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Abstract— For a robot to act in the world, it needs to build
and maintain a simple and concise model of that world, from
which it can derive safe opportunities for action and hazards
to avoid. Unfortunately, the world itself is infinitely complex,
containing aspects (“clutter”) that are not well described, or
even well approximated, by the simple model. An adequate
explanatory model must therefore explicitly delineate the clutter
that it does not attempt to explain. As the robot searches for
the best model to explain its observations, it faces a three-
way trade-off among the coverage of the model, the degree of
accuracy with which the model explains the observations, and
the simplicity of the model. We present a likelihood function
that addresses this trade-off. We demonstrate and evaluate this
likelihood function in the context of a mobile robot doing visual
scene understanding. Our experimental results on a corpus of
RGB-D videos of cluttered indoor environments demonstrate
that this method is capable of creating a simple and concise
planar model of the major structures (ground plane and walls)
in the environment, while separating out for later analysis
segments of clutter represented by 3D point clouds.

I. INTRODUCTION

An indoor navigating robot must perceive its local environ-
ment in order to act. Visual perception has become popular
because it captures a lot of information at low cost. When
using vision as a sensor for a robot, the input to visual
perception is a temporally continuous stream of images,
not simply a single image or a collection of images. The
output of visual scene understanding has to be a concise
interpretation of the local environment that is useful for the
robot to make plans. Moreover, visual processing must be
an on-line and efficient process as oppose to a batch process
so that the robot’s interpretation can be updated as visual
observations become available.

Many Visual SLAM methods [1], [11], [9] have been
proposed to construct a 3D point cloud of the local en-
vironment in real-time. A more concise, large-granularity
model that would be useful to a robot in planning must
then be constructed from the point cloud. Methods [4], [2],
[3] have been proposed to extract planar models from a 3D
point cloud. However, due to the need for multiple iterations
through the entire set of images, these methods are off-line
and computationally intensive, making them inapplicable to
real-time visual scene understanding for robots.

Our previous work is an efficient on-line method for scene
understanding. We presented a concise planar representation,
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the Planar Semantic Model [?], to represent the geometric
structure of the local indoor environment. We treat the scene
understanding problem as a dynamic and incremental process
because the view of the local environment changes while
the robot travels within it. We presented an efficient on-line
generate-and-test method with Bayesian filtering to construct
the PSM from a stream of monocular images [14]. However,
our previous method assumes the indoor environment is
empty and the PSM is capable of modeling everything in the
environment. If the environment is not empty, observations
that are not part of the planar structures may mislead the
Bayesian filter to converge to the wrong hypothesis.

The focus of this paper is to handle clutter in visual
scene understanding. We define “clutter” as regions in the
local environment that cannot be represented by the given
model. Since clutter is unstructured by the given the model,
clutter is represented by 3D point clouds, where each point
cloud corresponds to a 2D segment in the image space. The
interpretation of the local environment consists of the model
and clutter. The model “explains” a subset of the visual
observations, and clutter is the collection of observations that
are not explained by the model.

There are existing works on indoor scene understanding
that interpret the scene with a planar model and clutter.
Hedau et al. [5] and Wang et al. [16] model clutter using a
classifier that links the image features to clutter. Dependence
on prior training for clutter is difficult to generalize to
different indoor environments since the appearance of clutter
is highly variable. Lee et al. [10] and Taylor et al. [12]
treat clutter as observations that are not explainable by
the planar model geometrically, which is our definition of
clutter, and find a model that fits most of the observations.
However, these methods may be difficult to apply to real-time
applications because evaluations at pixel level or evaluation
on a large set of hypotheses are involved. Moreover, since
these methods handle only single image, temporally coherent
interpretation of the scene may be difficult to achieve if each
frame is independently processed.

This paper builds on top of the on-line generate-and-test
framework [14] to incrementally construct an interpretation
of the local environment with a PSM model and clutter.
Specifically, we propose a likelihood function that allows
a good PSM hypothesis to explain only a subset of the ob-
served features. The likelihood function tests the hypothesis
based on a three-way trade-off among coverage, accuracy,
and simplicity of the model. Our experimental results on a
variety of RGB-D videos on cluttered indoor environments
demonstrate that our method is capable of interpreting the
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Fig. 1. Framework. Given the current RGB-D frame t, we first find the relation between the camera and the local 3D world coordinate, and then estimate
the 3dof robot pose in the 3D world coordinate. At the same time, we extract useful features Ft (e.g. vertical-plane features Vt and point-set features
Ct) from frame t. We then follow the on-line generate-and-test framework for indoor scene understanding [14]. The main contribution of this paper is
the proposed likelihood function for testing the hypotheses that allows a good hypothesis to explain only a subset of the features Ft. In addition, we
demonstrated a method to generate and refine the hypotheses using the vertical-plane features Vt.

environment with a PSM model and separate out for later
analysis segments of clutter represented by 3D point clouds.

Our work directly addressed a central dilemma in model-
based scene interpretation. On one hand, it is worth describ-
ing much of the environment using a model that is as simple
as possible, and identifying the parts of the environment that
require more sophisticated models, instead of having one
highly-complex model to describe the whole environment.
On the other hand, when testing multiple model hypotheses,
a hypothesis is preferred if it explains as many observa-
tions as possible and only leaves a small portion of the
observations unexplained. Our proposed likelihood function
makes explicit the trade-off between explanation coverage,
accuracy, and simplicity. While this paper demonstrates a
method to extract a geometric structure of the environment
and separate out clutter, the same approach can be applied
to further interpret clutter with object models.

II. METHOD

This paper demonstrates a method that incrementally and
dynamically construct an interpretation of the local environ-
ment with a concise model (Section II-C) and clutter, parts
of the environment that cannot be represented by the model,
using a stream of RGB-D images. Figure 1 illustrates our
framework. At each frame t, we first extract the ground plane
G and compute a transformation [Rgt , T

g
t ] that transforms

the 3D points from the image coordinate to the local 3D
coordinate (Section II-A). Points that lie on the ground
plane are now considered as “explained” by the ground G.
The transformation [Rgt , T

g
t ] captures 3dof of the full 6dof

camera pose, the pan and roll angles and the height of the
camera with respect to the ground plane at frame t. We call
the remaining 3dof the robot pose, which is represented as
(xrt , y

r
t , θ

r
t ) on the 3D world coordinate. The robot pose is

estimated by aligning RGB image features and the 3D non-
ground-plane points between frame t−1 and t (Section II-B).

At the same time, we extract a set of features Ft from the
3D points that are not explained by the ground G. While
there are other research focusing on grouping a RGB-D
image or a set of 3D points into primitive shapes [7], in
this paper, we group the 3D points into a set of vertical-
plane features Vt and a set of point-set features Ct. Vertical-
plane features suggest the existence of walls, while point-set
features suggest the existence of clutter.

Given the robot pose and the features Ft = {Vt,Ct}, the
on-line generate-and-test framework first uses the vertical-
plane features Vt to refine the precision of the existing set
of PSM hypotheses {M}t−1 (Section II-E). Then, a set of
new hypotheses are generated and added to the hypothesis set
{M}′t−1 by transforming existing hypotheses into children
hypotheses describing the same environment with more
details based on the vertical-plane features Vt. (Section II-
F) Finally, we use a Bayesian filter to test the hypotheses.
While our previous work requires a good hypothesis explains
all the observed features, in this paper, we proposed a new
likelihood function that allows a good hypothesis to explain
only a subset of the features. (Section II-G) The output
interpretation of the environment is the PSM hypothesis with
the maximum posterior probability and clutter, 3D points that
cannot be explained by that PSM hypothesis.

A. Extract Ground Plane

At each frame, we extract the 3D ground plane using
both RGB image and depth information. Figure 2 illustrates
how the ground-plane is extracted. First, we collect the
pixels where their local surface normals differ from the
approximated normal vector Nappx of the ground plane 1

within φground. The local surface normal of each pixel is
computed using the efficient algorithm proposed by Holz
et al. [7]. From those pixels, we use RANSAC to fit the
dominant plane that has a normal vector within φground of
the approximated normal Nappx. From the inlier pixels, we
perform a morphological close operation on the RGB image
to locate a smooth and bounded region for the ground plane.

Once the ground plane is extracted, we compute the
transformation [Rg

t ,T
g
t ] between the camera coordinate and

the local 3D coordinate, where the x-y plane is the ground-
plane and the z-axis is pointing up. The origin of the
local 3D coordinate is set to the projected location of the
camera center on the ground plane. Mathematically, Rg

t is the
rotation matrix that rotates the normal vector of the ground
plane to [0, 0, 1], and Tg

t = [0, 0, ht] is determined by the
distance ht between the camera center and the ground-plane.
In this paper, we also define the world coordinate to be the
local 3D coordinate of the first frame. The transformation

1For a front-facing camera, Nappx = [0, 1, 0] in the image coordinate,
and in our experiments, we set φground = π

6
.
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Fig. 2. Extract ground plane from a single RGB-D image. (Best viewed
in color.) (a) From the input RGB-D image, collect candidate ground-
plane points (blue) with local surface normal close to [0, 1, 0] in the image
coordinate. Notice that since the depth information is noisy, candidate points
may not lie on the ground plane, and some ground-plane points may not be
identified as candidate points. (b) (c) Use RANSAC to fit the dominant plane
from the candidate points. Inlier points (pixels) are marked as green. From
the ground-plane equation, we determine the transformation between the
image coordinate and the local 3D coordinate. In (b), points are transformed
to the local 3D coordinate. (d) Perform a morphological close operation on
the image to obtain a smooth ground-plane region.

between the local 3D coordinate and the world coordinate
can be inferred by the robot pose (Section II-B).

B. Estimate Pose

Given the ground-plane and the transformation [Rg
t ,T

g
t ]

from the camera coordinate to the local 3D coordinate, the
robot pose (xrt , y

r
t , θ

r
t ) captures the remaining three degrees

of freedom of the camera pose in the 3D world coordinate.
We start by estimating the pose change between frame t and
t−1 by aligning sparse feature correspondences between the
two RGB-D images. We extract Harris corner features in the
RGB image at frame t − 1, and obtain their corresponding
image locations at frame t using KLT tracking. Then, we
find a rigid-body transformation [Rp

t ,T
p
t ] that aligns the 3D

locations of the correspondences in the two frames. Note
that since we only have three degrees of freedom, Rp

t is a
rotation matrix along the z-axis and Tp

t is a translation vector
on the x-y plane. With this initial estimate of the robot pose
2, we use Iterative Closest Point (ICP) algorithm to refine
[Rp

t ,T
p
t ] from all the 3D points that are not on the ground

plane. Finally, the robot pose in the world coordinate can be
computed from the pose change.

2If there are not enough sparse feature correspondences to compute the
initial estimate, we assume the robot is moving at a constant motion and
use the pose change between frame t− 1 and t− 2 as our initial estimate.

(a) Extract Vertical-Plane Features (b) Extract Point-Set Features

Fig. 3. Extract features from the RGB-D frame shown in Figure 2.
(Best viewed in color.) Once the ground-plane is extracted, we extract
features from the points that are not from the ground plane. (a) We first
extract vertical-plane features by fitting line segments to the points in the
ground-plane map. Points are colored according to the vertical-plane features
that they generated, and points that cannot be grouped into line segments
are marked as black. (b) We extract point-set features by clustering the
remaining points based on their Euclidean distances. In general, vertical-
plane features suggests the existence of walls, and point-set features suggest
the existence of clutter. However, some vertical-plane features may come
from clutter region (e.g. the blue trash can), and some (red and orange)
point-set features may be noise from a wall plane.

C. Planar Semantic Model

We use the Planar Semantic Model (PSM) proposed in our
previous work [14] to represent the structure of an indoor
environment. In this paper, we use the following notations
to represent a PSM M :

M = {G,W1,W2,W3, ...,Wn}
Wi = 〈αi, di, Si1, Si2, ..., Simi〉
Sij = 〈xi1,j , yi1,j , ui1,j , xi2,j , yi2,j , ui2,j〉

. (1)

The PSM is defined on a ground-plane map, a 2D slice of the
world coordinate along the ground-plane. PSM consists of
the ground plane G and a set of walls {W1,W2,W3, ...,Wn}.
The location of a wall Wi is specified by a line on the
ground-plane map parametrized by (αi, di), where αi ∈(
−π2 ,

π
2

]
is the orientation of the line and di ∈ R is

the directed distance from the origin to the line. A wall
Wi consists of a set of wall segments {Si1, Si2, ..., Simi}
delimiting where the wall is present and where there is an
opening. A wall segment Sij is represented by two endpoints.
An endpoint is defined by its location (xi•,j , y

i
•,j) on the

ground-plane map and its type ui•,j representing different
levels of understanding of the bound of the wall segment.

D. Extract Features

After extracting the ground-plane, we group the points
(pixels) from the current RGB-D frame into a set of vertical-
plane features V = {vj |j = 1, ..., nv} and a set of point-set
features C = {cj |j = 1, ..., nc}. Figure 3 is an example of
the features. A vertical-plane feature v is a plane segment that
is perpendicular to the ground-plane, and a point-set feature
is a cluster of 3D points that cannot be grouped into vertical
planar segments. Vertical-plane features suggest the existence
of walls, and point-set features suggest the existence of
clutter. However, not all the vertical-plane features belong to
the PSM. For example, a box on the ground also generates
several vertical-plane features. On the opposite, a point-set



feature that is close to a wall may simply be a small instance
sticking out from the wall or noise. For example, a door knob
may become a point-set feature. In this paper, we use the
vertical-plane features to generate and refine the hypotheses,
and we use all features to test the hypotheses.

Similar to a PSM wall, a vertical-plane feature v corre-
sponds to a line segment in the ground-plane map:

v = 〈αv, dv, xv1, yv1 , xv2, yv2〉 (2)

where αv ∈
(
−π2 ,

π
2

]
and dv ∈ R. This is the same line

parametrization used to represent a wall plane, and (xv1, y
v
1)

and (xv2, y
v
2) are two end-points of the line that denotes

where the vertical-plane is visible. We first extract vertical-
plane features from the 3D points that are not on the ground
plane. (Points are represented in the 3D world coordinate.)
We project the points onto the ground-plane map, and use J-
linkage [13] to fit a set of line segments. Each line segment
forms a vertical-plane feature. We remove the points that
form the vertical-plane features and cluster the remaining
points based on their 3D Euclidean distances. A cluster that
consists of more than 100 points forms a point-set feature.
Mathematically, a point-set feature c is represented by

c = 〈xc, yc,Pc〉 (3)

where Pc is the set of 3D points in the cluster, and (xc, yc)
is the ground-plane map projection of the 3D mean location
of the points. For points that failed to form features are
considered as noise and are thus, discarded.

E. Refine Hypotheses

We use the information from the current frame to refine the
precision of each hypothesis. The generic Extended Kalman
Filter (EKF) is used to estimate the parameters of each wall
and the location of each occluding endpoint [14]. 3

Vertical-plane features Vt are potential measurements for
the walls that are visible in frame t. We associate the visible
walls to the vertical-plane features based on the similarity of
their corresponding lines on the ground-plane map. If a wall
wi is associated to a vertical-plane feature vj , we use EKF
to update the wall parameters (αi, di) based on the location
of the vertical-plane feature (αvj , d

v
j ).

Once the wall parameters are updated, we refine the
location of each occluding endpoint. Potential measurements
for an occluding endpoint are the end-points of the vertical-
plane features that have similar parameters with its corre-
sponding wall. We project these end-points onto the line of
the corresponding wall and find the nearest projected point
to the endpoint. If the distance between the nearest point and
the endpoint is less than 0.2 meters, the projected point is
the measurement for that endpoint. An endpoint is updated
using EKF, if its measurement is available.

3Occluding endpoints is a type of endpoint that is associated to only one
observed wall. [14]

F. Generate Hypotheses

We combine vertical-plane features Vt to generate PSM
hypotheses. In the first frame, a set of simple hypotheses are
generated. A simple hypothesis is either a PSM with two
parallel walls or with at most three walls where each wall
intersects with its adjacent walls. These simple hypotheses
are generated by combining vertical-plane features with
certain constraints [15]. At every 10 frames, we transfer
each existing hypothesis into a set of child hypotheses
describing the same environment in more details. These
child hypotheses are essential for incrementally modeling the
environment as a robot travels. For example, when the robot
is at a long corridor, the wall at the end of the corridor or
openings along the side walls, may not be sensible from a
distance, and thus, hypotheses capturing these details can
only be generated when the robot is close to them. Given an
existing hypothesis, its children hypotheses are generated by
adding openings to the walls [14] or by combining with a
simple hypothesis generated at the current frame.

G. Test Hypotheses

Hypotheses are tested using a recursive Bayesian filtering
framework [15], [14]. Starting from a uniform prior, at
each frame t, we compute the likelihood function p(Ft|Mi)
of each hypothesis Mi to update its posterior probability
p(Mi|F1:t). In our previous work, we assume that a hypoth-
esis explains all the observed features in the current frame.
This assumption works well in empty environments because
all the observed features actually lie on the walls and ground
planes. However, in a cluttered environment, features may
be part of clutter which cannot be explained by the PSM, as
shown in Figure 3. Thus, in this paper, we design a likelihood
function that allows a good hypothesis to explain only a
subset of the observed features Ft = {Vt,Ct}.

The likelihood of hypothesis Mi consists of three terms,

p(Ft|Mi) = pc(Ft|Mi)pa(Ft|Mi)ps(Ft|Mi). (4)

These terms describe a three-way trade-off among the feature
coverage by the hypothesis pc(Ft|Mi), the accuracy of the
explained features pa(Ft|Mi), and the simplicity of the
hypothesis ps(Ft|Mi).

The coverage term pc(Ft|Mi) measures the number of
features that Mi explains, regardless of the accuracy of the
explanations. Formally,

pc(Ft|Mi) = ωv
|Vi

t|
|Vt|

+ ωc
|Ci

t|
|Ct|

(5)

where Vi
t ⊆ Vt are the vertical-plane features, and Ci

t ⊆ Ct

are the point-set features that are explained by Mi. (One can
define their own metric to determine whether a feature is
explained or not. Our metric is presented in the appendix.)
ωv and ωc are the importances of explaining vertical-plane
features and point-set features, respectively (ωv+ωc = 1). 4

4In indoor environment, a vertical-plane feature is more likely to be part
of a wall plane, while a point-set feature is more likely to be clutter. Thus,
we set ωv > ωc. In our experiments, we set ωv = 0.7 and ωc = 0.3.



(a) Frame t

(b) Vertical-plane features
extracted from the observa-
tion of frame t

(c) M1: simple 1-wall model that
perfectly explains some features

(d) M2: simple 1-wall model that
moderately explains all features

(e) M3: complex 4-wall-segment
model that perfectly explains all
features

Hypothesis M1 M2 M3

coverage pc(Ft|Mi) 0.50 1.00 1.00
accuracy pa(Ft|Mi) (σ = 0.2 ) 1.00 0.88 1.00
accuracy pa(Ft|Mi) (σ = 0.05) 1.00 0.14 1.00
simplicity ps(Ft|Mi) (γ = 0) 0.50 0.50 0.50
simplicity ps(Ft|Mi) (γ = 1) 0.88 0.88 0.27

Likelihood p(Ft|Mi) = pc(Ft|Mi)pa(Ft|Mi)ps(Ft|Mi)
CASE 1: σ = 0.20, γ = 0 0.25 0.44 0.50
CASE 2: σ = 0.20, γ = 1 0.44 0.77 0.27
CASE 3: σ = 0.05, γ = 0 0.25 0.07 0.50
CASE 4: σ = 0.05, γ = 1 0.44 0.12 0.27

(f) Three-Way trade-off among likelihood factors

Fig. 4. Example for the three-way trade-off among the likelihood factors. (Best viewed in color.) Assume we extract four vertical-plane features from
frame t (a), as shown in (b), and three valid hypotheses (thick blue lines) are generated: (c) Hypothesis M1 models the environment with one wall that
perfectly explains only two of the features (green), leaving the other two unexplained (red); (d) Hypothesis M2 models the environment with one wall that
explains all the features but explain them poorly (yellow); (e) Hypothesis M3 models the environment with four wall segments that explain all four features
perfectly. As shown in (f), the likelihood function is a three-way trade-off among feature coverage of the hypothesis, accuracy of the explained features,
and simplicity of the hypothesis. Depending on the parameters in each term, the likelihood function can prefer any of the hypotheses. If σ is small, the
accuracy term is important since the Gaussian function in pa(Ft|Mi) gives large penalties to poor explanations. Contrary, if σ is large, the accuracy term
becomes less important because the Gaussian function is less discriminative between poor and good explanations. In this example, pa(Ft|M2) dramatically
increases when σ increases. The decay rate γ controls the preference towards simpler hypotheses (Fig. 5). When γ = 0, there is no preference for the
simplicity of the hypothesis. As γ increases, the likelihood function will increases its preference towards simpler hypotheses. In CASE 1, coverage is the
most important factor, and since M3 has a slightly better accuracy than M2, M3 has the highest likelihood. In contrast to CASE 1, CASE 2 consider both
coverage and simplicity important, and thus, M2 has a higher likelihood than the complex hypothesis M3. In CASE 3, where only coverage and accuracy
are considered, M3 is the best because it perfectly explains all the features while M1 and M2 have issues with coverage and accuracy, respectively. In all
three cases, M1 is not preferred, because it has a lower coverage. However, if considering all three factors (CASE 4), M1 is the best.

The accuracy term pa(Ft|Mi) measures the accuracy of
the features explained by Mi. Since different hypotheses
may explain different subsets of the features Ft, we compute
the weighted RMS error error(Ft,Mi) of the features that
hypothesis Mi explains,

error(Ft,Mi) =√
ωv
∑
vj∈Vi

t
εp(vj ,Mi)2 + ωc

∑
cj∈Cit

εc(cj ,Mi)2

ωv|Vi
t|+ ωc|Ci

t|
(6)

εp(vj ,Mi) and εc(cj ,Mi) are the error of Mi explaining
feature vj and cj . (One can define their own error metric.
Our metric is presented in the appendix.) The RMS error is
modeled by a Gaussian distribution with zero mean and σ2

variance 5. Mathematically,

pa(Ft|Mi) ∝

{
0 if |Vi

t|+ |Ci
t| = 0

exp −error(Ft,Mi)
2

2σ2 otherwise
.

(7)
Note that both the coverage and the accuracy term require a
hypothesis to explain at least one feature in order to obtain a
non-zero likelihood. In other words, the Bayesian filter will
filter out a hypothesis that explains nothing in view.

The simplicity term ps(Ft|Mi) measures the amount of
information that Mi used to explain the features. This is
a regularization term that prevents the Bayesian filter from
over-fitting the features. ps(Ft|Mi) is modeled by a gener-
alized logistic function where the growth rate γ is negative,

ps(Ft|Mi) =
1

1 + expγ(|Mi|t − nmaxγ )
. (8)

5In our experiments, σ2 = 0.04. This value is selected to account for
the noise of the sensor and the accumulated error for pose estimation.

Fig. 5. The simplicity term ps(Ft|Mi) of the likelihood function with
respect to different γ with a fixed nmaxγ = 3. (Best viewed in color.) The
horizontal axis |Mi|t is the number of walls in view and the vertical axis
is ps(Ft|Mi). In the extreme case, where γ = 0, the likelihood function
has no preference towards simpler hypotheses. As γ increases, the Bayesian
filter is more likely to converge to a simpler hypothesis.

|Mi|t is the number of walls that are visible in frame t and
nmaxγ is where the maximum decay occurs. 6

Figure 4 demonstrates the trade-offs among the three terms
(coverage pc(Ft|M), accuracy pa(Ft|M), and simplicity
ps(Ft|M)) in the likelihood function. The importance of
each term is controlled by two parameters, the variance of
the Gaussian function σ2 in the accuracy term pa(Ft|M)
and the decay rate γ in the simplicity term ps(Ft|M). The
variance σ2 mainly controls the importance of the accuracy
term. A large variance σ2 in the accuracy term means that the
difference between good and poor explanations is low, and

6In our experiments, γ = 0.3 and nmaxγ = 10 to ensure the likelihood
for having one to five walls are similar because theses are the common
number of walls that are visible in a frame based on the field of view of
our depth camera (57◦ horizontally).



(a) M4 — A good hypothesis (b) M5 — A mediocre hypothesis

Full Explanation Partial Explanation
Hypothesis M4 M5 M4 M5

coverage pc 1 1 0.46 0.94
accuracy pa 0.12 0.25 0.95 0.29
simplicity ps same
Likelihood 0.12 0.25 0.44 0.31

(c) Likelihood comparisons with and without clutter concept

Fig. 6. The environment in Fig. 2 and 3 demonstrates the importance of
allowing a hypothesis to explain only a subset of the features. (Best viewed
in color) Both M4 and M5 use one wall (blue thick line) to represent the
environment, so the simplicity term for both hypotheses are the same. If
we force both hypotheses to explain all the features, then M5 has a higher
likelihood than M4 because it has a lower RMS error. (ωv = 0.7 and
σ = 0.2) If we allow the hypotheses to explain only a subset of the features,
M4 is most likely to have a higher likelihood. Green features are perfectly
explained (0 error) by the hypothesis, yellow features are explained with
errors, and red features are not explained. See text for more details.

thus, the likelihood function is more reflective on the feature
coverage. Contrary, a small variance σ2 means that the
penalty for poor explanation is high, and thus, the accuracy
of the explanation is highly important. The decay rate γ
controls the preferences toward having a simpler model as
shown in Fig. 5. In the extreme case, where γ = 0, the
simplicity term will be the same for all hypotheses and
thus, the likelihood will not prefer simpler hypotheses. As
γ increases, the likelihood function will start preferring a
simpler hypothesis with reasonable coverage and accuracy.

On one hand, the parameters in the likelihood function
allows the user to set their preferences based on their
applications. If the purpose of exploration and mapping
is to determine free-space for safe navigation, then one
set of parameter values might be preferred, while if the
purpose is to create an architectural CAD model of the
environment, a different set of values may be preferable. On
the other hand, the parameters may seem to be sensitive to
the hypothesis that the Bayesian filter converges to. In fact,
for the purpose of navigation, it is reasonable to converge
to any of the three hypotheses. Both M3 and M1 specify
the same part of the environment as free-space, but they
specify the free-space in a different way. M2 is less precise
in specifying the boundaries of free-space, and the accuracy
of its explanation pa(Ft|M2) requires a robot to be more
cautious about the boundaries. In other words, the accuracy
term provides a confidence measurement of free-space for
navigation algorithms [8]. In a simple empty environment
like this, most hypotheses are reasonable. However, in a more
complex or cluttered environment, many bizarre hypotheses
will be generated and the likelihood function allows us to
converge to a reasonable hypothesis (see Section III).

Figure 6 is an example that shows why it is important
to allow a good hypothesis to explain only a subset of the
observed features. If we require a hypothesis to explain all

the observed features (pc(Ft|M4) = pc(Ft|M5) = 1), then
the mediocre hypothesis M5 dominates M4 because it has
lower RMS error. However, if a hypothesis can distinguish
between clutter and non-clutter features, then the higher-
quality partial explanation M4 can dominate the nearly
complete but lower-quality hypothesis M5.

III. RESULTS

We evaluated our approach using four RGBD video
datasets in various indoor environments. 7 The videos were
collected by a Kinect sensor mounted on a wheeled device
with a front pointed direction. The relative poses between
the camera and the ground plane are fixed within each video,
but different among different videos. In Dataset CORNER
and LAB, the robot traveled about 1.5 meters in a very
cluttered corner. In Dataset INTERSECTION, the robot
made a right turn around an empty L-intersection. In Dataset
CORRIDOR, the robot traveled about 5 meters in a long
corridor with objects on the sides.

Figure 8 shows the results on these videos. Our method
converges to a reasonable hypothesis to describe each en-
vironment in 3D. Once we obtain the best hypothesis, we
separate out clutter, observations that were not explained
by the hypothesis. At each frame, each hypothesis has its
own partition of explained and unexplained features. The
unexplained observations are the 3D points that contribute to
these unexplained features at each frame. We further cluster
these unexplained observations into a set of 3D regions based
on their Euclidean distances. In most cases, a cluttered region
is either an object or a pile of objects, but in some situations
(INTERSECTION), the cluttered region may be part of the
building, such as a pillar along the wall.

To evaluate our method quantitatively, for every 10 frames,
we manually labeled the ground truth classification of the
planes (i.e. the walls, ground and ceiling), and ground-
truth classification of clutter in the projected image space.
We define the Plane Accuracy of a hypothesis being the
percentage of pixels with the correct plane classification, and
the Scene Accuracy of a hypothesis being the percentage of
pixels with the correct scene interpretation (PSM + clutter).
When computing these accuracies, only non-ceiling pixels
with valid depth data are considered, because ceiling is not
modeled in PSM and pixels with invalid depth data are not
used to compute the likelihood. The average accuracies of
the maximum a posteriori hypotheses are reported in Fig. 7.
To illustrate the importance of partial explanation, we ran an
experiment without the concept of clutter (pc(Ft|Mi) = 1
and pa(Ft|Mi) is computed by all the features). Among
all datasets, only INTERSECTION converges to the correct
hypothesis, and the overall Plane Accuracy accuracy without
clutter concept is 67.11%. Thus, allowing partial explanation
is a key to handle cluttered environments.

Besides locating free-space for navigation, our output
interpretation is an important step towards reasoning about

7Publicly available at http://www.eecs.umich.edu/˜gstsai/
release/Umich_indoor_corridor_2014_dataset.html.



Dataset CORNER LAB CORRIDOR INTERSECTION Overall
Clutterness 34.84% 20.80% 9.50% 10.22% 16.50%

Plane Accuracy 98.18 % 99.31 % 97.83 % 98.25 % 98.49 %
Scene Accuracy 92.82 % 95.10 % 91.76 % 98.16 % 94.83 %

Fig. 7. Quantitative evaluation. The average accuracies of the maximum a posteriori hypotheses at the evaluated frames are reported. Plane Accuracy
measures the accuracy of the hypothesized PSM model, and Scene Accuracy measures the accuracy of the whole interpretation (PSM + clutter).

objects in the local environment. Our interpretation segments
out regions that may contain objects for object reasoning
methods. A clutter region is a smaller problem for object
reasoning compare to the whole scene. For example, we
applied a functionality-based object classification [6] to the
clutter region with the chairs in LAB and determined that
this region is “sittable” among other functionality classes
(“table-like”, “cup-like”, and “layable”).

IV. CONCLUSION

We addressed the dilemma of model-based scene interpre-
tation. On one hand, it is valuable to interpret the environ-
ment with a simple model and separate out the regions that
cannot be described by a simple model — clutter, as oppose
to having a fine-grained model that models all the details in
the environment. On the other hand, while testing multiple
model hypotheses, it is more preferable to select a hypothesis
that explains more observations and has less unexplainable
observations. We proposed a likelihood function handles the
dilemma. The likelihood function make explicit a three-way
trade-off among coverage of the observed features, accuracy
of the explanation, and simplicity of the hypothesis.

We demonstrated the likelihood function in the context
of an on-line generate-and-test framework to visual scene
understanding [14]. Our experimental results on a variety of
RGB-D videos demonstrated that our method is capable of
interpreting cluttered environment by a simple model (PSM)
and clutter. Our output interpretation not only provides
information of free-space for navigation, but separates out
segments of clutter represented by 3D point clouds that
require further analysis with more complex models. Our
approach can be applied to further interpret clutter with other
models (e.g. object models).

APPENDIX

Explaining vertical-plane features: A vertical-plane fea-
ture v is explained by hypothesis M if v can be explained
by a wall segment Sij in M . Feature v is explained by M
if the error εp(op,M) is less than a threshold ε. (ε = 0.1 in
our experiments.) The error metric εp(v,M) is computed as
followed. First, we find the wall plane Wmatch ∈M that best
matches v by computing the displacement dist(v,Wi) be-
tween v and each wall Wi based on their corresponding lines
in the ground-plane map. For efficiency, we only consider a
wall that has a similar angle to the vertical-plane feature.
Two angles are similar, if min(|αi − αv|, π − |αi − αv|) <
0.0873. If no walls are within the angle constraints, v is not
explained by M . Each wall has a coordinate for computing
the displacement. The origin of the coordinate is at the
weighted center of the line of v and the line of wall Wi, and

the x-axis is along the weighted average direction of the two
lines. The weight of each line is proportional to its length.
The displacement dist(v,Wi) of the two lines is defined as
the maximum difference along the y-axis. Wmatch is the wall
with minimum dist(v,Wi). If the entire v lies within a single
wall segment of Wmatch, εv(v,M) = dist(v,Wmatch).
Otherwise, v is not explained by M .

Explaining point-set features: We define an error metric
εc(c,M) to be the shortest distance of the point-set feature
(xc, yc) to a wall Wi in M . Feature c is not explained by
M if the error is larger than a threshold ε. (This is the same
threshold ε for explaining vertical-plane features.) Feature
c is not explained if the projected location of the feature
does not lie within the bound of any wall segments of Wi.
Moreover, we take into consideration the distribution of the
points Pc in c. Only if 70% of the points are within ε of
distance to wall Wi, point-set feature c is explained.
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Fig. 8. Evaluation of our approach on interpreting indoor environment by a Planar Semantic Model and clutter. (Best viewed in color.) The first column
is the image in our dataset. (The depth images are not shown in this figure.) The second column is the 3D interpretation obtained by our method. The
interpretation is visualized in the ground-plane map. For the PSM, the blue lines are the wall planes, and the big dots are the endpoints. The endpoints
are color coded based on their types (green: dihedral; yellow: occluding; red: indefinite)[14]. Clutter, observations that are not explained by the model, is
represented by a 3D point cloud, which is visualized by the tiny red dots. Notice that some of the clutter points are caused by errors in the pose estimation.
The pose estimation is less accurate in CORRIDOR because a large portion of the pixels have unreliable depth measurements due to distances. The third
column is the image projection of the PSM. The ground is green and each wall is shown in a different color. The part of the images that are not painted
are too far away from the robot to obtain a reliable depth data, so the robot will start modeling those regions as it gets closer. The fourth column shows the
clutter in the image. We cluster the clutter points in 3D into regions, and each cluster corresponds to a 2D segment in the image space. These segments are
shown in different colors. In general, each clutter region consists of an object or a pile of objects, but in INTERSECTION, the clutter region is actually a
pillar along the wall. Our interpretation does not model the objects, since PSM can only represent the ground-plane and walls. However, if object models
are given, our method can be applied to factor each clutter region into known objects and points that remains unexplained.


