic trans-
formation. We will adopt this method in constructing 3D3D
model construction.

Naturally, in the real world, not every object is composed of
strictly planar surfaces. We will investigate the robustness of
and extensions to our method when applied to curved surfaces.
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