
Ray-based Color Image Segmentation

Changhai Xu, Yong Jae Lee, and Benjamin Kuipers
The University of Texas at Austin

{changhai, yjlee, kuipers}@cs.utexas.edu

Abstract

We propose a ray-based segmentation method for color
images. A segment is represented by a centroid and evenly-
distributed rays shooting out from it. First, a bottom-up
low-level boundary detection process coarsely constructs
candidate segments. Then, two top-down learning pro-
cesses, mid-level intra-segment learning and high-level
inter-segment learning, create the best segments. Segments
are created sequentially until all pixels are classified. The
number of segments is determined automatically. We test
our method on the Berkeley Segmentation Dataset. Evalua-
tion results show that our algorithm produces better results
than those of the Normalized Cuts segmentation method.

1. Introduction

Image segmentation is a fundamental step for a robot to-
wards achieving high level goals, such as navigation and
learning object concepts. Picture a mobile robot equipped
with a camera as its vision sensor. If the robot wants to learn
the models of some objects appearing in its visual field, the
first thing the robot should do is to individuate the objects it
is interested in. But the data streaming in from the camera
is huge and at pixel level. Without segmentation of the data,
the robot will never learn the models of its surrounding ob-
jects. The segmentation here can be based on each pixel’s
location, intensity, color, motion, etc. After the robot sep-
arates the visual world into a small number of segments, it
can track each of them and learn their underlying properties.
The segmentation process not only makes tractable repre-
sentations but also decreases ambiguities and uncertainties
in pixel-level data.

In this paper, we propose a new segmentation method.
We represent a segment by a centroid and evenly-distributed
rays shooting out from it. Each ray has a boundary point,
which is determined by a set of cues such as position, color,
texture, and edge. A segment is formed by combining
all the boundary points. Our segmentation algorithm in-
cludes a bottom-up boundary detection process and two top-

down learning processes. In the boundary detection pro-
cess, we determine the boundary point for every ray using
local edge/color information. This is a low-level process.
A confidence score is assigned for each ray based on how
“good” its boundary point is. The learning processes in-
clude intra-segment learning and inter-segment learning. In
intra-segment learning, a ray uses mid-level cues, i.e., infor-
mation from its neighboring rays, to evaluate its boundary
point and re-detect it, if necessary. In inter-segment learn-
ing, a number of candidate segments are generated, and
based on some measurement function the best one is cho-
sen to be the new segment.

Unlike many other segmentation algorithms such as k-
means and Normalized Cuts, our algorithm determines the
number of segments automatically. This is particularly im-
portant for an autonomous robot, since there would be no
interaction between it and a human during operation.

The paper is organized as follows. In section 2, we re-
view related work. Section 3 describes the representation
of segments. Section 4 presents our segmentation algorithm
in detail. Section 5 evaluates our method and compares it
with the Normalized Cuts segmentation method. Conclu-
sions and future work are described in Section 6.

2. Related Work

k-means is a commonly used clustering method for im-
age segmentation. One difficulty in using k-means is that
the resulting segments may be disconnected and scattered,
when the feature vectors are composed of only the pixel
values. The problem can be alleviated by adding the spatial
position of each pixel as feature attributes. However, the
resulting segmentation is one that has large regions broken
up, due to the influence of the location as well as the pixel
values. Luo et al. [5] showed that better segmentation re-
sults could be obtained by performing hierarchical k-means
on non-spatial features combined with spatial constraints.
First, the data is clustered based on the non-spatial features
by k-means clustering. The clustered data is further split
using spatial constraints with connected components. Then,
k-means clustering is performed on the new segmentations,

(a) (b)

Figure 1. The left image shows the sky, trees, houses and grass. The right image is created from the
left one, in which the blue sky is represented by a centroid and 64 rays emanating from it.

and the process is repeated.

Denzler et al. [3] used active rays to represent object
boundaries for object tracking. Boundary points were de-
tected by minimizing an energy function. Objects with sim-
ple shapes were segmented and tracked over a sequence of
images. We use a similar model to represent the clusters.
However, we deal with much more complex data where
simple boundary detection techniques fail.

Comaniciu and Meer [2] employed the mean shift
algorithm, a non-parametric technique to analyze and find
arbitrarily shaped clusters in feature space. Shi and Ma-
lik [8] proposed the Normalized Cuts algorithm, which
treats clustering as a graph partitioning problem. The nodes
are represented by the points in feature space and edges
are established between each pair of nodes. The algorithm
tries to find the minimum cut in the graph that preserves
high similarity for intra-cluster points, and low similarity
for inter-cluster points. However, the Normalized Cuts al-
gorithm requires the number of segments to be specified,
and can be sensitive to the chosen number.

There has also been work done in literature on clus-
ter evaluation techniques. Entropy, purity, precision, re-
call, and the F-measure are classification evaluation mea-
sures that have been used in the cluster evaluation domain.
Distance measures such as the Rand Index [7] and the Jac-
card Index [1] have been standard techniques for evaluating
cluster similarities. Unnikrishnan et al. [9] used a mea-
sure called the Normalized Probabilistic Rand (NPR) index,
an evaluation specific for the image segmentation domain.
The NPR index measures quantitative comparison between
an image segmentation algorithm and a hand-labeled set of
ground-truth segmentations. Jiang et al. [4] also considered
performance evaluation techniques for region segmentation
algorithms in the ground-truth based paradigm. They fo-
cused on measures for comparing partitions made by differ-
ent clustering algorithms on the same set of objects, includ-
ing those that were hand-segmented.

3. Segment Representation

A segment S is represented by a centroid point, and
boundary points determined by evenly distributed k rays
shooting out from the centroid. The distance from the
boundary point to the centroid is defined as the radius of the
corresponding ray. The segment’s space is defined by the
region enclosed by the ray boundaries. We use the terms
“boundary of a segment” and “shape of a segment”, inter-
changeably.

Let’s take an image for example, as shown in Figure 1.
The left image is the original image. In the right image the
blue sky segment has been separated out. The green cir-
cle represents the centroid of the segment. The red lines
are the rays emanating from the centroid in 64 directions
0, π/32, 2π/32, ..., and 63π/32. The boundary/shape of the
segment is the yellow contour. Note that the segment cen-
troid is not necessarily the gravitational center of that seg-
ment. We call it a centroid because the rays shoot out from
this point. We have found that in practice, our learning al-
gorithm, which will be described later, produces centroids
that tend to be close to the gravitational center.

This representation is similar to [3], but we handle
more complex data and use a different boundary detection
method.

4. Algorithm

We would like to group pixels {p1, p2, ..., pn} into seg-
ments {S1, S2, ..., SN}. The pixels within a segment should
have similar properties, while pixels in adjacent segments
should not.

We define three auxiliary maps in our segmentation al-
gorithm: indicator map, edge map and color map.

• Indicator map, {b1, b2, ..., bn}, where bi ∈ {0, 1} rep-
resents whether pi has already been classified into some
segment.

• Edge map, {e1, e2, ..., en}, where ei ∈ [0, 1] is a real
number and represents the confidence that pi is a point on
an edge. We use the Canny detector to detect edges in the
image several times, each time with different thresholds.
Confidence values are assigned to the edges based on the
threshold conditions.

• Color map, {c1, c2, ..., cn}, where ci is the color of pi,
in RGB space.

In our algorithm, segments are sequentially created.
A number of candidate segments are generated from un-
classified pixels and an inter-segment learning process se-
lects the best candidate as the new segment. Pixels within
this segment are then marked as classified in the indicator
map. This procedure iterates until all pixels are marked as
classified.

Each candidate segment is generated from an un-
classified seed point. The seed point can be selected either
randomly or in a pre-determined manner, e.g., uniform sam-
pling. Taking this seed point as the centroid, we shoot out a
number of evenly-distributed rays. For each ray we find
a boundary point by the ray boundary detection process.
The pixels enclosed by these boundary points belong to this
candidate segment. After a candidate segment is generated,
an intra-segment learning process identifies those rays that
are significantly different from their neighbors and re-builds
these rays.

The ray boundary detection process is a low-level
bottom-up process that constructs coarse segments from
pixels. The intra-segment learning is a mid-level top-down
process. It re-builds a “bad” ray by learning from its neigh-
boring rays within the same segment. The inter-segment
learning is a high-level top-down process, which uses global
cues among all candidate segments to select the best one.

A few simple rules are used in ray boundary detection
process, which may result in incorrect boundaries because
only local information around the point of interest is con-
sidered. But the top-down intra-segment learning and inter-
segment learning use mid-level cues and high-level cues,
and make the segmentation results much more robust and
accurate.

4.1. Ray Boundary detection

The task of ray boundary detection is to find the bound-
ary point on a ray. We first group consecutive pixels in
similar color into a 1D-segment. If a pixel’s edge con-
fidence in the edge map exceeds some threshold, or the
color difference between this pixel and the previous pixel
exceeds some threshold, a new 1D-segment is created. Let
{q1, q2, ..., qm} represent the 1D-segments on that ray. Note
that 1D-segments that are not adjacent could have similar
colors. Our goal is to find a boundary point, that delineates
similar 1D-segments to non-similar 1D-segments.

In our method, we use a few simple rules to deter-
mine a boundary point. Starting with q1, which is the 1D-
segment that begins at the centroid, we group subsequent
1D-segments qi, where 1 ≤ i ≤ m, that have similar color
and similar length to q1. We also impose the constraint that
for every neighboring qi and qj in this group, where i < j,
the distance between qi and qj should be less than some
threshold.

Some attributes are defined for a ray.
• Radius, R, is the distance from the centroid to the

boundary point.
• Color, color, is the average color in RGB space of all

the pixels from the centroid to the boundary point.
• 1D-segment number, m, is the number of 1D-segments

from the centroid to the boundary point.
• Texture confidence, cftexture, denotes how uni-

form/textured the ray is. It is defined as

cftexture = min
1≤i≤m

1 − lensegi

R
(1)

where lensegi is the length of the i-th 1D-segment.
• Edge confidence, cfedge, is the edge confidence of the

boundary point in the edge map.
• Dominant element ratio, ratio, is the ratio between the

number of pixels that have similar color to the centroid pixel
and the number of pixels from the centroid to the bound-
ary point. This is equivalent to the ratio between the total
length of 1D-segments that have similar color to the first
1D-segment q1 and R.

With the above attributes, we assign a confidence score
to a ray, indicating how “good” the boundary point is on this
ray. The confidence score is

cf = α1R/m + α2(1 − cftexture) + α3cfedge + α4ratio
(2)

where α1, α2, α3, α4 ∈ [0, 1] and α1 + α2 + α3 + α4 = 1.
We set α1 = 0.4, α2 = 0.3, α3 = 0.25, α4 = 0.05.

The meaning of this confidence score is intuitive. In gen-
eral, a higher score is assigned for boundary points that are
more easily detected.

4.2. Intra-segment learning

With the ray boundary detection process, we can gener-
ate a coarse segment from an arbitrary centroid point. But
some of the boundary points of the segment may be incor-
rect, due to noise. Since we have a coarse segment, we may
re-build a “bad” ray by making use of information from its
neighboring rays.

We define some similarity measures between two rays.
• Similarity of radius

simradius(ray1, ray2) = e
− |R1−R2|

η1 min(R1,R2) (3)

• Similarity of dominant element ratio

simratio(ray1, ray2) = e
− |ratio1−ratio2|

η2 min(ratio1 ,ratio2) (4)

• Similarity of color

simcolor(ray1, ray2) = e
− ‖color1−color2‖2

η3 min(‖color1‖2,‖color2‖2) (5)

where color1 and color2 are the colors of the two rays, in
RGB color space.

In the above measures, η1, η2, η3 ∈ (0, 1). We set η1 =
η2 = η3 = 0.3. The total similarity between two rays is a
combination of the above measures.

sim(ray1, ray2) = β1simradius+β2simratio+β3simcolor

(6)
where β1, β2, β3 ∈ [0, 1] and β1 + β2 + β3 = 1. We set
β1 = 0.6, β2 = 0.2, β3 = 0.2.

We make the assumption that a segment should have a
smooth boundary. This is a reasonable assumption and is
generally true in real-world images.

For each ray in a segment, if the measure simradius with
its left or right neighboring rays is greater than some thresh-
old, it is identified as a potential “bad” ray. We examine a
number of rays in its neighborhood, including itself. We
calculate the average radius Ravg , and the average domi-
nant element ratio ratioavg among these rays. If the “bad”
ray’s radius or dominant element ratio is significantly dif-
ferent from the average values, the ray is rebuilt as follows.

First, pixels in [Ravg−δ, Ravg +δ] on that ray are exam-
ined where δ is a real positive number. Then the boundary
point is assigned to be the point that best matches the bound-
ary points among the neighboring rays, where the matching
is based on local color information in the color map. We
compute the new dominant element ratio for the ray, and if it
is closer to ratioavg than the previous value, then the learn-
ing succeeds and the new boundary point is set. Otherwise,
the learning fails and no change is made to the boundary
point.

4.3. Inter-segment learning

In our algorithm, segments are created sequentially.
When creating a new segment, we choose the best possible
segment among a number of candidates. The candidate seg-
ments are generated from seed points. Seed points can be
selected either randomly or in some pre-determined manner,
e.g., uniform sampling. From each seed point, we generate
a candidate segment based on the ray boundary detection
process and the intra-segment learning process.

For every new candidate segment that is generated, the
confidence of the boundary points for each of its rays is
obtained from previously created segments if the boundary
points happen to fall on those segments’ boundaries.

For each candidate segment that has k rays within it, we
define the following attributes.

• Confidence of shape smoothness, which measures the
average radius difference of neighboring rays,

confsmooth =
1
k

k∑

i=1

simradius(rayi, rayi+1) (7)

in which rayk+1 is defined as ray1.
• Confidence of shape regularity, which measures the lo-

cal maximum/minimum radii,

confreg =
1
2k

(
∑

1≤i≤k
Ri>Ri−1
Ri>Ri+1

regi +
∑

1≤i≤k
Ri<Ri−1
Ri<Ri+1

regi) (8)

where

regi = simradius(rayi, rayi−1) +
simradius(rayi, rayi+1) (9)

in which 1 ≤ i ≤ k, rayk+1 is defined as ray1, and ray0 is
defined as rayk.

• Confidence of shape symmetry, which measures how
symmetric the shape is in terms of the centroid,

confsym =
1
k

k/2∑

i=1

sim(rayi, rayi+k/2) (10)

Since k is a user-determined parameter, it should always be
chosen to be an even number.

Based on the above similarity functions, we define the
total shape confidence of a segment as

conf = λ

k∑

i=1

cfi (11)

where cfi is the boundary confidence of rayi, and λ is a
coefficient defined as

λ = (γ1confsmooth + γ2confreg) ∗
confsym ∗ area (12)

where γ1, γ2 ∈ [0, 1], γ1 + γ2 = 1, and area is the area of
this candidate segment. We set γ1 = 0.6, γ2 = 0.4.

area =
1
2
sin

2π

k

k∑

i=1

RiRi+1 (13)

where Rk+1 = R1.
Among all the candidate segments, we choose the one

with the best shape confidence as the new segment. In
essence, we give preference to segments with large areas

and “good” shapes, that is, shapes with good smoothness,
regularity and symmetry. This way, the segments created
last are usually very small, which do not affect the segmen-
tation too much. Hence, our algorithm is not sensitive to
the number of segments, unlike many other segmentation
algorithms such as k-means and Normalized Cuts.

After a new segment is created, we mark all pixels within
the segment as classified. When the number of classified
pixels equals the total pixel number in the image, or is
greater than some user-defined threshold, the algorithm ter-
minates.

4.4. Segment merging

Even though our segment representation is able to rep-
resent many shapes, it may break down for very complex
shapes. This can result in an over-segmented image. We
perform segment merging to compensate for this. For each
created segment, we define a few more attributes.

• Color:

colorseg =
1

∑k
i=1 Ri

k∑

i=1

Ricolori (14)

in which colori is the color of rayi.
• Dominant element ratio:

ratioseg =
1
k

k∑

i=1

ratioi (15)

in which ratioi is the dominant element ratio of rayi.
• Texture:

textureseg =
1
k

k∑

i=1

cftexturei (16)

in which cftexturei is the texture confidence of rayi.
If the differences between two adjacent segments’ col-

ors, dominant element ratios and textures are within some
thresholds, we merge the two segments. This process iter-
ates until no adjacent segments can be merged.

5. Experimental Evaluation

5.1. Source Dataset

The Berkeley Segmentation Dataset [6] is used to eval-
uate our algorithm. This dataset provides 300 color images
divided into 200 train and 100 test sets with hand-labeled
ground truth segmentation images from 30 human subjects.
We select the test set images for our experiments. We com-
pare the Normalized Cuts algorithm and our algorithm on
the provided ground-truth images.

5.2. Methodology

Performance evaluation of image segmentation tech-
niques is very difficult, since what defines a “good” seg-
mentation of the underlying image is subjective. Unlike
classification algorithms that measure how many instances
are classified correctly, segmentation algorithms need eval-
uation of results that are much more subtle.

If we treat the image segmentation problem as one of
data clustering, then we can use cluster evaluation tech-
niques developed in the machine learning and statistics
community to evaluate the segmentation results. This is the
approach taken in [4]. Some of the measures used are the
Rand Index [7], Jaccard index [1], and a distance index pro-
posed by van Dongen [10]. We use the same measures for
our evaluation.

Given a set of n objects S = (o1, ..., on), a partition is
defined as a set of clusters C = (c1, ..., ck), where ci ⊆ S,
ci ∩ cj = ∅ if i �= j,

⋃k
i=1 ci = S. Given two partitions,

X = (x1, ..., xr) and Y = (y1, ..., ys) of the same set of
objects S, the following four quantities can be measured for
all pairs of objects (oi, oj), i �= j, from X and Y , respec-
tively:

(i) f00 = number of such pairs that fall in different clusters
under X and Y .

(ii) f01 = number of such pairs that fall in the same cluster
under Y but not under X .

(iii) f10 = number of such pairs that fall in the same cluster
under X but not under Y .

(iv) f11 = number of such pairs that fall in the same cluster
under X and Y .

where f00 + f01 + f10 + f11 =
(
n
2

)
, and n is the total

number of objects in S. Intuitively, one can think of f00 +
f11 as the number of agreements between X and Y and f01

+ f10 as the number of disagreements between X and Y .
The Rand index is defined as:

R(X, Y) = 1 − f11 + f00

f00 + f01 + f10 + f11
(17)

The Jaccard index is defined as:

J(X, Y) = 1 − f11

f11 + f10 + f01
(18)

The distance measures are in the domain [0,1]; a value
of 0 means maximum similarity, while a value of 1 means
maximum dissimilarity. The Jaccard index does not give
any weight to pairs of objects that belong to different clus-
ters under the two partitions. Hence, its distance measure is
generally higher than that of the Rand index.

Table 1. Average index measures with +/- 1
standard deviation for Normalized Cuts and
our algorithm on all test set images of the
Berkeley Segmentation dataset. The top val-
ues correspond to the average index values
obtained from comparison to all ground truth
segmented images, while the bottom values
correspond to the minimum index values.
Lower values indicate higher similarity to the
ground truth segmentations.

METHOD RAND JACCARD D
NCUTS (AVG) 0.26± 0.13 0.77± 0.06 0.38± 0.05
OUR ALG. (AVG) 0.24± 0.12 0.62± 0.15 0.28± 0.08

NCUTS (MIN) 0.18± 0.10 0.68± 0.10 0.33± 0.07
OUR ALG. (MIN) 0.18± 0.10 0.55± 0.17 0.25± 0.08

Another evaluation method is one based on set match-
ing between clusters of two partitions. The following term
measures the matching degree between clusters of X and
Y :

A(X, Y) =
∑

xi∈X

max
yj∈Y

|xi ∩ yj| (19)

where the maximum value is n if X = Y . This leads to the
following index:

D(X, Y) =
2n− A(X, Y) − A(Y, X)

2n
(20)

The Rand index and Jaccard index are distance measures
of two partitions based on counting pairs of objects, while
the D index is a distance measure of two partitions based
on set matching.

5.3. Discussion

For our performance evaluation, we choose the two parti-
tions, X and Y , to be the Algorithm Segmentation (AS) and
the Ground Truth (GT) segmentation images, respectively.
Since there is no one universal measure for cluster evalua-
tion, we use all three index measures for our experiments.
The image is represented as S and each pixel is represented
as an object oi, where i ∈ n, and n = number of pixels in
the image.

The Berkeley Segmentation Dataset provides 300 color
images with hand-labeled ground truth segmentation im-
ages from 30 human subjects. Many of the images have
various foreground and background objects in the image,
making the segmentation task quite difficult. Each color im-
age has 5 to 7 hand-segmented ground truth images, where

the number of partitions and the manner in which the im-
age has been segmented differs for each human subject. To
make our evaluation “fair”, we evaluate our algorithm by
comparing it to each of the ground truth segmentations and
obtain the corresponding distance index values. For each
AS image, we present the index values in two ways: the
average value obtained from comparison to all ground truth
segmented images, and the minimum (corresponding to the
“best”) value.

We compare our algorithm with the Normalized Cuts al-
gorithm [8](we used the authors’ implementation). Note
that we use the same values for all the parameters described
in the Section 4, for our algorithm. The features used for
the Normalized Cuts are the gray-scale pixel values. Each
of the test images are segmented with the Normalized Cuts
algorithm and compared to the ground truth segmentations
to obtain the index values. Table 1 shows the different dis-
tance index values for the images. The results shown are av-
eraged values for all images, with +/- 1 standard deviation.
Specific distance index values for each image can be seen
in Figure 2. Again, two sets of results are presented: the av-
erage index values obtained from comparison to all ground
truth segmentations, and the “best” index value. Overall,
the proposed algorithm’s segmentation results are better or
comparable to those of Normalized Cuts. Normalized Cuts
is sensitive to the number of segments k, which is a parame-
ter to the algorithm. To choose the “ideal” k for the Normal-
ized Cuts algorithm, for every ground-truth segmentation
image that is used for computing the distance measures, we
choose k to be equal to the number of segments specified in
the ground-truth segmentation image. Unlike the Normal-
ized Cuts algorithm, our algorithm determines the number
of segments automatically.

For the Rand Index measure, our algorithm and the Nor-
malized Cuts algorithm is comparable, with our algorithm
showing slightly better results. This is because for two seg-
mentations of the same image, the Rand Index considers
pairs of pixels that belong to different segments.

Results on some examples can be seen in Figure 3.

6. Conclusions and Future Work

We propose a ray-based segmentation method for color
images. Our algorithm uses top-down learning processes to
strengthen the bottom-up naive boundary detection process
and improve segmentation results, by making use of mid-
level and high-level cues. Experiments on Berkeley Seg-
mentation Dataset for our algorithm show better results than
Normalized Cuts.

Our evaluation results indicate that, with learning pro-
cesses, even a naive boundary detection algorithm works
well. For future work, we would like to integrate advanced
boundary detection algorithms into the learning framework.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rand Index comparing Ncuts and Our Algorithm

Our method

N
or

m
al

iz
ed

 C
ut

s

Ours is better

Ncuts is better

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Jaccard Index comparing Ncuts and Our Algorithm

Our method

N
or

m
al

iz
ed

 C
ut

s

Ours is better

Ncuts is better

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D Index comparing Ncuts and Our Algorithm

Our method

N
or

m
al

iz
ed

 C
ut

s

Ncuts is better

Ours is better

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rand Index comparing Ncuts and Our Algorithm

Our method

N
or

m
al

iz
ed

 C
ut

s

Ours is better

Ncuts is better

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Jaccard Index comparing Ncuts and Our Algorithm

Our method

N
or

m
al

iz
ed

 C
ut

s

Ours is better

Ncuts is better

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D Index comparing Ncuts and Our Algorithm

Our method

N
or

m
al

iz
ed

 C
ut

s

Ours is better

Ncuts is better

(f)

Figure 2. Each point represents the distance measure of an image. Our algorithm’s measure is the
x-value and Normalized Cuts’ measure is the y-value. Points above the red diagonal are images
where our algorithm produced better segmentations (lower index values) than Normalized Cuts. (a)
∼ (c): average Rand, Jaccard, and D index values obtained from comparison to all ground truth
segmented images per test image. (d) ∼ (f): minimum Rand, Jaccard, and D index values obtained
from comparison to all ground truth segmented images per test image.

Acknowledgements. This work has taken place in
the Intelligent Robotics Lab at the Artificial Intelligence
Laboratory, The University of Texas at Austin. Research
of the Intelligent Robotics lab is supported in part by grants
from the National Science Foundation (IIS-0413257, IIS-
0713150 , and IIS-0750011) and from the National Insti-
tutes of Health (EY016089). The authors would like to
thank Aniket Murarka, and the reviewers for their helpful
comments.

References

[1] A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based
method for discovering structure in clustered data. In Pacific
Symposium on Biocomputing, pages 6–17, 2002.

[2] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(5):603–619, 2002.

[3] J. Denzler, B. Heigl, and H. Niemann. An Efficient Combi-
nation of 2D and 3D Shape Descriptions for Contour Based
Tracking of Moving Objects. Proc. 5th European Conf.
Computer Vision, pages 843–857, 1998.

[4] X. Jiang, C. Marti, C. Irniger, and H. Bunke. Distance mea-
sures for image segmentation evaluation. EURASIP J. Appl.
Signal Process., 2006(1):209–209, 2006.

[5] M. Luo, Y. Ma, and H. Zhang. A spatial constrained k-means
approach to image segmentation. Fourth IEEE Pacific-Rim
Conference on Multimedia, 2:738–742, 2003.

[6] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416–423, July 2001.

[7] W. M. Rand. Objective criteria for the evaluation of cluster-
ing methods. Journal of the American Statistical Associa-
tion, 66:622–626, 1971.

[8] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000.

[9] R. Unnikrishnan, C. Pantofaru, and M. Hebert. Toward ob-
jective evaluation of image segmentation algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
29(6):929–944, 2007.

[10] S. Van Dongen. Performance criteria for graph clustering
and Markov cluster experiments. Report No. INS-R0012.
Center for Mathematics and Computer Science (CWI), Am-
sterdam, 2000.

Figure 3. The first column shows the original image. The second column shows the centroids and
boundaries of each segment detected by our algorithm. The third column shows the final segmen-
tation results.

