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Abstract

An indoor navigating robot must perceive its local environment in order to act. The

robot must construct a model that captures critical navigation information from the

stream of visual data that it acquires while traveling within the environment. Visual

processing must be done on-line and efficiently to keep up with the robot’s need.

This thesis contributes both representations and algorithms toward solving the prob-

lem of modeling the local environment for an indoor navigating robot. Two representa-

tions, Planar Semantic Model (PSM) and Action Opportunity Star (AOS), are proposed

to capture important navigation information of the local indoor environment. PSM

models the geometric structure of the indoor environment in terms of ground plane and

walls, and captures rich relationships among the wall segments. AOS is an abstracted

representation that reasons about the navigation opportunities at a given pose. Both

representations are capable of capturing incomplete knowledge where representations

of unknown regions can be incrementally built as observations become available. An

on-line generate-and-test framework is presented to construct the PSM from a stream

of visual data. The framework includes two key elements, an incremental process of

generating structural hypotheses and an on-line hypothesis testing mechanism using a

Bayesian filter.

Our framework is evaluated in three phases. First, we evaluate the effectiveness of

the on-line hypothesis testing mechanism with an initially generated set of hypotheses

in simple empty environments. We demonstrate that our method outperforms state-of-

the-art methods on geometric reasoning both in terms of accuracy and applicability to

a navigating robot. Second, we evaluate the incremental hypothesis generating process

and demonstrate the expressive power of our proposed representations. At this phase,

we also demonstrate an attention focusing method to efficiently discriminate among

the active hypothesized models. Finally, we demonstrate a general metric to test the

hypotheses with partial explanations in cluttered environments.

xi



Chapter 1

Introduction

1.1 Problem Statement

A robot needs to perceive its local environment in order to act. Visual sensor has become

popular because it captures a lot of information at low cost. When using vision as a

primary sensor for a robot, the input to visual perception is a temporally contiguous

stream of images, not simply a single image or a set of images. The output of visual

perception must be a representation of the local environment that is useful for the

robot to make plans. We call the process of constructing a representation of the local

environment from sensory input scene understanding. For a robot, scene understanding

must be an on-line and efficient process as opposed to a batch process so that the robot’s

representation can be updated as observations become available.

A representation is semantically meaningful if the representation specifies the robot’s

action opportunities. Depending on the purpose of the robot, different robots may have

different meanings in terms of semantically meaningful representation. For example,

a semantically meaningful representation for a navigating robot must specify where

there is free-space for the robot to travel and where there are obstacles, while for a

manipulating robot, a semantically meaningful representation must provide information

implying where are the graspable points of the objects in the local environment.

Besides being semantically meaningful, the representation for the local environment

must be capable of expressing incomplete knowledge. There are two types of incomplete

knowledge for a robot. First, the representation must specify where there is missing

information due to lack of observations. With incomplete knowledge representation, the

robot can incrementally complete its understanding of the environment as observations

1



become available. This is an essential part of on-line visual processing because visual

sensors usually have a limited field of view. Second, the representation needs to specify

regions that cannot be explained by existing models. As new models become available,

the robot can increase its level of representation of the local environment with more

varieties of action opportunities. Thus, with the ability to express incomplete knowledge,

the robot can make plans to act, even if the local environment are not fully observed or

explained.

For a robot to make real-time decisions, visual scene understanding needs to be

an on-line and efficient process. An on-line process maintains an interpretation of the

local environment and uses the current sensory data to update that interpretation. In

addition, each update must be efficient to minimize the delay for the decision making.

The ideal efficiency for a robot is to reach the frame-rate of the sensory input.

In summary, in this thesis, we identify three criteria for solving visual scene under-

standing problems:

• The robot must build a semantically meaningful representation of the local

environment that implies the robot’s action opportunities.

• Knowledge representations of the local environment must be capable of repre-

senting incomplete knowledge to specify where there is missing information

due to lack of observations, and to specify regions that cannot be explained by

existing models.

• Scene understanding must be done on-line and efficiently to keep up with the

robot’s needs.

In this thesis, we focus on a specific type of robot, an indoor navigating robot. The

goal of this thesis is to propose a knowledge representation for the indoor environment

that is useful for the navigating robot to make plans. In addition, this thesis demon-

strates an on-line framework that efficiently constructs such a knowledge representation

primarily from a stream of visual data.

1.2 Approach Overview

A robot should interpret the physical world with the foundational concepts of space and

objects. From the visual sensor input stream Z = Z0:t = {z0, z1, ..., zt} that the robot

2



received from time step 0 to t, the process of perceiving the world is an incremental

process, starting from modeling the space to understanding objects. Inspired by the

Object Semantic Hierarchy (OSH) [81], this process can be decomposed into multiple

levels of interpretations.

The first level of interpretation is to model the sensor input in terms of space, the

geometric structure of the environment. The portions of the environment that can not

be explained by the geometric structure are “clutter”. Clutter consists of piles of objects,

and is an intermediate level between the knowledge of space and the full knowledge of

the environment. The later levels are then dedicated to modeling objects from clutter.

Level 0: Noisy World

Without any knowledge of the environment, the sensor input zt is simply an array of

high-dimensional pixel-level data,

zt = ε0 (1.1)

where zt is the snapshot of the sensor input stream Z at time t, and ε0 is a random

variable that represents the sensor input as noise.

Level 1: Geometric Structure of Indoor Environment

For an indoor navigating robot, the majority of the observed image zt is explained by a

model M of the 3D geometric structure of the indoor environment,

zt = G1(M,xt) + ε1. (1.2)

In order for a robot to navigate efficiently within the environment, M is usually a coarse-

grained representation to capture the semantic structure of the building (e.g. walls and

ground plane). xt is the observing pose of the robot. Both M and xt are defined with

respect to the global reference frame. 1 G1 is a function that predicts the 2D image

projection of the structural model M at pose xt. ε1 is the residual of the sensor input

that is not explained by the structural model M and xt.

At this level, the robot explains much of its observations by M so the unexplained

portion of the image decreases, ‖ε1‖ � ‖ε0‖. The size of the residuals ‖ε1‖ depends on

1 It is common to define the global reference frame according to the initial pose of the robot x0.
However, as the robot explores the environment, it might discover a more convenient global reference
frame.
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the granularity of the model M . If M is a point cloud (a collection of samples of the 3D

environment), then ‖ε1‖ is nearly 0 because the whole scene can be fully expressed by

a point cloud. This is what SLAM (simultaneous localization and mapping) methods

do, with laser or vision. Given observations zt, SLAM methods construct a point cloud

and localize xt the robot within it to minimize the error ε1 between the prediction and

observation. If M is more concise and more abstract (coarse-grained model), such as a

planar model, ‖ε1‖ may not be 0 when parts of the environment cannot be modeled by

planes.

Level 2: Clutter

“Clutter” consists of regions of the indoor environment that are not explainable by the

structural model M . If M is the only model that the robot has, clutter is simply a

bunch of “stuff” in the environment that is not interpretable by the robot. With the

knowledge of clutter, the interpretation of a image snapshot zt becomes,

zt = G2(M,C1, ..., Ck,xt) + ε2 (1.3)

where G2 is a function that predicts the 2D image projection of M and a set of clutter

regions C1, ..., Ck, at pose xt. ε2 is the residual noise after interpreting zt with the

structural model M and clutter, and thus, ‖ε2‖ � ‖ε1‖. At this level, ε2 is simply sensor

noise.

Clutter does not have a fixed meaning because it depends on the structural model

M . As discussed in Level 1, if M is a point cloud, then there is no clutter in the

representation. If M is a coarse-grained model, then clutter may exist. The physical

locations where clutter is present also depend on the model M .

Without the knowledge of objects, clutter is simply a collection of unstructured 3D

points that occupy the space. Clutter is represented by a set of 3D regions, where

each region is represented by a 3D point cloud in the global frame of reference. These

regions can be determined by clustering the 3D points based on their distances in the

3D environment. The 2D image projection of a clutter region is a 2D blob. In fact,

clutter is a type of incomplete knowledge of the indoor environment because it specifies

regions of the environment that are occupied without specifying the actual actions that

the robot can perform at these regions. To fully interpret these regions, the robot needs

the concept of objects.
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Level 3: Objects

A clutter region is an object or a pile of objects. In indoor environments, there tend to

be multiple instances of object categories that could be explained by the same object

model (e.g. chairs, doors, and pedestrians). The robot could build a model for each

object instance, or a single general model for an object category with the information

in the clutter regions. 2

When clutter can be well clustered into regions C1, ..., Ck, each clutter region becomes

a smaller interpretation problem. If the robot has a set of object models, portions of

each clutter region Ci can be explained by object models,

Ci = 〈{〈Oj,y
j
t 〉|j = 1, 2, ..., ni}, C ′i〉 (1.4)

where ni is the number of objects within clutter region Ci, and Oj is the model of object

j. Object models are more structured and semantically meaningful than 3D point clouds.

The object pose yjt is the transformation between the reference frame of object Oj and

the global reference frame. If yjt is constant for the whole time, Oj is a static object, an

object that remains static with respect to the structural model M . If yjt varies through

time, Oj is a dynamic object, an object that is moving relative to the structural model

M . C ′i is the residual of the cluster region that cannot be explained by the robot with

the current object models. Thus, C ′i is the remaining piece of incomplete knowledge

represented by a 3D point cloud.

With some knowledge of objects, the sensor input zt can be explained by,

zt = G3(M,xt, {〈Oj,y
j
t 〉|j = 1, 2, ..., N}, C ′1, ...C ′k) + ε3 (1.5)

where N = n1+n2+ ...+nk is the total number of objects modeled in the clutter regions.

G3 is a function that predicts the 2D image projection of the 3D environment consisting

of the structural model M , a set of objects {Oj|j = 1, 2, ..., N}, and remaining clutter

regions C ′1, ...C
′
k, and ε3 is the residual noise.

At this level of interpretation, the robot has gained more understanding of the en-

vironment by explaining portions of clutter by a set of concise and structured object

models. However, the process of extracting objects from the clutter may filter out some

2 In computer vision, a common approach is to build an object classifier through supervised learning
with a large amount of training examples of objects [43]. There are also methods that attempt to
discover object instances through unsupervised learning algorithms [75].
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3D points as noise, and thus, the residual noise may slightly increase, ‖ε3‖ ≥ ‖ε2‖. There

are two sources for the noise to increase. The first source is the sensor noise from the

image observation around the objects. The second source is the error caused by the

simplicity of the object models. In order for the robot to act efficiently with the objects,

object models are designed to be concise, coarse-grained abstractions in which small

details of the objects are not captured by the 3D models. Ignoring small details causes

error between the modeled environment and image observations.

Level n: More Objects

At any point, the robot may obtain new object models from the unexplained regions to

increase its level of knowledge of the environment. If the robot has object models to

explain the entire clutter, then it has the full knowledge of the local indoor environment.

In other words, the sensor input zt can be explained by the structural model M and a

set of objects,

zt = Gn(M,xt, {〈Oj,y
j
t 〉|j = 1, 2, ..., N}) + εn (1.6)

where εn is the residual noise. At this level, εn only consists of noise from the physical

sensor and the noise caused by abstracting the environment with concise models. In

principle, once εn becomes IID Gaussian noise εn ∼ N (0, σ2), the robot reaches full

interpretation of the environment.

1.3 Scope of the Thesis

Section 1.2 describes a general approach for visual scene understanding with different

levels of interpretations. This thesis focuses on understanding the space of the robot’s

local environment. This thesis proposes methods for building the structural model M

of the environment (Level 0 to 2) and demonstrates the connection with existing object

modeling research (Level 3). Specifically, this thesis targets the following:

(a) Formulate a concise, useful, and semantically meaningful representation of the 3D

structural model M of the local indoor environment.

(b) Develop a generalized efficient on-line framework to construct M .

(c) Propose algorithms for factoring the description of the environment into M and

regions Ci that are not explained by M — clutter.

6



1.4 Significance

Visual scene understanding from a robotic vision perspective shares concerns with the

computer vision perspective, but has significant differences. In computer vision, the

common approach to scene understanding is to collect a database of images with human

annotated scene semantics, and then use statistical machine learning methods to infer

annotations for given input images. The output of visual scene understanding is based

on the humans semantics, not the robot’s. In robotic vision, the goal is to have the robot

build its own interpretation of the local environment from its own experience of moving

within it. In other words, the robot cannot rely on additional knowledge sources, like

human annotations; instead it must use the stream of visual data it collected within the

environment to build its own understanding using geometric properties.

In robotic vision, the input to visual scene understanding is a temporally fine-grained

stream of images collected by the robot, instead of a single image or an atemporal image

collection. The expected output is a temporally coherent visual scene understanding

result, which cannot be achieved by processing each image frame independently. On the

one hand, since a large database of visual information related to the robot’s semantics

is not available as in computer vision, the robot has to incrementally build its visual

understanding as observations become available. On the other hand, this thesis lever-

ages the fact that these visual observations are temporally coherent by using geometric

and probabilistic inferences to incrementally accumulate its understanding of the local

environment.

This thesis proposes a general approach of visual scene understanding from the

robot’s point of view. The robot incrementally improves its level of understanding as

more models become available. While this thesis focuses on understanding the structure

of space, the output of the space interpretation helps the robot to focus its attention

on understanding objects more efficiently. Many computer vision works have addressed

the problem of understanding objects, but real-time computations of these methods are

difficult to achieve due to the large search space of object locations. By focusing only on

clutter regions when reasoning about objects, these computer vision algorithms can be

more efficient. With knowledge of space and objects, the robot can make useful plans

to act in the indoor environment.

A full spatial understanding of an indoor environment requires both mapping in

large-scale space [8] and scene understanding of small-scale space (this thesis). Scene un-
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derstanding interprets the local environment, a small portion of the actual environment

that is perceivable by a robot within small amount of motions. Mapping in large-scale

space takes scene understanding results as inputs to the mapping system, and construct

a map that covers a much larger environment. For example, interpreting a corridor and

an intersection are considered as scene understanding in small-scale space, while rea-

soning about a whole floor of a building is considered as mapping in large-scale space.

The scene understanding representations and algorithm proposed in this thesis can be

efficiently used as inputs to large-scale mapping.

1.5 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 discusses related work

on visual scene understanding for an indoor navigating robot, our relations to these

related works, and our contribution to this problem. Chapter 3 introduces the coordinate

systems and filtering techniques that are used throughout this thesis. Chapter 4 presents

datasets that we collected to evaluate this thesis. We then introduce our proposed

method, an on-line generate-and-test framework, for scene understanding to efficiently

construct a concise and useful model of the indoor environment from a stream of visual

data. The proposed method is developed and introduced in three stages, each stage

corresponds to a chapter.

Chapter 5 introduces the general idea of on-line scene understanding in a simple

empty 3 three-wall environment, where each wall is connected to its adjacent walls.

In this stage, we start from an initial set of hypothesized models {M} of the local

environment generated from the first frame of the image stream, and demonstrate a

mechanism to test the hypotheses from the stream of visual inputs using a Bayesian

filter. (Results presented in this chapter are published in [74].)

Chapter 6 generalizes the simple on-line scene understanding method to empty in-

door environments with more complex structures, such as intersections. We propose a

representation, the Planar Semantic Model (PSM), to represent such a complex environ-

ment. In addition, since the full structure of the local environment may not be observed

by the robot all at once, we introduce an incremental process of generating structural

hypotheses to describe the same environment with more details. (Results presented in

3An empty environment means that the entire environment can be represented by the structural
model M .
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this chapter are published in [71].)

Chapter 7 further generalizes the on-line generate-and-test framework to handle clut-

tered indoor environments. The core of this chapter is to demonstrate a testing mecha-

nism that allows a hypothesis to provide a partial explanation of the observations. While

Chapter 5 and 6 demonstrate the framework using a stream of monocular images, this

Chapter demonstrate the framework using a stream of visual data captured by a depth

camera. Thus, the general on-line generate-and-test framework proposed in this thesis

is applicable to different types of visual sensors. (Results presented in this chapter are

published in [73].)

Chapter 8 and 9 present extensions and applications to the proposed method and

the proposed representation, PSM. Chapter 8 presents an attention focusing method

to select observations that are informative for testing the hypotheses, and demonstrates

that this bias of search towards informative features helps the Bayesian filter to converge

to a single hypothesis more efficiently, without loss of accuracy. Chapter 9 moves one

step forward from modeling the geometric structure with PSM to reason about the

action opportunities of an indoor navigating robot. (Results of these two chapters are

published in [72, 70].) Finally, chapter 10 concludes this thesis and suggests future

research directions.
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Chapter 2

Literature Review

This chapter discusses related work on visual scene understanding for indoor navigat-

ing robots, the relation of this thesis to these related works, and our contribution to

the problem. Figure 2.1 illustrates the field of visual scene understanding for indoor

navigating robots. We analyze these works from two aspects. First, we discuss the rep-

resentations that these works used to describe the environment (Section 2.1). Second,

we analyze these works based on their algorithms (Section 2.2). We summarize these

related works and illustrate our contribution to visual scene understanding for indoor

navigating robots (Section 2.3).

2.1 Representation

Various representations have been proposed to describe the geometric structure of 3D

indoor environments. The relations among these representations are illustrated in the

boxes of Figure 2.1. In this section, we discuss these representations in the order of their

granularities.

Point Cloud

The most fine-grained representation for geometric scene understanding is a dense 3D

point cloud. A 3D point cloud is a set of 3D points in the same 3D coordinate frame.

A dense point cloud captures all the details of the modeled environment. Since a dense

point cloud requires a lot of memory and computational resources to process, methods

have been proposed to efficiently compress a point cloud [38] or to represent a point

10
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Other Affordances 
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Multiple-Image: 
SfM; Visual SLAM

Real-time Indoor Scene Understanding Action Opportunity Extraction

Planar Model Extraction

Semantic Labeling
Semantic Labeling
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Related Work

Others

Figure 2.1: Related work on scene understanding. This figure illustrates how existing
works and this thesis contribute to visual scene understanding for indoor navigating
robots. (Best viewed in color.) Each box is a class of representations that are used in
scene understanding. These boxes are ordered based on their granularities. As discussed
in Chapter 1, a useful representation for a robot needs to capture critical information
related to its goal and its action capabilities. For an indoor navigating robot, a useful
representation captures free-space of the local environment and potential navigable di-
rections around the robot. In this thesis, we propose a planar representation, Planar
Semantic Model (PSM), to describe the geometric structure of the local environment,
and propose an abstraction, Action Opportunity Star (AOS), to represent potential nav-
igable directions from the robot’s location. Other robots may have other goals or other
action capabilities, and thus, require a different representation (Other Affordances for
other Agents). The goal of visual perception for indoor navigating robots is to take the
stream of raw visual data (Raw Data) and construct a scene interpretation that supports
the robot to make navigation plans (Navigation Affordances for Mobile Agents). Each
arrow is a class of methods that extract a model that has a higher granularity from a
representation with lower granularity. Green arrows illustrate existing methods that con-
tribute to visual scene understanding for indoor navigating robots. Blue dashed arrows
illustrate how this thesis contributes to solving this problem. It is worth mentioning that
another line of scene understanding research focuses on interpreting visual inputs in the
way that human interprets the world. These methods build predictors that link visual
features with human labels (object names or names of the entire scene). While these
human-labeling interpretations are useful for consumer products and human-computer
interactions, these interpretations do not provide semantic information for navigating
robots. Thus, this line of research is not discussed in this chapter.
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cloud with lower resolution [61, 16, 39].

A snapshot of a 3D dense point cloud is a 2D depth map, an image where its intensity

reflects the 3D depth of the corresponding 2D pixel. There are three common ways to

obtain a 2D depth map. First, the raw RGB-D image captured by a depth camera

is a 2D depth map. However, since depth cameras use an active sensor to capture

depth information, only a limited range of depth is available. Second, from a pair of

calibrated stereo images, a depth map can also be constructed, and since it is based on

triangulation of two views, there are less limitations on the depth range 1. Third, from a

single projected image, methods [58, 59, 46] have been proposed to reconstruct a depth

map by a pre-trained estimator that maps image properties with 3D depth values.

Point clouds and depth maps are powerful representations that are flexible to rep-

resent any type of environments, including environments with irregular structures, at

any desired resolution. However, man-made environments (e.g. outdoor urban and in-

door scenes) are more structured, and therefore a more concise representation can be

extracted from the point cloud.

Planar Model

In man-made environments, most of the points in the 3D point cloud lies on a small set

of planes. Instead of representing a plane by a large amount of 3D points, it is more

efficient to represent a plane by its 3D planar equation. Thus, a concise representation

of man-made environments is a planar representation.

The first step towards a planar representation is to represent each 2D image pixel or

superpixel with a qualitative local surface orientation (e.g. left, right and front surfaces)

relative to the observing pose [30, 31]. The surface orientation map is an initial step

to capture one of the most important properties of man-made environments — planes.

With additional assumptions on the observing pose, a 3D pop-up model can be recon-

structed from the orientation map [32]. However, the surface orientation map is still

fine-grained and requires additional steps to construct a more concise planar represen-

tation representation. In addition, since the orientation map is view dependent, it may

be difficult to combine orientation maps from different observing poses.

A concise planar representation is to describe the environment by a set of planes.

In general, the planes follow the Manhattan-world assumption. A Manhattan-world

1Once the disparity falls below one pixel, it is impossible to recover the depth. This happens when
a point is physically far away from the camera.
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model describes a 3D scene based on the Cartesian coordinate systems. Planes in the

Manhattan-world model are aligned with two of the three major axes and thus, are

either parallel or perpendicular to each other. With the Manhattan-world assumption,

outdoor urban environments can be represented by a set of 3D blocks that are aligned

with the three major axes [23, 76]. An indoor scene is simply observing the blocks

from the inside view. In other words, with the Manhattan-world assumption, an indoor

environment is generally represented by the major planes — floor, walls, and ceiling

[25, 45, 77, 48, 10, 13, 4, 9, 57].

The image projection of the Manhattan-world model is a set of lines that specify

the projected 3D intersecting lines among the planes. These lines can be organized

into three groups based on their directions in 3D, where each group corresponds to a

major axis. Each group of lines contribute to a vanishing point in the projected image,

and with the orthogonal properties, the three vanishing points can be determined from

the projected images [45, 40, 55, 48]. Therefore, many works [48, 45, 25, 77] leverage

on these vanishing points to construct a Manhattan-world model of urban or indoor

environments.

For a robot moving on the ground plane in the indoor environment, the ceiling plane

is much less relevant than the ground plane and the walls, so another common planar

representation is a floor-wall model [14, 67]. A floor-wall model consists of a ground plane

and a set of wall planes that are perpendicular to the ground plane but not necessarily to

each other. The floor-wall model is more flexible than the Manhattan-world model but

still captures important semantics for a navigating robot. Note that it is also common

to represent the urban environment with a floor-wall planar model [6].

In this thesis, we propose the Planar Semantic Model (PSM) [71] with the same

assumption (walls are perpendicular to the ground but not necessarily to each other)

as the floor-wall model to represent the geometric structure of the indoor environment.

PSM is a step forward from previous floor-wall models because it represents richer re-

lations among wall segments. Unlike other planar representations, PSM is capable of

representing incomplete knowledge of the local environment so that unobserved regions

can be incrementally built as observations become available. Thus, PSM is a represen-

tation that fits into an on-line, incremental scene understanding framework for robot

perception. The full description of PSM is presented in Chapter 6.
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Clutter

For a robot to act in the world, it needs to build and maintain a simple and concise model

of that world, from which it can derive safe opportunities for action and hazards to avoid.

Unfortunately, the world itself is infinitely complex, containing aspects that are not well

described, or even well approximated, by the simple model. An adequate explanatory

model must therefore explicitly delineate the part of the environment, clutter, that it

does not attempt to explain. For cluttered indoor environments, a hybrid representation

that contains a concise planar model for the structure of the indoor environment and a

more fine-grained model for clutter is essential to represent the environment.

One common fine-grained representation for clutter is a 3D point cloud [73]. In

the projected image space, this 3D point cloud corresponds to a set of 2D image blobs

[25, 77]. A more coarse-grained model that represents clutter by a set of 3D cubics

has also been widely used [26, 4, 10, 9]. The Manhattan-world assumption can also be

applied to the clutter regions. With the Manhattan-world assumptions, these cubics are

aligned with the three major axes of the indoor structure.

In this thesis, in order to generalize to any types of cluttered environments, and since

the PSM representation is less restricted than a Manhattan-world model, we represent

clutter by a set of 3D point clouds. As described in Chapter 1, we first identify 3D points

that cannot be described by the PSM, and cluster these 3D clutter points into a set of

clutter regions, where each region is represented by a point cloud. By partitioning clutter

into smaller regions, classifying the clutter objects and analyzing their functionalities

become a set of independent and smaller problems.

Navigation Affordances for Mobile Agents

As described in Chapter 1, a useful representation for a robot needs to capture critical

information related to its goal and its action capabilities. For an indoor navigation

robot, a useful representation captures geometric structure of the environment that

specifies the free-space and potential navigable directions around the robot. While a lot

of representations have been proposed to represent the geometric structure of the indoor

environments, very few works have focused on modeling the environment to directly

reflect the action opportunities of the robot. Methods [82, 24, 37] have been proposed to

model common human actions, such as sitting, but only few methods [50, 49] have been

proposed to reason about the action opportunities of an indoor navigating robot. While
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existing works have been focused on building safety maps of environment with uneven

ground planes or drop-offs, in this thesis, we propose the Action Opportunity Star (AOS)

to describe a set of qualitatively distinctive opportunities for robot navigation at a given

location [70]. (We discuss potential ways to incorporate the safety map into our AOS

representation in our future work.) Chapter 9 introduces AOS and a method to extract

AOS from PSM.

2.2 Algorithms

The algorithms of these scene understanding works can be divided into two categories:

single-image approaches and multiple-image approaches. Single-image approaches take

a visual snapshot of the environment and produce a 3D or 2D interpretation of the

environment in view (Section 2.2.1). Multiple-image approaches take multiple snapshots

of the same environment and produce a 3D interpretation of that environment and the

observed pose of each snapshot in the same frame of reference of the 3D interpretation

(Section 2.2.2).

2.2.1 Single-Image Approaches

From a single projected image, a common approach is to label each pixel with a geometric

label. The geometric label can span from different levels of representation, from fine-

grained depth maps to planar surfaces (See Section 2.1). A classifier is trained to link

the appearance of image pixels or superpixels to a binary classification of ground-plane

and wall [13, 14], to a classification of multiple local surface orientation [30, 33], to depth

of surfaces in the environment [59], to object labels and thence to depth [46]. In addition

to classifying the pixels, a Markov Random Field (MRF) is usually applied to the pixels

to smooth out the estimated geometric labels. Dependence on prior training knowledge

with relevant domain specific examples makes these methods difficult to generalize to

different indoor environments, because appearances in indoor environments are highly

variable. In addition, these prior training knowledge require a lot of human effort to

provide ground-truth labels. Moreover, real-time performance may be difficult to achieve

when estimations and optimizations at pixel or superpixel level are involved.

When constructing a Manhattan-world model from a single projected image, a com-

mon approach is to find a projected wire-frame model (layout) that captures the bound-
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ary lines among the planes using a hypothesize-and-test approach [48, 45, 25, 77, 57].

These approaches are commonly known as spatial layout estimation. A typical pipeline

of the hypothesize-and-test approach consists of three steps: 1) scene configuration es-

timation; 2) layout hypothesis generation; 3) layout hypothesis testing. The first step,

scene configuration estimation, estimates the camera intrinsic parameters (e.g. focal

length and principal points) and the three vanishing points that correspond to the three

major axis of the Manhattan-world model by clustering image line segments [45, 9]. The

second step, layout hypothesis generation, generates a set of projected wire-frame model

under the scene configuration by combining line segments in the image that satisfied the

constraints of the three vanishing points [25, 44, 45] or by a data-driven method [57].

The third step, layout hypothesis testing, selects the layout hypothesis that best agrees

with the image features by a pre-trained scoring mechanism [25, 77, 57] or by comparing

with a dense orientation map constructed by these features [45]. With the best layout

and the estimated scene configuration, a 3D model can be reconstructed from one single

image up to a scale 2.

This hypothesize-and-test approach is vulnerable to features from clutter, image

regions that are not representable by the layout, and thus various methods have been

proposed to overcome this problem. One method is to train a classifier to determine

whether a pixel or a feature belongs to clutter or not, and ignore features that are

classified as clutter when testing the hypotheses [25, 77]. In some cases, clutter may

contain objects, such as pedestrians or furniture, that are easily detectable through

object detectors. Methods [9, 5] are proposed to obtain useful information from the

assumption that these objects sit on the ground plane to improve the estimated scene

configuration.

Although this thesis is targeting to construct a PSM model, which is less restricted

than a Manhattan-world model, our method of generating hypotheses of the indoor envi-

ronment is greatly inspired by these single-image hypothesize-and-test approaches. Our

method generates a set of hypotheses about the 3D environment from a single snapshot

by combining line segments in the projected image with certain constraints [74, 71]. Un-

like these single-image methods, we test the hypotheses using information accumulated

through a temporally contiguous image stream. In addition, in this thesis, we propose

a method to test these hypothesized models more efficiently by focusing attention on

2The scale is typically the physical camera height, distance from the camera center to the ground
plane.
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features that are informative [72] (Chapter 8). We demonstrate our attention focusing

method on our multiple-image hypothesize-and-test framework, but it is equally appli-

cable to these single-image hypothesize-and-test methods.

There are several issues when applying a single-image scene understanding approach

for a robot acquiring a temporally contiguous stream of images. Real-time performance

may be difficult to achieve to keep up with the robot need because these methods are

usually computationally expensive. In addition, temporally coherent results of the scene

estimation may be difficult to achieve if each frame is independently processed. In fact,

temporal information provides important cues for constructing the geometric structure

of the environment. Furthermore, due to the limited field of view of a camera, the scene

captured in the image reflects only part of the robot’s immediate surrounding, so it does

not provide sufficient information for the robot to make plans. Thus, multiple-image

approaches are generally more applicable to visual perception for a robot.

2.2.2 Multiple-Image Approaches

The goal of multiple-image approaches is to construct a 3D structure with its choice

of representation to describe the environment captured by the image snapshots and to

compute the observed poses of each snapshot in the same 3D coordinate frame. There

are two forms of visual input to multiple-image approaches. One form of input is a

collection of atemporal snapshots of the same environment, collected from either one

sensor or multiple sensors. The second form of input is a temporally contiguous stream

of snapshots collected by the same sensor. A robot with vision sensors acquires visual

data in the second form. Methods that apply to the atemporal visual snapshot collections

can also be applied to a temporally contiguous stream of snapshots. Thus, this section

discusses multiple-image approaches from both forms of inputs.

One multiple-image approach is to find the optimal poses and 3D structure from

all the images through a batch process. Given a set of projected images, these works

[64, 1, 42] typically use a fine-grained representation, point cloud, to describe the 3D

structure. There are two major steps in these methods: 1) extract feature correspon-

dences; 2) bundle adjustment optimization. The first step establishes sparse feature

correspondences among the images. Features, like SIFT [47] and SURF [7], with view

invariant descriptors are widely used to establish correspondences. The second step

optimizes 3D locations of all the features and the observed poses of all images using
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bundle adjustment [69]. The camera intrinsic parameters (e.g. focal length and princi-

ple points) can also be estimated during the optimization process if these values are not

previously determined. Bundle adjustment minimizes the re-projection error between

the image locations of the observed and predicted features. Methods have been proposed

to improve the efficiency of bundle adjustment [53, 2, 78], to remove the dependences of

feature correspondence [15], and to improve the quality of the reconstructed point cloud

[83].

Another multiple-image approach is an on-line process that simultaneously computes

the observed pose and maintains a 3D interpretation of the environment that it observed

so far, based on the observations that it acquires at each frame. This process is known

as visual SLAM (Simultaneous Localization and Mapping) [11, 52, 41, 56]. Like most

of the batch processing methods, most of these SLAM methods require a sparse set

of features to relate the mapped environment and the observed image. Thus, these

methods usually represent the 3D environment by a sparse point cloud. Beside these

featured-based mapping, methods have been proposed to construct a dense 3D point

cloud of the environment which captures more details than a sparse point cloud from

a monocular image stream [51] or from a RGB-D image stream [27, 17]. Due to lack

of a batch optimization process in SLAM, the estimated pose and the constructed map

may drift overtime. Thus, an important aspects of SLAM is loop closing. When the

robot detected that it is back to a location that is previously mapped, a loop closure is

detected. Visual features are especially useful for detecting such a loop [3, 29]. Once a

loop is detected, various methods [29, 41, 65] have been proposed to rectify the 3D point

cloud and the estimated poses.

To allow a robot to navigate efficiently in the indoor environment, 3D interpretation

of its local environment must be constructed in real-time (e.g. on-line and efficient) as the

robot travels in the environment. Thus, visual SLAM is more applicable to a navigating

robot than methods that require batch processes. As described above, existing visual

SLAM algorithms produce a point cloud of the environment. A more concise model

of the indoor environment needs to be extracted from the point cloud to support the

robot to efficiently make plans. Methods [21, 20, 19, 18, 79, 4] have been proposed to

extract a planar model from a 3D point cloud under the Manhattan-world assumption.

However, this extra step of extracting planar models makes the scene understanding

process off-line and computationally intensive, and thus these methods may be difficult

to apply to real-time robot navigation. In this thesis, we propose a real-time indoor
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scene understanding method that directly builds a planar structure (PSM) of the indoor

environment from a stream of monocular or RGB-D images.

2.3 Summary

An indoor navigating robot acquires a stream of visual data as it travels within the

local environment. The robot must build a concise representation that captures the

geometric structure of the indoor environment through an on-line and efficient process.

Various representations have been proposed to describe the geometric structure of the

3D environment. Among these representations, planar models are commonly used to

model indoor environments because they are concise and capture the major constraints

of man-made environments. Thus, an important step for indoor scene understanding is

to construct a planar model of the indoor environments.

There are two common paths to construct a planar model from a stream of visual

data, given the existing works. The green arrows in Figure 2.1 illustrate the two paths.

The first path is to take a frame (a single image) of the data steam and construct a

planar model to describe the scene in view. However, temporal information is ignored

and a coherent planar model may be difficult to achieve, if each frame is independently

processed. The second path is to first construct a 3D point cloud from the image stream,

and then, extract a planar model from the 3D point cloud. This path requires multiple

iterations through the entire set of visual data making it difficult to apply to an on-line

process.

This thesis demonstrates a complete method for visual scene understanding for an

indoor navigation robot, and contributes both representations and algorithms toward

solving the problem of scene understanding for an indoor navigating robot. The blue ar-

rows and blue texts in Figure 2.1 illustrate our contributions. In terms of representation,

we propose the Planar Semantic Model (PSM) [71] (Chapter 6) to describe the geometric

structure of the indoor environment, and propose the Action Opportunity Star (AOS) to

describe the navigability of the robot’s surrounding environment [70] (Chapter 9). PSM

is a step forward from a floor-wall model because it captures richer relations among the

wall segments. While existing representation captures opportunities for human actions

(e.g. sit), AOS describes a set of qualitatively distinctive opportunities for navigation

(e.g. go straight or turn left) at a given location. Both PSM and AOS are capable of

expressing incomplete knowledge of the local environment so that unknown areas can be
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incrementally built as observations become available. The ability to express incomplete

knowledge makes these representation applicable to incremental scene understanding

methods. In terms of algorithm, we propose an on-line generate-and-test framework

[74, 71, 73, 72] to efficiently construct the PSM, without the need for prior training,

from a stream of monocular images. Our method incrementally generates a set of PSM

hypotheses, and test the hypotheses based on their abilities to explain 2D motion of a

set of tracked features using a Bayesian filter. We also applied this framework to han-

dle cluttered indoor environment using a RGB-D image stream. Most of this thesis is

devoted to introduce and evaluate the proposed framework.
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Chapter 3

Technical Preliminaries

3.1 Coordinate Systems

This section defines the coordinate systems and the transformation among the coordi-

nates that are used in this thesis.

3.1.1 Image Space

Image space is a two dimensional coordinate system for each image in the input stream.

For a raw image obtained directly by the visual sensors, the origin is at the upper-left

corner of the image. The x-axis is pointing towards the right and the y-axis is pointing

down. The unit of the raw image space is in pixel.

If the focal length of the physical sensor and the principal point is known in the

raw image space, the origin of the image space can be set to principal point, and the

unit of the image space can be scaled so that a unit equals to the focal length. We call

this coordinate the calibrated image space. A point p in the raw image space [p]raw =

(uraw, vraw, 1)T and the same point in the calibrated image space [p]cal = (ucal, vcal, 1)T

is related by

[p]raw = K[p]col (3.1)

where K is the intrinsic matrix of the camera,

K =

fx 0 cu

0 fy cv

0 0 1

 . (3.2)
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fx and fy are the focal lengths expressed in units of horizontal and vertical pixels. (cu, cv)

is the location of the camera center in the raw image space. The intrinsic matrix can be

obtained by existing camera calibration methods 1.

In this thesis, we assume the visual sensor (camera) is calibrated. Thus, we use the

calibrated image space and denote a image point as p = (u, v, 1)T , unless otherwise

specified.

3.1.2 Camera Coordinate

Camera coordinate is a three dimensional coordinate system with the x-axis pointing to

the right, y-axis pointing down, and z-axis pointing front. We define the local camera

coordinate to be the camera coordinate with its origin at the camera center of the

current frame. The z-axis is aligned to the optical direction of the camera. A point in

the local camera coordinate [P]lc = (xlc, ylc, zlc)
T and the same point in the image space

p = (u, v, 1)T is related by

[P]lc = λp = λ

uv
1

 = zlc


xlc
zlc
ylc
zlc

1

 (3.3)

where λ = zlc. We call the transformation from the camera coordinate to the image

space image projection.

We also define the global camera coordinate to be the camera coordinate with its

origin at the camera center of the initial frame. The relation between the local and the

global camera coordinate is a rigid-body transformation. The transformation can be

determined by the difference in camera poses between the current frame and the initial

frame.

3.1.3 3D Coordinate

We define the 3D coordinate to be a three dimensional coordinate system with respect

to the ground plane. The x-y plane of the 3D coordinate is parallel to the ground plane,

and the z-axis is pointing up. We define the local 3D coordinate to be the 3D coordinate

with its origin at the camera center of the current frame. The x-axis is pointing towards

1In this thesis, we use a publicly available calibration toolbox: http://www.vision.caltech.edu/

bouguetj/calib_doc/.
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the direction where the camera is facing, and the y-axis is pointing out from the left

hand side of the camera. The transformation from the local camera coordinate [P]lc to

the local 3D coordinate [P]l3D of a point P is

[P]l3D = Rc[P]lc (3.4)

where

Rc =

 0 0 1

−1 0 0

0 −1 0

 . (3.5)

We also define the global 3D coordinate to be the local 3D coordinate defined by the

initial frame. The transformation from the global camera coordinate [P]gc to the global

3D coordinate [P]g3D of point P is

[P]g3D = Rc[P]gc. (3.6)

The transformation between the local and the global 3D coordinate is a rigid-body

transformation related to the camera poses between the current frame and the initial

frame.

3.1.4 Ground-Plane map

We define the ground-plane map to be a two dimensional coordinate system that de-

scribes a slice of the 3D coordinate, where the slice is along the ground plane. We define

the local ground-plane map to be the sliced local 3D coordinate and define the global

ground-plane map to be the sliced global 3D coordinate. The ground-plane map location

of a point P is the same as the location in the corresponding 3D coordinate without the

z component.

3.2 Recursive State Estimators

Recursive state estimators are useful in on-line applications. In this thesis, we use the

Bayesian filter and the Extended Kalman Filter (EKF) in various steps in the proposed

framework.
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3.2.1 The Bayesian Filter

Given a set of hypothesesM = {M1,M2, ...,Mn}, the Bayesian filter is used to recursively

estimate the belief among the hypotheses given a stream of observations {F1, ...,Ft}.
Mathematically, the belief of the hypothesis is the posterior probability distribution

of the hypotheses. At each time step t, the posterior probability of each hypothesis

p (Mi|F1, ...,Ft) can be expressed by the Bayes rule,

p (Mi|F1, ...,Ft) =
p (Ft|Mi,F1, ...,Ft−1) p (Mi|F1, ...,Ft−1)

p (Ft|F1, ...,Ft−1)
(3.7)

or alternatively,

p (Mi|F1, ...,Ft) = ηtp (Ft|Mi,F1, ...,Ft−1) p (Mi|F1, ...,Ft−1) (3.8)

where

ηt =
1

p (Ft|F1, ...,Ft−1)
. (3.9)

By making the Markov assumption 2, Equation 3.8 becomes

p (Mi|F1, ...,Ft) = ηtp (Ft|Mi) p (Mi|F1, ...,Ft−1) . (3.10)

The posterior probability at time t is the product of the likelihood function with the

current observations Ft and posterior probability at time t − 1. At time 0, since there

are no past observations, we assign a prior distribution P (M) for the Bayesian filter

to initialize. With this formulation, the posterior probability at time t is simply the

product of all the past likelihoods and the prior,

p (Mi|F1, ...,Ft) = ηp (Mi)
∏
j=1...t

p (Fj|Mi) (3.11)

where η =
∏

j=1...t ηj. To compute the actual posterior probability distribution of the

hypotheses, we normalize the posterior probabilities of the hypotheses so they sum up

to 1. By doing the normalization, η will be canceled out and thus, has no effect on the

posterior probability distribution.

In practice, to compute the posterior probability probability distribution of a set of

2The Markov assumption suggests that the past and future observations are independent if the
current belief state is known.
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hypotheses, the Bayesian filter requires us to define a prior distribution and a likelihood

function. Starting with a prior probability distribution, at each time step t, we compute

the likelihood and update the posterior probability of each hypothesis. If there are no

information for us to set the prior, we can use a uniform prior. Then, we normalize the

posterior probabilities of the hypotheses to obtain the (normalized) posterior probability

distribution at time t.

3.2.2 The Extended Kalman Filter

To estimate the state µ and its covariance Σ, the Extended Kalman filter is carried

out in two stages, prediction and correction. Given the state from the previous frame

µt−1, the prediction stage predicts the state µ̂t based on the prediction function g(µt−1).

The predicted covariance Σ̂t is also computed in this stage. In general, the covariance

increases in the prediction stage.

Prediction:

µ̂t = g(µt−1)

Σ̂t = GtΣt−1G
T
t +Qt,

(3.12)

where Gt = ∂g(µ)
∂µ

∣∣
µ=µt−1

is the Jacobian of the prediction function g(µ) at µt−1 and Qt

is the prediction noise.

The correction stage incorporates the measurement zt to update the states. We

compute the Kalman gain Kt that specifies the degree to which the measurement is

incorporated into the state estimation based on the measurement noise Rt and the

predicted state covariance Σ̂t. Finally, the state µt and its covariance Σt is updated

based on the Kalman gain and the measurement.

Correction:

µt = µ̂t +Kt(zt − h(µ̂t))

Σt = (I −KtHt)Σ̂t

Kt = Σ̂tH
T
t (HtΣ̂tH

T
t +Rt)

−1,

(3.13)

where Ht = ∂h(µ)
∂µ

∣∣
µ=µ̂t

is the Jacobian of the prediction function h(µ) at µ̂t and Rt is the

measurement noise.
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Chapter 4

Datasets

This chapter describes the datasets that we used to evaluate the claims in this thesis.

Although there are few publicly available datasets for indoor navigating robots collected

by a monocular camera or a RGB-D camera [60], these datasets are not suitable or

applicable for evaluating this thesis for two reasons. First, these datasets do not fulfill

the assumptions that we made about the camera motion. In the thesis, we assume the

camera has a fixed height with respect to the ground plane, and the tilt and roll angles are

fixed and known. Second, these datasets are collected from a short robot where most of

its field of view are the ground plane and are mostly taken from an open environment with

objects blocking the way of the robots. Thus, there is less information about the wall

planes. Since this thesis proposes methods to represent and reason about environments

in terms of ground and wall planes, it is more suitable to have datasets that contain more

observations about the wall planes to evaluate our methods. In addition, environments

with more complex structures, such as intersections, are required to demonstrate the

expressive power of our proposed representations.

We collected three datasets to evaluate this thesis, and all three datasets are made

available to the public. The Michigan Indoor Corridor 2011 Video Dataset (Section 4.1)

is collected in various simple empty three-wall environments by a monocular camera.

This dataset is used to evaluate the general idea of on-line scene understanding and is

used to compare our approach with state-of-the-art approaches. The Michigan Indoor

Corridor 2012 Video Dataset (Section 4.2) is various empty indoor environments with

more complex structures (e.g. intersections). This dataset is used to evaluate most of

the ideas in proposed in this thesis. Finally, the Michigan Indoor Corridor 2014 Video

Dataset is collected in various cluttered indoor environments by a RGB-D camera. This
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Figure 4.1: The Michigan Indoor Corridor 2011 Video Dataset. The dataset includes
indoor environments that violate the Manhattan-world assumption, corridors with glass
walls, reflections and partially occluded edges, and rooms with various sizes.

dataset is used to evaluate our proposed method to handle cluttered environments.

4.1 Michigan Indoor Corridor 2011 Video Dataset

The dataset 1 contains 11 video sequences with resolution 1280× 720 in various indoor

environments acquired with a hand-held camera placed on a wheeled vehicle. The camera

was set-up so that there was zero tilt and roll angle with respect to the ground. The

camera has a fixed height (about one meter) with the ground throughout the video. The

number of frames in each video ranges from 300 to 380, and the frame-rate is about 30

frame per second. The overall motion in each video is about 3 meters moving forward

with slight direction changes.

The goal of this dataset is to evaluate how well our on-line testing mechanism dis-

criminates among a set of simple hypothesized planar models. Thus, the dataset were

captured in various uncluttered indoor environments with at most three major walls in

view. This dataset includes indoor environments that violate the Manhattan-world as-

sumption, corridors with glass walls, reflections and partially occluded edges, and rooms

with various sizes. Figure 4.1 shows the first frame of some video sequences. To evaluate

scene understanding results quantitatively, this dataset provides a ground truth labeling

(i.e. three walls, ground plane and ceiling plane) for all the pixels in the first frame of

each video.

1The dataset is publicly available at http://www.eecs.umich.edu/~gstsai/release/Umich_

indoor_corridor_2011_dataset.html.
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Dataset L

Dataset T 1

Dataset T 2

Dataset +

Figure 4.2: The Michigan Indoor Corridor 2012 Video Dataset. There are four video
sequences in the dataset. Dataset L contains three L-intersections. In this dataset, the
robot traveled through two long corridors connected by two adjacent L-intersections and
finally turned at the last intersection. In dataset Dataset T 1, the robot traveled from
the major corridor and turned at a T-intersection, whereas in Dataset T 2, the robot
traveled from the minor corridor and turned at a T-intersection. Dataset + has one
+-intersection, and the robot traveled through the intersection without turning.

4.2 Michigan Indoor Corridor 2012 Video Dataset

The dataset 2 contains four video sequences with resolution 965× 400 in various unclut-

tered indoor environments, such as L-intersections, T-intersections and +-intersections.

The videos were collected by a camera that was mounted on a wheeled robot with near

zero tilt and roll angle with respect to the ground plane. The field of view of the camera

is about 82 ◦. For all datasets, the robot’s pose at each frame is provided. 3 Figure 4.2

describes the structure of the environment and the robot motion in each video.

The goal of this dataset is to evaluate the ability of our proposed framework to incre-

mentally generate hypothesized models of the environment and to test the hypothesized

models. This dataset also allows us to demonstrate the expressive power of our proposed

representation, the Planar Semantic Model. For each test video, we manually labeled

the ground truth classification of the planes (i.e. the walls, ground and ceiling plane)

2The dataset is publicly available at http://www.eecs.umich.edu/~gstsai/release/Umich_

indoor_corridor_2012_dataset.html.
3We use an occupancy grid mapping with a laser range finder to obtain the robot pose.
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Figure 4.3: The Michigan Indoor Corridor 2014 Video Dataset. The dataset contains
four RGB-D videos captured in various indoor environments.

for all pixels every 10 frames in order to evaluate our results quantitatively.

4.3 Michigan Indoor Corridor 2014 Video Dataset

The dataset 4 contains four RGB-D videos captured by a Microsoft Kinect Camera.

Figure 4.3 shows some snapshots of the RGB-D videos. The goal of this dataset is to

evaluate how well our framework construct an interpretation of a cluttered environment.

The camera was mounted on a wheeled device with a front facing direction. The

relative poses between the camera and the ground plane are fixed 5 within each video,

but different among different videos. In CORNER and LAB, the robot traveled about

1.5 meter in a very cluttered corner. In INTERSECTION, the robot made a right turn

around an empty L-intersection. In CORRIDOR, the robot traveled about 5 meter in a

long corridor with objects on both sides.

The videos are annotated every 10 frames to support quantitative evaluations. There

are two annotations for each frame. The first annotation labels each pixel with a plane

index (e.g. ground plane, ceiling, and wall planes) while ignoring the clutter. This

annotation allows us to evaluate the accuracy of the planar model constructed by our

4The dataset is publicly available at http://www.eecs.umich.edu/~gstsai/release/Umich_

indoor_corridor_2014_dataset.html.
5The actual poses between the camera and the ground plane for the videos are not provided.
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framework. The second annotation is a binary label that specifies whether each pixel is

part of the clutter or part of the planar structure. This annotation allows us to evaluate

how well our method segments out clutter.
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Chapter 5

On-line Scene Understanding

This chapter describes a method for on-line scene understanding using a stream of tem-

porarily contiguous visual input 1. The visual input that we use here is a short video

taken from a calibrated monocular camera. Specifically, this chapter addresses the first

level of interpretation

zt = G1(M,xt) + ε1 (5.1)

and assumes the environment has no clutter ‖ε1‖ ' 0. Chapter 7 will discuss how to

extend the method to handle clutter. The structural model M consists of a ground plane

and at most three planar walls,

M = {G,W1,W2,W3}. (5.2)

where walls W1, ...,W3 are planes that are perpendicular to the ground plane but not

necessarily to each other. The simple model M is useful to describe corridor-like environ-

ments but a more sophisticated model is required to describe a more complex structure,

such as intersections (see Chapter 6). In addition, we assume the robot moves through

the environment with fixed height and zero pitch and roll angles with respect to the

ground plane. Thus, the robot pose xt only has three degrees of freedom.

The proposed on-line scene understanding method is shown in Figure 5.1. A set of

hypothesized models M = {M1,M2, ...,MN} is generated from the first frame of the

video by observing image lines (Section 5.1). With our assumptions, we can generate

hypothesized models from a single frame, and given a model Mi, we can compute the

1Materials presented in this chapter were published in [74].
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3D Reconstruction Camera Pose EstimationGenerate Hypothesis Bayesian Filtering Maximum Likelihood Structure

Figure 5.1: Proposed on-line scene understanding method. (Best viewed in color.) The
first step is to generate a set of hypothesized model Mi from the first frame of the video.
Given any hypothesis, a static model of the 3D planar environment is computed, and the
trajectory of robot pose is determined based on the 3D static model and tracked features.
Hypotheses are tested based on their abilities to explain the tracked features using a
Bayesian filter, and finally the hypothesis with the maximum posterior probability is
selected.

3D location of any image point (Section 5.2). At the meantime, a set of image point

features are extracted in the first frame and reliably tracked throughout the frames of the

video. This extraction and tracking step does not depend on any ground-wall boundary

hypotheses. Transforming a hypothesized model Mi from the local to the global frame

of reference, the model becomes static across the frames, so the tracked points can be

used to estimate robot pose of each frame of the video (Section 5.4).

At this point, relative to each hypothesis Mi, we have both a static planar model

of the 3D environment and knowledge of robot pose. Using these, we predict the 2D

motion of the image feature points over time, and compare these predictions with the

observations Ft, the tracked locations of the point features. This comparison defines the

likelihood p(Ft|Mi) of the observation given the hypothesis, and allows us to update the

Bayesian posterior probability distribution over the set of hypotheses (Section 5.5).

This on-line scene understanding method is evaluated on a collection of videos with

simple environments (Section 5.6). These experimental results demonstrate the efficiency

and accuracy of our on-line method. A comprehensive comparison with state-of-the-art

image scene understanding methods and 3D reconstruction methods is also presented in

this chapter.
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Figure 5.2: Examples of simple hypothesized model. (Best view in color.) Hypotheses
are generated by combining line segments in the first frame of the video with certain
constraints.

5.1 Hypotheses Generation

The image projection of the ground-wall boundary of a hypothesized model Mi, is a

polyline extending from the left to the right image borders. The enclosed region of the

polyline with the image lower border specifies the visible portion of the ground plane. A

non-vertical line segment in the polyline is a wall plane, and vertical line segments are

occluding edges. This chapter focuses on hypotheses that consist of at most three walls

(i.e. left, end, and right walls) and the ground plane with no occluding edges. A more

generalized model which are capable of representing intersections will be presented in

Chapter 6.

To generate the hypotheses, we start by extracting lines below the camera center.

The line segments are extracted by edge linking and then merging short segments to

form a set of long straight lines [66]. Since the camera is always placed above the

ground plane, all the lines within a feasible hypothesis are below the camera center. We

remove vertical lines because vertical lines imply occluding edges. Non-vertical lines are

divided into three categories (i.e. left, end and right) based on their slopes in the image.
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A set of hypotheses can be automatically generated by selecting and linking at most one

line from each category. However, some hypotheses are infeasible in the physical world

and thus, are systematically excluded from the set.

Hypotheses with wall intersections outside the image borders are excluded because

they violate the perspective geometry of indoor structures. In addition, a 3-wall hypoth-

esis is excluded if its left and right walls intersect in front of the end wall. Furthermore,

we define the edge support of a hypothesis to be the fraction of the length of the image

ground-wall boundary that consists of edge pixels. Hypotheses with edge support below

a threshold are excluded. Examples of the hypotheses are shown in Figure 5.2.

5.2 3D Construction from Single Frame

In the local camera coordinate, 3D location Pi = (xi, yi, zi)
T of an image point pi =

(ui, vi, 1)T is related by Pi = zipi for some zi. If the point Pi lies on the ground plane 2

with normal vector ng, the exact 3D location can be determined by the intersection of

the line and the ground plane:

h = ng ·Pi = zing · pi (5.3)

where h is the distance of the optical center of the camera to the ground (camera height).

With the zero pan and roll angle assumption, the normal vector of the ground plane

is ng = (0, 1, 0)T . By setting ng = (0, 1, 0)T in Equation 5.3, 3D location of any point

on the ground plane with image location pi can be determined by

Pi =

xiyi
zi

 = h


ui
vi

1
1
vi

 . (5.4)

Without any additional source of information, the constructed 3D scene is up-to-scale.

The scale factor is dependent on the camera height h. If the camera height is set to

h = 1, a unit in the constructed 3D scene equals to the camera height in the physical

world. If h is set to the physical camera height in a specific unit, the constructed 3D

2Given a hypothesized model M , we can determine whether a point feature is on the ground-plane
or on which wall plane by checking the relation of that point with respect to the projected ground-wall
boundary lines.
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scene is under that unit.

Within a given hypothesis, a wall plane equation is determined by its corresponding

projected ground-wall boundary line segment. We determine the normal vector of a wall

plane nw based on the ground-wall boundary line segment,

nw = ng × vb (5.5)

where vb is the 3D direction vector of the boundary line segment. The direction vector

vb can be constructed by any two points on the boundary line. If a point lies on the

wall plane with position pj in the image space, its 3D location can be determined by

dw = zjnw · pj = nw ·Pj (5.6)

where dw can be obtained by any point on the boundary line. Notice that if a point lies

on the ground-wall boundary line, both Equation 5.3 and 5.6 must be satisfied.

The geometry described above determines the equations of the wall planes, as well

as the 3D location of any given point feature on the image under a hypothesis. Once

the 3D model M is determined in the local camera coordinate, we can easily transform

it into the global camera coordinate given the robot pose.

5.3 Point Feature Tracking

A set of point features are extracted and tracked across frames. These tracked features

are used to estimate robot motion (Section 5.4) and to serve as observations to test

the hypotheses (Section 5.5). Note that this extraction and tracking process does not

depend on any of the hypotheses.

There are two common methods to extract correspondences between two frames.

One method is to extract SIFT [47], SURF [7] or other point features with descriptors

in both frames, and then match the point features based on their descriptors. The other

method is to extract Harris corners as point features and use KLT [63] to track the

features frame-by-frame. In general, the former method is more robust large baselines

(view point differences) between two images, while the later method is more efficient

but requires small baselines. Since there are usually only very small changes between

consecutive frames, it is more efficient to consider the fact that point features only move

a little in the image space. Thus, in this thesis, we apply the KLT point extraction and

35



tracking method to obtain feature correspondences across frames.

Some of the point features may be poorly tracked due to the properties of the image

or the properties of the physical world. For example, point features with low image

intensities may not have a robust image patch for KLT to use to refine in the next frame.

Point features at depth discontinuities may be ambiguous to track when the camera is

moving towards the features. These poorly tracked point features will misled the rest of

the proposed method, and thus, these points need to be detected and removed. After

the image location of each point feature is updated, we fit a rigid-body transformation

constraint to ensure that the points are properly tracked. Specifically, we use RANSAC

to fit a fundamental matrix and identify the outliers. The outliers are the points that

are poorly tracked and, thus are removed. Note that even though in general, it is more

efficient to fit a Homography matrix between two frames with small baselines, in indoor

environments, the Homography may be dominated by a set of points that lie on the

same plane.

There are various thresholds that can be set to control the point features that are

extracted. We allow a maximum of 300 points to be extracted at one frame. In addition,

to encourage point features to be extracted across the entire image, two features need to

be at least 20 pixels apart from each other in order to be extracted. Since point features

may lose track or go out of sight from time to time, new point features are extracted

as they become visible in order to preserve enough observations. In this thesis, we keep

track of the number of points at each frame and extract new point features when the

number of features drops below a threshold (30 points). Chapter 8 presents an efficient

method to select point features that makes the hypotheses testing process more efficient.

5.4 Pose Estimation

To estimate the robot motion, a set of point features are extracted and tracked across

frames. Since the 3D locations of the feature points are static in the global frame

of reference, robot motion between two frames can be estimated by aligning the 2D

tracked points. This robot motion estimation is equivalent to estimating the rigid-body

transformation of the 3D point correspondences from a still camera under the local

frame of reference. In this chapter, the robot is assumed to be moving parallel to the

ground plane, so the estimated rigid-body transformation of the points contains three

degrees of freedom, (∆x,∆z,∆θ), where ∆x and ∆z are the translations and ∆θ is the
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rotation around y-axis. With an additional assumption that there are at least two point

feature correspondences on the ground plane, the robot pose between two frames can be

determined by aligning the 3D points with a rigid-body transformation.

We first construct the 3D locations of the point features for both frames individually

under a hypothesis Mi. Given two corresponding 3D point sets in the local camera

coordinate, {Pi = (xPi , y
P
i , z

P
i )T} and {Qi = (xQi , y

Q
i , z

Q
i )T}, i = 1...N , in two frames,

the rigid-body transformation is related by Qi = RPi + T where R is the rotation

matrix, and T is the 3D translation vector. The rotation matrix R has one degree of

freedom, of the form

R =

 cos(∆θ) 0 sin(∆θ)

0 1 0

− sin(∆θ) 0 cos(∆θ)

 (5.7)

and the translation vector T = (tx, 0, tz)
T has two degrees of freedom. The rotation ma-

trix can be estimated by the angular difference between two corresponding vectors,
−−−→
PiPj

and
−−−→
QiQj. Our estimated ∆θ is thus the weighted average of the angular differences,

cos(∆θ) =
1∑
ωij

∑
i 6=j

ωij

−−−→
PiPj ·

−−−→
QiQj

‖
−−−→
PiPj‖‖

−−−→
QiQj‖

(5.8)

where ωij is defined as

ωij =
(1/zPi + 1/zQi )

2

(1/zPj + 1/zQj )

2
. (5.9)

Since the constructed 3D positions of distant points are less accurate, they are given

lower weights. The translation vector T is then estimated by the weighted average of

the differences between RPi and Qi,

T =
1∑
ωi

N∑
i=1

ωi(Qi −RPi) (5.10)

where the weight wi is defined as

ωi =
1/zPi + 1/zQi

2
. (5.11)

Similar to the rotation estimation, the weight is inversely proportional to the distance
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of the points to the robot.

The pose change of the robot in the global camera coordinate can be determined

based on the estimated rotation R and translation T of the 3D feature point locations

under the local camera coordinate. If we set the robot location of one frame to (0, 0, h)T

with zero pan along the x-axis, the robot pose, (xc, zc, θc)
T , of that frame is (0, 0, 0)T .

Then, the robot pose in the other frame becomes (tx, tz,∆θ)
T , where tx and tz are the

x and z components of T in the camera coordinates.

Since different hypotheses may assign a different set of points as ground-plane points,

robot poses computed under different hypotheses may be different. For a correct hy-

pothesis, the estimated robot pose is definitely correct (similar to the actual robot pose

with reasonable amount of error). For an incorrect hypothesis, its estimated robot pose

may be wrong, because the hypothesis may assign a point to be on the ground plane

while the point is actually on a wall. If this occurs, the 3D relation of the point cor-

respondences is no longer a rigid-body transformation, and thus, the estimated robot

motion will be wrong. However, in our method, it is acceptable for incorrect hypotheses

to have incorrect pose estimations. In fact, the hypotheses are tested based on both

their abilities to constructing 3D point features correctly and their abilities to estimate

robot pose (see Section 5.5).

The robot motion between two frames can also be estimated using both point features

on the ground plane and point features on the wall planes. The 3D location of the wall-

plane points are projected onto the ground plane to compute the robot motion. However,

in our experiments, given the correct hypothesis, the 3D construction of wall-plane points

are less accurate than the ground-plane points, and thus, the robot pose is less accurate

when using all the point correspondences.

5.5 Hypotheses Testing using Bayesian Filtering

At this point, relative to each hypothesis, we have both a static model of the 3D en-

vironment and knowledge of robot motion. Using these, we can predict the motion of

the image feature points over time, and compare these predictions with the tracked fea-

tures. The set of hypotheses are tested using Bayesian filtering. The first frame of the

video is defined as our reference frame and compare it with each of the other frames.

For each frame, the likelihood for each hypothesis with respect to the reference frame is

computed. Using a Bayesian filter allows us to accumulate the likelihoods from all the
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frames in order to select the hypothesis with the maximum posterior probability at the

end of the video.

Given a set of hypotheses, M = {M1, ...,MN}, the posterior probability distribution

over the hypotheses at each frame t can be determined by a recursive Bayesian filter,

p (Mi|F1, ...,Ft) =∝ p (Mi)
∏
j=1...t

p (Fj|Mi) (5.12)

where Ft is the set of features whose tracked and predicted locations are compared at

frame t.

If we have no information about the correctness of the hypotheses from the reference

frame, the prior probability p (Mi) in Equation 5.12 is uniformly distributed over all the

hypotheses. If prior knowledge of the structure in the scene (e.g. width between the

side walls) is given, the prior probability distribution can prefer one hypothesis over the

others.

For each time step, the observation Ft is a set of evidence from the feature points,

Ft = {ot1, ot2, ...otnt}, that are visible in frame t. The likelihood of an individual point otj

at image location L(otj) is modeled by a normal distribution with mean at the predicted

image location L̂(otj) in frame t. L̂(otj) and L(otj) are related by the rotation matrix R and

translation vector T as described in Section 5.4. Since the likelihood is only depending

on the distances between L(otj) and L̂(otj), the individual likelihood is equivalent to

modeling the prediction error between the two with a zero mean normal distribution

with variance σ. By combining the likelihoods from individual points, the likelihood of

hypothesis Mi at time step t is,

p (Ft|Mi) ∝
n∏
j=0

exp
−||L̂(otj)− L(otj)||2

2σ2
. (5.13)

5.6 Evaluation

Our on-line scene understanding method is evaluated using the Michigan Indoor Corridor

2011 Video Dataset (See Chapter 4). The efficiency of our method is shown in Table 5.1.

The computational time is related to the number of point features and the number of

hypotheses as shown in the table. Our method runs in real-time and the computational

time (in C/C++ using an Intel Core 2 Quad CPU 2.33GHz) is less than the video length.
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Datasets
Number of
Features

Number of
Hypotheses

Video
Length

Computational
Time

EECS Building 256 15 10 s 5.77 s
Library 1 233 12 10 s 6.18 s

Locker Room 245 16 10 s 6.70 s
Non-parallel 1 286 13 10 s 6.49 s
Non-parallel 2 268 8 11.67 s 7.60 s

Basement 282 9 10 s 7.27 s
Study Room 248 15 10 s 8.18 s

Library 2 250 20 12.67 s 7.84 s
Glass Wall 403 10 10 s 7.34 s

Object 336 15 10 s 7.50 s
Two Walls 242 10 10 s 5.37 s

Table 5.1: Computational time analysis. The computational time is related to the
number of point features and the number of hypotheses. The proposed on-line scene
understanding method is real-time and efficient.

The initial frame requires the most computation because of the hypotheses generation

process. In average, the time required to process the first frame is 210 ms. The rest of

the frames runs in 50 Hz (about 18 ms per frame).

Figure 5.3 shows our results in hypothesis generation, 2D point feature motion pre-

diction and Bayesian filtering. Since our ground-wall boundary hypotheses do not model

the ceiling plane, feature points from the ceiling plane will be misleading in the eval-

uation. These points are excluded using essentially the technique used to identify the

ground plane in Section 5.1. Even though the overall error increases with motion due to

the quality of feature tracking, hypotheses that are closer to the actual indoor structure

have relatively low errors compared to others since the hypotheses are evaluated based

on the same set of feature points.

To compare our method to state-of-the-art scene understanding methods, we apply

the indoor classifier in [31] and the box layout estimator in [25] to the first frame of each

video. Furthermore, we extended the method in [31] by applying it to the same subset

of frames that our method used (e.g. 60 frames out of 300), and combined the labels

across frames using a spatial-temporal Markov Random Field linking superpixels within

and across the frames, similar to [80]. We refer to these results as “[31]+MRF”. Notice

that adding temporal information to [31] does not necessarily improve the result in the

first frame because incorrect labels in later frames affect the label in the first frame.
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(a)

(b) Prediction Error (c) Posterior Probability after each Frame

Figure 5.3: Example of hypotheses testing with Bayesian filtering. (Best viewed in
color) The hypotheses are tested based on their abilities to explain the 2D motion of
tracked features. (a) The top row are frames 1, 50, 100, 150 and 200 from the Library
1 video. The bottom rows are examples of our hypothesis generated in the first frame
(first column) and the predicted locations (crosses) and tracked locations (circles) of the
feature points on each frame. The discrepancy of the locations are the white lines. (b)
The overall trend of the prediction error increases with the motion due to feature tracking
quality. The number of existing tracked features decreases as the motion increases and
these features are mostly from the distant area in the first frame which has low resolution.
The abrupt increase at Frame 185 is because of the sudden camera movement which
reduces the tracking quality. (c) All hypotheses are equally likely in the first frame.
Hypotheses with low accuracy drop significantly in the first few frames, while the one
with the highest accuracy gradually stands out among the rest. The most accurate
hypothesis need not to be the one with minimum prediction error all the time in order
to get the maximum posterior probability in the end.
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Dataset Our Method [31] [31]+MRF [25]
EECS Building 85.78% 85.49% 84.57% 79.15%

Library 1 91.13% 88.13% 83.10% 83.32%
Locker Room 97.91% 71.49% 83.18% 87.72%
Non-parallel 1 89.61% 86.23% 86.47% 53.10%
Non-parallel 2 84.89% 85.44% 60.16% 66.11%

Basement 99.71% 72.82% 77.99% 89.79%
Study Room 95.59% 76.43% 72.90% 89.23%

Library 2 88.39% 88.38% 84.78% 78.42%
Glass Wall 85.56% 58.87% 64.39% 87.55%

Object 94.73% 94.45% 88.62% 88.16%
Two Walls 97.71% 92.02% 91.80% 95.63%

Average 92.09% 82.07% 79.62% 81.96%

Table 5.2: Quantitative analysis of the on-line scene understanding method. We compare
our results quantitatively with [25] and [31], and we further extend [31] to incorporate
temporal information in order to make a fair comparison. (See text for more detail)
Note that while evaluating [31], the most likely label is assigned to each pixel and pixels
with most likely label “sky”, “porous” or “solid” are excluded in the evaluation. While
evaluating [25], pixels with label “ceiling” are excluded in the evaluation.

Thus, in order to maintain a temporarily coherent scene understanding results, visual

processing must be on-line.

Figure 5.4 shows our performances in various indoor environments in which we

demonstrated our capability to deal with non-Manhattan world structures, as well as

noisy feature points. We also show qualitative comparisons with state-of-the-art scene

understanding methods. Dataset Non-parallel 1 and Non-parallel 2 demonstrate our

capability to identify non-Manhattan world structures, unlike [25]. Furthermore, our

simple ground-wall models enable us to ignore objects that stick out of the wall as in

Dataset Locker Room, Non-Parallel 1 and Object. Dataset Object also demonstrates

our capability to deal with a partially occluded ground-wall boundary. Our method is

a generalized framework that can deal with any number of walls by generalizing the hy-

pothesis generation (Two Walls). Our method works fairly well even with noisy feature

due to reflections (Glass Wall). Compared to [31] and [25], our method generalizes across

different environments since we do not rely on any training from the image properties,

which can be scene sensitive.

To evaluate the method quantitatively, we assign a label to each pixel in the first

frame of the video according to the maximum a posteriori hypothesis at the final frame.
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Figure 5.4: Qualitative evaluation of the on-line scene understanding method. (Best
viewed in color). First column: first frame of each video. Second column: ground truth.
Third column: posterior probability distribution over the hypotheses. The hypothesis
with maximum posterior probability at the end of the video is shown in pink. Fourth
column: visualize hypothesis with maximum posterior probability. Fifth column: results
from [31] on the first frame of the video using their classifiers trained for indoor images.
Last column: results of box layout estimation from [25] on the first frame of the video.
(See text for more detail.)
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The label are compared with the ground-truth annotation from the dataset. The accu-

racy of a hypothesis is defined to be the percentage of the pixels that have the correct

labeling in the first frame. Since the ceiling plane is not included in our hypotheses, we

omitted the ceiling pixels from our evaluation.

Our quantitative results are reported in Table 5.2. Applying all four methods to

the videos, we obtained a mean accuracy of 92.09% for our method, a mean accuracy

of 82.06% for [31] in its original single-image mode, a mean accuracy of 79.62% for

[31]+MRF and a mean accuracy of 81.96% in [25]. One reason for this substantial

difference is that [31] and [25] depend strongly on training data, which is likely to

be specific to certain environments. By contrast, our method applies a very general

geometric likelihood criterion to planar hypotheses. In addition, [25] uses the “box”

assumption, while our model M does not require the walls to be perpendicular to each

other.

Even though the focus of this thesis is on scene understanding, we compare our 3D

planar model with multiple image reconstruction approaches, Bundler [64] and PTAM

[41], as shown in Figure 5.5 and 5.6. Bundler [64] has trouble with simple forward motion

because it only considered SIFT points that frequently appear among the image set for

3D reconstructions and camera pose estimation. Thus, only the far end of the corridor

was reconstructed. Our approximate 3D reconstruction is comparable with [41], but

in addition to point clouds, our model provides semantic information about the indoor

environments (e.g. walls and ground plane). We also apply J-linkage [68] to fit planes

to the 3D point clouds from [64] and [41]. These results do not contribute meaningful

information for indoor scene understanding, because the plane-fitting process is easily

misled by accidental groupings within the point cloud. Our hypothesis generation pro-

cess focuses on semantically plausible hypotheses for indoor environments. In addition,

the extra step for plane extraction makes these method off-line, while our method is an

on-line process that generates a planar model.
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(a) Input video

(b) Our method

Figure 5.5: 3D planar model constructed by our method. (Best viewed in color.) (a) First
frame of our input video and maximum a posteriori hypothesis (black line) determined by
our method using frame 1 to 300. Based on that hypothesis, point features are classified
into ground plane (blue) and left (red), front (green) and right (pink) walls. (b) 3D
planar model and 3D locations of the point features constructed using the geometry
described in Section 5.2. 3D reconstruction results from other multiple-image methods
are shown in Figure 5.6.
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(a) Bundler [64] (b) PTAM [41]

(c) Bundler [64]+fit plane (d) PTAM [41]+fit plane

Figure 5.6: 3D model constructed by other multiple-image methods. (Best viewed in
color.) Our approximated 3D planar model of the same video is shown in Figure 5.5.
(a) 3D point cloud reconstructed by Bundler [64] using frame 5, 10, ..., 300 in the video.
Only the distant area of the corridor are reconstructed because Bundler only considered
SIFT feature points that frequently appear among the image set. (b) 3D point cloud
reconstructed by PTAM [41] using frame 1 to 300 where the first 10 frames are used for
initialization. (c) (d) Apply J-linkage [68] to fit planes to the point clouds. (See text for
more detail.)
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5.7 Summary

In this chapter, we introduce the general idea of on-line scene understanding to construct

a planar model of an empty indoor environment with simple structures. We apply single-

image geometric methods to the initial frame of a video to propose a set of plausible three-

wall hypotheses for explaining the 3D structure of the environment. Within the context

of each hypothesis, our method uses the 3D structural hypothesis plus camera motion to

predict the image-space motion of a set of tracked features. A likelihood function for the

observed features, given each hypothesis, can be computed from subsequent frames. The

Bayesian posterior probability distribution is updated using these likelihoods from each

subsequently analyzed frame in the video, almost always leading to rapid identification

of the a single best hypothesis.

We demonstrate qualitative and quantitative results on (monocular) videos collected

of motion in a variety of three-wall indoor environments, including non-Manhattan-

world environments and ones with glass walls and windows, shadows and other difficult

image features. Our experimental results suggest that our method is capable of an

unprecedented combination of accuracy and efficiency. Furthermore, we compare our on-

line framework to state-of-the-art single-image layout estimation methods and multiple-

image 3D reconstruction methods. These comparisons demonstrate our method achieves

better accuracy in terms of modeling planar environments and is more applicable to real-

time applications.
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Chapter 6

Incremental Scene Understanding

This chapter extends the on-line scene understanding method to an on-line generate-

and-test framework to incrementally model environments with structures that are more

complex than a three-wall corridor 1. Similar to Chapter 5, this chapter addresses the

first level of interpretation and assumes the environment is uncluttered ε1 ' 0,

zt = G1(M,xt) + ε1. (6.1)

Extending from the simple three-wall model for M , this chapter presents the Planar

Semantic Model (PSM) that captures more information of a wall to delimit where the

wall is present and where there is an opening (Section 6.1). In order to focus our

research to scene understanding, we assume the robot pose xt is given. In the global 3D

coordinate, the robot pose is denoted as xt = (xrt , y
r
t , z

r
t , θ

r
t , φ

r
t , ψ

r
t ). We assume that the

robot has a fixed and known tilt φr and roll ψr angles with respect to the ground plane,

and has a fixed height zr from the ground plane. Thus, the robot pose is simplified to

xt = (xrt , y
r
t , θ

r
t ).

Building on top of the on-line scene understanding method presented in Chapter

5, this chapter introduces a continual, incremental process for transforming a current

structural hypothesis into children hypotheses describing the same environment in more

details. (Section 6.2) This incremental hypothesis generation process is a key to scene

understanding for a navigating robot, because many details about the environment, such

as an opening, may not be visible in the image from a distance. For example, an opening

of a L-intersection at the end of a long corridor may not be visible from a distance, and

1Materials presented in this chapter were published in [71].
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thus, evidences about that intersection can only be visible when the robot is closer to the

intersection. In addition to the incremental hypothesis generation, this chapter presents

our method of using the information in current frame to refine the quantitative precision

of existing hypotheses. (Section 6.3) Furthermore, we discuss how to incorporate newly

generated children hypotheses into the Bayesian filtering framework to continuously

model the indoor environment. (Section 6.4) Evaluation of the framework is presented

in Section 6.5.

Figure 6.1 illustrates the on-line generate-and-test framework. Starting from an ini-

tial set of PSM hypotheses, the Bayesian filtering framework identifies the best hypothe-

ses and removes hypotheses with low posterior probabilities. As the robot travels along

the environment, a set of children hypotheses are generated from existing hypotheses

to describe the same environment with more details. The Bayesian filtering framework

continuously tests each new set of hypotheses.

6.1 Planar Semantic Model (PSM)

The Planar Semantic Model (PSM) is a concise and useful representation of an indoor

environment that describes the environment by a set of meaningful planes — the ground

plane G and a set of planar walls Wi that are perpendicular to the ground plane but not

necessarily to each other 2. Formally, PSM, M , is defined as,

M = {G,W1,W2,W3, ...,Wn}. (6.2)

where n is the number of walls in the environment. There is a one-to-one correspondence

between this representation and a set of lines (the ground-wall boundaries) in the ground

plane (the ground-plane map), represented in the same 3D coordinate.

A wall Wi contains a set of disjoint wall segments that are co-planar in 3D. In

the ground-plane map, the wall plane is represented by a line parametrized by (αi, di).

αi ∈
(
−π

2
, π
2

]
is the orientation of the line which implies the normal direction of the wall

plane in the 3D coordinate, and di ∈ R is the directed distance from the origin of the

ground-plane map to the line. Since the walls are perpendicular to the ground plane,

the normal vector of the wall Ni in the 3D coordinate is Ni = (cosαi, sinαi, 0), and

2For a robot moving on the ground plane, the ceiling is much less relevant than the ground plane and
the walls, so it can safely be omitted from the representation. An indoor flying vehicle would require
us to extend this representation to include the ceiling.
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Generate a set of hypotheses of the indoor environment

Evaluate the hypotheses by a Bayesian filter

(a)

Remove hypotheses with low probability

Generate children hypotheses with more detail

(b)

(c)
Figure 6.1: On-line generate-and-test framework. (Best viewed in color.) A set of
qualitatively distinct PSM hypotheses are generated through an incremental process,
and tested through a Bayesian filter based on their abilities to explain the 2D motion
of a set of tracked features. (a) Starting from a set of simple parent hypotheses, the
Bayesian filtering framework identifies the best hypotheses and removes hypotheses with
low posterior probabilities. (b) A set of children hypotheses are generated from existing
hypotheses to describe the same environment in more detail. (c) Our Bayesian filtering
framework continuously tests each new set of hypotheses.
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the directed distance from the origin of the 3D coordinate to the plane is di. Ni and di

determine the equation of the wall in the 3D coordinate.

The bound of each wall segment is defined by two vertical lines on the wall plane

in 3D. By projecting the vertical lines onto the ground-plane map, the wall segment Sij

is represented by a pair of endpoints, (Ei
1,j, E

i
2,j), along the corresponding ground-wall

boundary line. The formal definition of a wall Wi is,

Wi = 〈αi, di, Si1, Si2, ..., Simi〉 (6.3)

where mi is the number of wall segments along this wall. The segments and the two

endpoints of each segment are ordered from from the left to the right side of the canonical

view of the wall plane. Each endpoint Ei
s,j is represented by,

Ei
s,j = 〈xis,j, yis,j, uis,j〉 (6.4)

where (xis,j, y
i
s,j) define the location of the endpoint in the ground-plane map, and uis,j

represents the type of the endpoint. The subscript s ∈ {1, 2} denotes the order of the

endpoints, where Ei
1,j is the endpoint on the left and Ei

2,j is the endpoint on the right.

There are three types of endpoints: dihedral, occluding and indefinite, representing

different levels of understanding of the bound of the wall segment. A dihedral endpoint

corresponds to two visible wall segments, where the location of the endpoint is the

projection of the intersection line of the two walls. An occluding endpoint corresponds

to only one visible wall segment. An indefinite endpoint is the current furthest visible

point of a wall segment, but its actual location has not yet been observed by the robot due

to occlusions or the end of the robot’s field of view. While a dihedral endpoint provides

the full knowledge of the bound of its corresponding wall segments, an occluding and an

indefinite endpoint provide different types of partial knowledge of the wall intersection.

Figure 6.2(a) is an example representing a cross-intersection with the PSM.

6.1.1 Image Projection of PSM

Similar to the simple planar model in Chapter 5, given the robot pose, the image projec-

tion of the ground-wall boundary of the PSM is a polyline extending from the left to the

right image borders, where the initial and final segments may lie along the lower image

border. A non-vertical line segment corresponds to a wall segment in PSM and vertical
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segments correspond to occluding edges between walls. Figure 6.2(b) is an example of

an image projection of the PSM.

6.1.2 3D Construction of PSM from Single Image

With our assumption that the robot has a fixed and known tilt φc and roll ψc angles

with respect to the ground plane, and has a fixed height zc from the ground plane, 3D

location of ground-plane and wall-plane points can be constructed from a single image

given the projected PSM. In the local 3D coordinate, the 3D location Pi = (xi, yi, zi)
T

of an image point pi = (ui, vi, 1)T that lies on the ground plane is related by

RψcRφcRc

 xi

yi

−h

 = λ

uivi
1

 (6.5)

where Rψc and Rφc are the rotation matrices related to the camera tilt and roll angles,

respectively. In the local 3D coordinate, the rotation matrix corresponding to the roll

angle is

Rψc =

cosψc − sinψc 0

sinψc cosψc 0

0 0 1

 , (6.6)

and the rotation matrix corresponding to the tilt angle is

Rφc =

1 0 0

0 cosφc − sinφc

0 sinφc cosφc

 . (6.7)

Rc is the matrix that transforms the location of a 3D point from the camera coordinate

to the local 3D coordinate:

Rc =

 0 0 1

−1 0 0

0 −1 0

 . (6.8)
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(a) PSM on ground-plane map

(b) Image Projection of PSM

Figure 6.2: Planar Semantic Model (PSM). (Best viewed in color.) (a) PSM represen-
tation of a cross-intersection. On the ground-plane map, the walls are represented by
(red) lines and a set of endpoints delimiting where the wall is present. Dihedral end-
points are marked as green and occluding endpoints are marked as yellow. Indefinite
endpoints are marked as red hollow points. Wall segments are notated in Sij where i
is the wall index and j is the index of the segment within wall i. Notice that the wall
segments are ordered from the left to the right of the canonical view of the wall. (b)
Image projection of the PSM ground-wall boundary. The robot pose is at the blue mark
in (a). The projected ground-wall boundary is a polyline connected from the left to the
right image borders. Each wall segment corresponds to a line segment in the projected
image. A vertical segment in the image corresponds to an occluding endpoint (yellow).
Note that if the tilt and roll angle of the camera with respect to the ground plane is not
zero, a vertical segment in 3D will not be vertical in the projected image. In fact, these
projected vertical segments will intersect at a vanishing point.
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Solving (6.5) gives us the location of the ground plane point in the local 3D coordinate,xiyi
zi

 =

 λi(cosφc − vi sinφc)
−λi(sinψc sinφc + ui cosψc + vi cosφc sinψc)

−h

 (6.9)

where

λi =
h

cosψc sinφc − ui sinψc + vi cosψc cosφc
.

To construct the wall plane in the local 3D coordinate, we start by selecting any two

points along the corresponding line and reconstruct their locations in the ground-plane

map, p̃1 = (x1, y1)
T and p̃2 = (x2, y2)

T , using the geometry of ground plane points.

Given the two points, αj can be determined by,

αj = − arctan
x1 − x2
y1 − y2

(6.10)

and thus, the normal vector of the corresponding line in the ground-plane map is nj =

(cosαj, sinαj)
T . The directed distance dj from the origin to the line can be determined

by,

dj = nj · p̃1 = nj · p̃2

= x1 cosαj + y1 sinαj

= x2 cosαj + y2 sinαj.

(6.11)

If a point lies on the wall plane with position pi in the image, its 3D location in the

local 3D coordinate is related by

dj = Nj · (λjR−1c R−1φt R−1φr pi) = Nj ·Pi. (6.12)

Solving λj in Equation 6.12 gives us the 3D location of the point Pj.

6.2 Incremental Hypotheses Generation

Since there is a one-to-one correspondence between a PSM model and a polyline in the

image space (Section 6.1.1 and 6.1.2), a set of PSM hypotheses can be generated from

2D image features. The hypothesis generation method described in Chapter 5 is used to
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(a) Parent (b) Child (type 1) (c) Child (type 2)

(d) Example Child (type1) (e) Example Child (type2)

Figure 6.3: Types of child hypotheses. (Best viewed in color.) Given the parent hypoth-
esis (a), two types of hypotheses can be generated to describe the environment in more
details. (b) Type 1 adds two endpoints to an existing wall segment to form an opening,
and adds new walls that are visible through the openings. Note that in this case, PSM
captures the fact that the two wall segments are parts of the same wall plane. (c) Type
2 creates an opening between two walls that are intersecting in the parent hypothesis.
Examples of the children hypotheses are shown in (d) and (e).

generate simple PSM hypotheses. A simple PSM hypothesis consists of at most three

walls where each wall consists of only one segment and intersects with its adjacent walls.

In other words, there are no occluding endpoints and no openings in a simple PSM

hypothesis.

PSM hypotheses with openings are generated through an incremental process. We

transform a current PSM hypothesis to a set of children hypotheses describing the same

environment in more details by adding openings. Two types of child hypothesis can be

generated from a current hypothesis. The first type of child hypothesis adds openings

along walls. These children hypotheses add endpoints to the existing wall segments in

the parent hypothesis to create the openings, and add new walls that are visible through

the openings (Figure 6.3(b)). For each visible wall, a set of candidate openings are
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generated. A candidate opening consists of two endpoints belonging to two adjacent

segments of the same wall to create the gap. We start by extracting image corner

features along the projected ground-wall boundary line, and collect a set of corner pairs

that are wide enough in 3D for the robot to pass through. For each corner pair, we

combine line segments between the two corners to form a set of candidate openings.

A child hypothesis is generated by selecting at most one candidate openings from each

visible wall.

The second type of child hypothesis creates an opening between two walls that are

intersecting in the parent hypothesis (Figure 6.3(c)). From each dihedral endpoint that

corresponds to a concave wall intersection, a set of candidate openings can be generated

by transforming the dihedral endpoint into an occluding endpoint for one wall segment

and an indefinite endpoint for the other wall segment. Thus, we search for image corner

features along both associated wall segments of the dihedral endpoint to become a can-

didate occluding endpoint. A candidate opening is generated by a candidate occluding

endpoint that provides a feasible gap for the robot to pass through. A child hypothesis

is generated by selecting at most one candidate opening from each concave dihedral

endpoint.

In addition to the above two transformations that generate hypotheses with more

openings, children hypotheses are also generated by merging a current hypothesis with a

simple PSM hypotheses generated from the current frame. Hypotheses are merged only

if they have enough overlapping and if they have no conflicting information. This type

of children hypotheses is essential for incremental scene understanding after the robot

makes a turn. For example, if a robot makes a turn at a L-intersection that connects two

long corridors, most of the environment within the field of view is not modeled in the

current hypotheses because current hypotheses only contain information about the first

corridor and the intersection. Thus, we generate a set of new simple PSM hypotheses

from the current frame to capture information about the second corridor. By merging a

new hypothesis with a current hypothesis, we generate a child hypothesis that captures

information about both corridors.

6.3 Refining PSM Model

We use the information from current observations to refine the quantitative precision of

each existing hypothesis. The Extended Kalman Filter (EKF) (Section 3.2.2) is used to
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estimate the parameters of each wall plane and the ground-plane map location of each

occluding endpoint.

For each wall W that is visible, the parameters of the plane at frame t are µwt =

(αt, dt)
T . Since the walls are static in the global 3D coordinate, the state prediction

function is,

g(µwt−1) = µwt−1. (6.13)

To obtain a 3D plane measurement zwt of the wall, we project the predicted ground-wall

boundary line to the image space and find the best match between the boundary line and

a set of lines under the camera center. Using the 3D reconstruction method described

in Section 6.1.2, the measurement zwt can be parametrized as a 3D wall, zwt = (zα, zd)
T .

Given the robot pose ut = (xct , y
c
t , θ

c
t )
T at frame t, the predicted measurement ẑwt =

h(µ̂wt , ut) is obtained by

ẑwt =

[
α̂t − θct

d̂t − cos α̂txt − sin α̂tyt

]
or

ẑwt =

[
α̂t − θct + π

−d̂t + cos α̂txt + sin α̂tyt

]
.

(6.14)

Once the parameters of the walls are refined, we refine the location of each occluding

endpoint that is visible in the current frame. The ground-plane map location of the

endpoint at frame t is represented as µet = (xt, yt)
T . Given the refined parameters of

its associated wall with µwt = (αt, dt) and uncertainty Σw
t , the state prediction function

for the endpoint location µ̂et = g(µet−1, µ
w
t ) projects the point µet−1 onto the wall and the

process noise Qt is,

Qt = FtΣ
wall
t F T

t (6.15)

where Ft = ∂g(µe,µw)
∂µw

∣∣
µw=µwt

. By projecting the endpoint onto the image space and match-

ing with point features extracted along the ground wall boundary, we collect a measure-

ment of the endpoint which is represented in the ground map space zet = (zx, zy)
T . The
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predicted measurement of the endpoint is computed by,

ẑt = h(µ̂et , , ut)

=

[
(xt − xct) cos θct − (yt − yct ) sin θct

(xt − xct) sin θct + (yt − yct ) cos θct

]
.

(6.16)

The location of a dihedral endpoint is updated by finding the intersection of the two

associated walls with their refined parameters. The location of an indefinite endpoint

is updated based on the robot pose and its field of view. We scan through the angles

within the field of view with a resolution of 0.5 degree, and obtain the furthest visible

point of each wall that has indefinite endpoints. The indefinite endpoint is either at the

bound of the field of view or at the blocking point from another wall.

6.4 Incremental Hypotheses Testing using Bayesian

Filtering

As in Chapter 5, the hypotheses are tested based on their abilities to explain the 2D

(image) motion of a set of tracked points using a Bayesian filter:

p (Mi|F1,F2, ...,Ft) ∝ p (Mi)
∏
j=1...t

p
(
Fj|M i

)
(6.17)

However, unlike most Bayesian filtering applications, the number of hypotheses in the

on-line generate-and-test framework changes over time. New children hypotheses are

incrementally generated and added to the active set of hypotheses as the robot travels,

and bad hypotheses are removed from time to time to keep the total number of hypothe-

ses tractable. Thus, this section describes how the Bayesian filter can be applied to the

on-line generate-and-test framework.

As described in Chapter 5, the likelihood function compares the predicted point

feature locations with the observed point feature locations. In this chapter, at frame t,

we use point features that are visible and tracked between frame t − tw in the image

space to test the hypotheses. tw ∈ [5, 20] is automatically adjusted to ensure that the

number of the point features exceeds a threshold (20 points), if possible. Chapter 8

presents a more efficient way to select the set of point features for hypothesis testing.

Given a hypothesis, point features are reconstructed into the global 3D coordinate based
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on their image locations at frame t− tw and projected back onto the image space based

on the given robot pose at frame t. The likelihood of the hypothesis at frame t is then

computed by comparing the predicted and the tracked locations of the point features.

Since there is no motion information to test about the correctness of the hypotheses

generated in the initial frame, their prior probabilities p (Mi) is uniformly distributed

over the hypotheses. A child hypothesis Mc that is added to the set at frame t has

a posterior probability at frame t − 1 equal to the posterior probability of its parent

hypothesis Mp at frame t− 1. Since the child hypothesis and its parent hypothesis only

differs in the regions that are distant to the robot at the beginning of the video, we can

assume that both hypotheses predict all past observations in the same way. In other

words, their prior and their likelihoods are the same up till frame t− 1, and thus their

posterior probabilities at frame t− 1 are the same:

p (Mc|F1, ...,Ft−1) = p (Mp|F1, ...,Ft−1) . (6.18)

In some situations, one may have prior knowledge of the indoor environment, such as

the width or length of a typical corridor. In such cases, the prior probability of the child

hypothesis p (Mc) may not be the same as its parent’s prior p (Mp), but their likelihoods

from frame 1 to frame t − 1 are still the same. This, the posterior probability of the

child hypothesis at frame t− 1 is

p (Mc|F1, ...,Ft−1) = p (Mp|F1, ...,Ft−1)
p (Mc)

p (Mp)
. (6.19)

In order to keep the number of hypotheses N tractable, hypotheses with posterior

probabilities lower than a threshold are removed. The threshold are set dynamically

based on the current number of hypotheses N . In our experiments, the threshold is set

to 0.1
N

. In other words, if the posterior probability of a hypothesis is lower than 0.1 of

the posterior probabilities of uniform distribution among the current set of hypotheses,

that hypothesis is considered to be a bad hypothesis and is removed from the set.

After removing hypotheses with low posterior probabilities, we normalize the posterior

probabilities among the surviving hypotheses.
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(a) Parent Hypothesis M3 (b) Child Hypothesis (bad) M4

(c) Child Hypothesis (good) M6
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Child Hypothesis (bad):

(d) Distribution

Figure 6.4: Examples of the hypotheses generated by our incremental process. (Best
viewed in color.) The ground-wall boundaries are plotted as red. Color dots represent
dihedral endpoints (yellow) and occluding endpoints (green). Both (c) and (b) are chil-
dren hypotheses generated from (a). (d) is their posterior probabilities at the current
time frame.
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(a) Frame 50

(b) Frame 120

(c) Frame 200

(d) Frame 245

Figure 6.5: Examples of the on-line generate-and-test framework. (Best viewed in color).
This example is from the first part of the Dataset L. These frames correspond to the
graphs shown in Figure 6.8. (See text for more detail.)
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6.5 Evaluation

Our on-line generate-and-test framework for scene understanding is evaluated using the

Michigan Indoor Corridor 2012 Video Dataset. (Details of this dataset is introduced

in Chapter 4.) Examples of the hypotheses generated from our incremental process

are shown in Figure 6.4. Figure 6.5 demonstrates our method for transforming a cur-

rent environmental-structure hypothesis into children hypotheses and shows how the

Bayesian filter converges to the best hypothesis. A set of simple PSM hypotheses (where

each wall contains only one segment and intersects with its adjacent walls) were gen-

erated from the first frame of the video. At frame 50, the Bayesian filter converged

to three simple PSM hypotheses. The other two hypotheses that are not shown in the

figure have the same side walls but a different planar equation for the end wall from

the one shown. At frame 120, hypotheses with low probabilities were removed and good

hypotheses generated children hypotheses to describe the scene in more detail. From

frame 200 to frame 245, our Bayesian filter continues to test all the hypotheses and

gradually converges to the best hypothesis. At the end, the robot has a single current

model of the surrounding environment even though much of it is not in view.

Figure 6.6 shows our results for different structures of the environment. These results

demonstrate the expressive power of the PSM and demonstrate that our framework is

able to generate and converge to a correct hypotheses. In all of these examples, due to

the limited field of view of the monocular camera, it is impossible for the robot to realize

that it is at an intersection solely from the current image. Thus, a temporally contiguous

stream of images is essential for coherent visual scene understanding. Sometimes due to

the lack of features and motion, the Bayesian filter might converge to a bad hypothesis

as shown in Figure 6.7, but our system is still able to use the information of the current

scene to generate a set of new hypotheses to describe the local environment in the next

scene. However, if the ground-wall boundaries are blocked by objects, our method might

fail because the best hypothesis might not be generated in the first place. Moreover, if

there are some of the point features lies on clutter (part of the environment that is not

representable by the PSM model), the Bayesian filter may be distracted and converge

to a bad hypothesis. Chapter 7 describes methods to handle cluttered environments.

We evaluate our on-line generate-and-test framework quantitatively. In each frame,

we define the accuracy of a hypothesis being the percentage of the pixels that have

the correct plane classification in that frame. Since the ceiling plane is not included in
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our hypotheses, ceiling pixels are skipped in our evaluation. Two types of quantitative

accuracy are reported for each dataset. MAP hypothesis accuracy is the accuracy of

the hypothesis of the maximum posterior probability at each frame. Weighted accuracy

is the weighted average accuracy of all the existing hypotheses at each evaluated frame

where the weight of each hypothesis is equal to its posterior probability. Our quantitative

results are reported in Table 6.1. Overall, our framework achieves 93.76% of accuracy. In

order to further understand how well our framework works in different situations, Figure

6.8 shows the performance of our Bayesian filtering framework at each time frame. We

showed that our framework always maintains a small set of active hypotheses where the

a good hypotheses is always in the set. Our Bayesian filter is able to identify the best

hypothesis most of the time.
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(a) Dataset +

(b) Dataset T1

(c) Dataset T2

Figure 6.6: Results of on-line generate-and-test framework in different environments.
(Best viewed in color). The second best hypothesis in Dataset + has a similar structure
except with a different equation for the wall that is visible from the openings. In Dataset
T 1, PSM models the right side as one wall with two endpoints that creates the opening.
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(a) Best Hypothesis M2 (b) Bad Hypothesis M4 (c) Posterior
Distribution

Figure 6.7: Examples when failing to identify the best hypothesis. (Best viewed in
color.) This scene corresponds to frame 734 to frame 837 in Figure 6.8. Due to the
lack of observed point features and motion, the Bayesian filter might converge to a bad
hypothesis M4 (frame 760). In fact, in this dataset, the robot did not accumulate enough
information to identify the best hypothesis M2 before the end wall went out of view.
However, our system is still able to use the information of the current scene (the left
wall) to generate a set of new children hypotheses to describe the local environment in
the next scene (frame 843).

Dataset Dataset L Dataset + Dataset T 1 Dataset T 2 Overall
MAP accuracy 91.00% 94.23% 92.71% 96.38% 93.76%

weighted accuracy 90.04% 92.77% 92.21% 95.37% 92.80%
number of frames 900 300 410 360 1970

Table 6.1: Quantitative evaluation of the on-line generate-and-test framework. To the
best of our knowledge, there is no directly comparable work but as shown in Chapter 5,
quantitative comparison with [31] and [25] demonstrates our on-line scene understanding
method has higher accuracies on most environments. Accuracies of both [31] and [25]
are about 80% on the Michigan Indoor Corridor 2011 Video Dataset.
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Figure 6.8: Bayesian filtering results of Dataset L. (Best viewed in color). The horizontal
axis of the graphs is the time frame of the video. The top graph shows the number
of hypotheses active in each frame. Notice that our method efficiently focuses on a
small set of active hypotheses (at most 27 hypotheses in this case) at each frame. In
our experiments, a set of children hypotheses are generated every 20 frames or when
less than 70% of the current image is explained by existing hypotheses. The second
graph shows the posterior probability of the hypotheses at each frame. Every time
when a set of children hypotheses are generated, the posterior probability of the best
hypothesis drops. We highlighted several hypotheses to illustrate our method. The
red hypothesis is a simple three-wall hypothesis where each wall intersects with its
adjacent walls. Both the blue and the green hypotheses (the correct hypothesis) are
children hypotheses of the red one with the correct opening structure with different width
generated at frame 105 and frame 147 respectively. Thus, the posterior probability of
the red hypothesis started to decrease and eventually it was removed from the set, while
both the blue and green hypotheses had a higher and higher posterior probability. As the
robot approached the opening, more point features around the opening were observed
and thus, the probability of the blue hypothesis dropped and was removed from the
set at frame 190. Similar phenomena occur several times throughout the video. The
third graph plots the accuracy (evaluated every 10 frames) of the system at each time
frame. The green line shows the maximum accuracy among the existing hypotheses.
The blue line shows the weighted accuracy among of the existing hypotheses, where the
weight of each hypothesis is equal to its posterior probability. The red line shows the
accuracy of the hypothesis with the maximum posterior probability. The Bayesian filter
identifies the best hypothesis for most of the time. Notice a good children hypothesis
was generated at frame 654 with a low prior, but as the robot approaches the opening
and accumulates more evidences along the travel, the correct hypothesis becomes the
winner at frame 737.
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6.6 Summary

In this chapter, we extend the simple on-line scene understanding method to model en-

vironments with more complex structures, such as intersections. We present the Planar

Semantic Model (PSM) to describe the environment by a set of meaningful planes —

ground plane and a set of walls that are perpendicular to the ground plane but not

necessarily to each other. PSM is a step forward from existing floor-wall models because

it captures richer relationships among wall segments. PSM is also capable of express-

ing incomplete knowledge so that unobserved areas can be incrementally modeled as

observations become available.

Since the full structure of the local environment may not be observable to the robot

all at once, we introduced an incremental process of generating structural hypotheses to

describe the same environment with more detail. This is the key to incremental scene

understanding. In addition to introducing incremental hypothesis generation, we use

the information in current observations to refine the quantitative precision of existing

hypotheses.

We evaluate our on-line generate-and-test framework on a variety of indoor environ-

ments, including L-intersections, T-intersections, and +-intersections. Our experimental

results demonstrate the expressive power of the Planar Semantic Model. We show that

our framework maintains a small set of active hypotheses, and among the hypotheses,

the correct hypothesis is always in the set. We demonstrate that the Bayesian filter is

capable of selecting the correct hypotheses.
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Chapter 7

Handling Perceptual Clutter

This chapter addresses the challenges of understanding cluttered indoor environments
1. Unlike Chapter 5 and 6 where the environment is assumed to be empty, this chap-

ter demonstrates the on-line generate-and-test framework for scene understanding in

cluttered environments. In this chapter, ε1 in the first level of interpretation is not zero:

zt = G1(M,xt) + ε1. (7.1)

In addition, this chapter moves one step forward to the second level of interpretation,

zt = G2(M,C1, ..., Ck,xt) + ε2 (7.2)

by representing ε1 as a set of clutter regions.

Formally, we define “clutter” as regions in the local environment that cannot be

represented by the Planar Semantic Model (PSM). Since clutter is unstructured, clutter

is represented by a set of 3D point clouds, where each point cloud corresponds to a

2D segment in the image space. While all observations in empty environments can be

explained by the PSM (Chapter 5 and 6), in cluttered environments, PSM explains only

a subset of the visual observations, and clutter is the collection of observations that are

not explained by PSM.

In order to focus our research on scene understanding, we use a depth camera to

collect a stream of RGB-D images. The goal of this chapter is to describe the obser-

vation in terms of PSM M and clutter {C1, ..., Ck} using the on-line generate-and-test

1Preliminary version of this chapter was published in [73].
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Figure 7.1: On-line generate-and-test framework with RGB-D image streams. Given
the current RGB-D frame t, we first find the relation between the camera and the
local 3D coordinate, and then estimate the 3dof robot pose (xrt , y

r
t , θ

r
t ) in the global

3D coordinates. At the same time, we extract useful features Ft (e.g. vertical-plane
features Vt and point-set features Ct) from frame t. We follow the on-line generate-and-
test framework described in Chapter 6, and extend the framework to handle cluttered
indoor environments. The major extension of this chapter is the hypotheses testing step.
This chapter presents a likelihood function that allows a good hypothesis to explain only
a subset of the features Ft. In addition, this chapter presents methods to generate and
refine the PSM hypotheses in cluttered environments using RGB-D image streams.

framework described in Chapter 6. In addition, this chapter computes the robot pose

from the RGB-D images without any additional sensors.

Figure 7.1 illustrates the on-line generate-and-test framework described in Chapter

6 and highlights the major aspects of the framework that need to be extended in or-

der to handle cluttered indoor environments. At each frame t, the ground plane G is

extracted and a transformation [Rg
t , T

g
t ] that transforms the 3D points from the image

coordinate to the local 3D coordinate is computed (Section 7.1). Points that lie on the

ground plane are now considered as “explained” by the ground G. The transformation

[Rg
t , T

g
t ] captures three degrees of freedom of the full 6-degree-of-freedom robot pose

xt = (xrt , y
r
t , z

r
t , θ

r
t , φ

r
t , ψ

r
t ), the tilt φr and roll ψr angles and the height zrt of the robot

with respect to the ground plane at frame t. In contrast with Chapter 6, the tilt and roll

angles and the height do not need to be fixed across the frames. The remaining three

degrees of freedom is represented as (xrt , y
r
t , θ

r
t ) on the ground-plane map. The robot

pose is estimated by aligning RGB image features and the 3D non-ground-plane points

between frame t− 1 and frame t (Section 7.2).

At the same time, a set of features Ft are extracted from the 3D points that are

not explained by the ground G. While there are other research focusing on grouping a

RGB-D image or a set of 3D points into primitive shapes [34], in this thesis, we group

the 3D points into a set of vertical-plane features Vt and a set of point-set features Ct.
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Vertical-plane features suggest the existence of walls, while point-set features suggest

the existence of clutter. (Section 7.3)

Given the robot pose and the features Ft = {Vt,Ct}, the on-line generate-and-

test framework first uses the vertical-plane features Vt to refine the precision of the

existing set of PSM hypotheses {M}t−1 (Section 7.4). Then, a set of new hypotheses are

generated and added to the hypothesis set {M}′t−1 by transforming existing hypotheses

into children hypotheses describing the same environment with more details based on

the vertical-plane features Vt (Section 7.5). Finally, we use a Bayesian filter to test

the hypotheses. While Chapter 5 and 6 require a good hypothesis to explain all the

observed features, in this chapter, we present a likelihood function that allows a good

hypothesis to explain only a subset of the features (Section 7.6). Evaluation of the

on-line generate-and-test framework in cluttered environments is presented in Section

7.7.

7.1 Ground Plane Extraction

At each frame, we extract the 3D ground plane using both RGB image and depth

information 2. Figure 7.2 illustrates how the ground-plane is extracted. First, we collect

the candidate pixels where their local surface normals differ from the approximated

normal vector Nappx of the ground plane within φground. For a front-facing camera, the

approximated normal vector is Nappx = [0, 1, 0] in the image coordinate, and in our

implementation, we set φground = π
6
. The local surface normal of each pixel is computed

using the efficient algorithm proposed by Holz et al. [34]. From the candidate pixels,

we fit the dominant plane that has a normal vector within φground of the approximated

normal Nappx using RANSAC. From the inlier pixels, we perform a morphological close

operation on the image space to locate a smooth and bounded region for the ground

plane.

Once the ground plane is extracted, the transformation [Rg
t ,T

g
t ] between the cam-

era coordinate and the local 3D coordinate is computed. The origin of the local 3D

coordinate is set to the projected location of the camera center on the ground plane.

Mathematically, Rg
t is the rotation matrix that rotates the normal vector of the ground

plane to [0, 0, 1], and Tg
t = [0, 0, ht] is determined by the distance ht between the camera

2We only use depth information of a pixel if it lies within a reliable range. For Kinect, the reliable
range is between 0.8 to 4 meter.
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(a) Collect candidate ground points (b) Fit plane using RANSAC

(c) Obtain inlier points (d) Smooth ground-plane region

Figure 7.2: Ground plane extraction from RGB-D image. (Best viewed in color.) (a)
From the input RGB-D image, collect candidate ground-plane points (blue) with local
surface normal close to [0, 1, 0] in the image coordinate. Notice that since the depth
information is noisy, candidate points may lie on the ground plane and some ground-
plane points may not be identified as candidate points. (b) (c) Use RANSAC to fit the
dominant plane from the candidate points. Inlier points (pixels) are marked as green.
From the ground-plane equation, we determine the transformation between the image
coordinate and the local 3D coordinate. In (b), points are transformed to the local
3D coordinate. (d) Perform a morphological close operation on the image to obtain a
smooth ground-plane region.
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center and the ground-plane. The rotation matrix Rg
t captures two degrees of freedom

(tilt φr and roll ψr angles) of the robot pose, and the translation vector captures one

degree of freedom, zrt . The transformation between the local 3D coordinate and the

global 3D coordinate can be inferred by the remaining degrees of freedom of the robot

pose (Section 7.2).

7.2 Robot Pose Estimation

Given the ground-plane G and the transformation [Rg
t ,T

g
t ] from the camera coordinate

to the local 3D coordinate, the robot pose (xrt , y
r
t , θ

r
t ) captures the remaining three

degrees of freedom of the camera pose in the 3D global coordinate. Our pose estimation

takes advantages of the RGB image and the depth channel. Our method uses a robust

sparse feature correspondences to obtain an initial estimate of the pose change, and

then apply Iterative Closest Point (ICP) to refine the pose change. On the one hand,

the projected RGB image provides appearance cues to establish feature correspondence

for pose change estimation, but provide less useful information for recovering the actual

3D rigid-body transformation. On the other hand, applying ICP on the depth data is

vulnerable to local optimal solution and thus, a good initial pose estimation is required

to avoid converging to an incorrect pose estimation. Our method combines advantages

from the RGB image and the depth data.

We start by estimating the pose change between frame t and t− 1 by aligning sparse

feature correspondences between the two RGB-D images. We extract corner features

in the RGB image at frame t − 1, and obtain their corresponding image locations at

frame t using KLT tracking. A rigid-body transformation [Rp
t ,T

p
t ] that aligns the 3D

locations of the correspondences in the two frames can be computed. Note that once

the 3D points are transformed to the local 3D coordinate, the pose change between two

frames has only three degrees of freedom. In other words, Rp
t is a rotation matrix along

the z-axis, and Tp
t is a translation vector on the x-y plane. With this initial estimate of

the robot pose 3, we use ICP to refine [Rp
t ,T

p
t ] from all the 3D points that are not on

the ground plane. Finally, the robot pose in the global 3D coordinate can be computed

from the pose change.

3If there are not enough sparse feature correspondences to compute the initial estimate, we assume
the robot is moving at a constant motion and use the pose change between frame t− 1 and t− 2 as our
initial estimate.
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7.3 Features Extraction

After extracting the ground-plane, we group the points (pixels) from the current RGB-D

frame into a set of vertical-plane features V = {vj|j = 1, ..., nv} and a set of point-set

features C = {cj|j = 1, ..., nc}. Figure 7.3 is an example of the features. A vertical-plane

feature v is a plane segment that is perpendicular to the ground-plane, and a point-set

feature is a cluster of 3D points that cannot be grouped into vertical planar segments.

Vertical-plane features suggest the existence of walls, and point-set features suggest the

existence of clutter. However, not all the vertical-plane features belong to the PSM.

For example, a box on the ground also generates several vertical-plane features. On

the opposite, a point-set feature that is close to a wall may simply be a small instance

sticking out from the wall or noise. For example, a door knob may become a point-set

feature. In this chapter, we use the vertical-plane features to generate and refine the

hypotheses, and we use all features to test the hypotheses.

Similar to a PSM wall plane (Section 6.1), a vertical-plane feature v corresponds to

a line segment in the ground-plane map. Mathematically, v is represented by

v = 〈αv, dv, xv1, yv1 , xv2, yv2〉 (7.3)

where αv ∈
(
−π

2
, π
2

]
and dv ∈ R is the same line parametrization used to represent a

wall plane, and (xv1, y
v
1) and (xv2, y

v
2) are two end-points of the line that denotes where

the vertical-plane is visible.

We first extract vertical-plane features from the 3D points that are not on the ground

plane. (Points are represented in the 3D global coordinate.) We project the points onto

the ground-plane map, and use J-linkage [68] to fit a set of line segments. Each line

segment forms a potential vertical-plane feature. Since vertical-plane features are used

to generate and refine hypotheses, vertical-plane features need to be accurate. In other

words, it is fine to miss a vertical-plane feature (false negative), but it is less desirable

to have a vertical-plane feature that does not correspond to an actual vertical plane in

3D. Thus, we have an extra step to filter out unreliable vertical-plane features. We use

a RANSAC to refine the parameters of each vertical-plane feature using the points that

forms the line segments. If the number of inlier points is less than a threshold (100

points), the vertical-plane feature is not considered. The final vertical-plane feature is

computed by all the inlier points.

We remove the points that form the line segments and cluster the remaining points

73



(a) Extract Vertical-Plane Features

(b) Extract Point-Set Features

Figure 7.3: Feature extraction from RGB-D image. This figure shows the vertical-plane
features and point-set features extracted from the frame shown in Figure 7.2. (Best
viewed in color.) Once the ground-plane is extracted, we extract features from the points
that are not from the ground plane. (a) We first extract vertical-plane features by fitting
line segments to the points in the ground-plane map. Points are colored according to
the vertical-plane features that they generate, and points that cannot be grouped into
line segments are marked as black. (b) We extract point-set features by clustering the
remaining points based on their Euclidean distances. In general, vertical-plane features
suggests the existence of walls and point-set features suggest the existence of clutter.
However, some vertical-plane features may come from clutter region (e.g. the blue trash
can), and some (red and orange) point-set features may be part of a wall due to noise.
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based on their 3D Euclidean distances. A cluster that consists of more than 100 points

forms a point-set feature. Mathematically, a point-set feature c is represented by

c = 〈xc, yc,Pc〉 (7.4)

where Pc is the set of 3D points in the cluster and (xc, yc) is the ground-plane map

projection of the 3D mean location of the points. For points that failed to form features

are considered as noise and are thus, discarded.

7.4 Refining PSM Hypotheses

We use the vertical-plane feature extracted from the current frame to refine the quanti-

tative precision of each hypothesis. Similar to Chapter 6, the Extended Kalman Filter

(EKF) (Section 3.2.2) is used to estimate the parameters of each wall and the location

of each occluding endpoint.

Vertical-plane features Vt are potential measurements for the walls that are visible

in frame t. We associate the wall to the vertical-plane features based on the similarity

of their corresponding lines on the ground-plane map. If a wall wi is associated to

a vertical-plane feature vj, wall parameters (αi, di) are updated in the correction step

based on the location of the vertical-plane feature (αvj , d
v
j ). Note that the measurement

noise of the vertical-plane feature is the variance of the 3D points that form the feature.

Once the wall parameters are updated, we refine the location of each occluding end-

point. Potential measurements for an occluding endpoint are the end-points of the

vertical-plane features that have similar parameters with its corresponding wall. We

project these end-points onto the line of the corresponding wall, and find the nearest

projected point to the endpoint. If the distance between the nearest point and the end-

point is less than 0.2 meters, the projected point is the measurement for that endpoint.

An endpoint is updated in the correction step, if its measurement is available.

7.5 Incremental PSM Hypotheses Generation

In Chapter 5 and 6, hypotheses are generated by combining line segments in the image

space. However, in a cluttered indoor environment, the actual ground-wall boundary

may be occluded and thus, the correct PSM hypotheses may not be generated. With
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the RGB-D image, we can leverage on the observations from other portions of the wall,

not just the ground-wall boundary, to generate hypotheses. Specifically, since a vertical-

plane feature vj suggest the existence of a wall plane, PSM hypotheses can be generated

by combining vertical-plane features Vt.

In the first frame, a set of simple hypotheses are generated. A simple hypothesis is

either a PSM with two parallel walls or a PSM with at most three walls where each wall

intersects with its adjacent walls. These simple hypotheses are generated by combining

vertical-plane features with certain constraints. Similar to 5, hypotheses with projected

wall intersections outside the image borders in the image space are infeasible because

they violate the perspective geometry of the planar structure. In addition, a 3-wall

hypothesis is infeasible if its left and right walls intersect in front of the end wall.

As described in Chapter 6, the key for incremental scene understanding is to gener-

ate new hypotheses by transforming existing hypotheses into children hypotheses that

describes the same environment with more details as the robot travels. We use the

same transformation described in Section 6.2 to generate children hypotheses. Given an

parent (existing) hypothesis, its children hypotheses are generated by adding openings

to the walls or by combining with a simple hypothesis generated at the current frame.

7.6 Hypotheses Testing with Partial Explanation

Hypotheses are tested using a recursive Bayesian filtering framework as described in

Chapter 6. In Chapter 6, we assume that a hypothesis explains all the observed features

in the current frame. This assumption works well in empty environments because all the

observed features actually lie on the walls and ground planes. However, in a cluttered

environment, features may be part of the clutter which cannot be explained by the PSM,

as shown in Figure 7.3. This chapter presents a likelihood function that allows a good

hypothesis to explain only a subset of the observed features Ft = {Vt,Ct}.
Specifically, the likelihood function of hypothesis Mi consists of three terms,

p(Ft|Mi) = pc(Ft|Mi)pa(Ft|Mi)ps(Ft|Mi). (7.5)

These terms describe a three-way trade-off among the feature coverage by the hypothesis

pc(Ft|Mi), the accuracy of the explained features pa(Ft|Mi), and the simplicity of the

hypothesis ps(Ft|Mi).
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We define coverage to measure the amount of the observed environment that is

explained by the hypothesis. Thus, coverage pc(Ft|Mi) measures the number of features

that Mi explains, regardless of the precision of the explanations. Formally,

pc(Ft|Mi) ∝ ωv
|Vi

t|
|Vt|

+ ωc
|Ci

t|
|Ct|

(7.6)

where Vi
t ⊆ Vt are the vertical-plane features and Ci

t ⊆ Ct are the point-set features

that are explained by Mi. (One can define their own metric to determine whether a

feature is explained or not. Our metric is presented in Section 7.6.1 and 7.6.2.) ωv

and ωc are the importances of explaining vertical-plane features and point-set features,

respectively (ωv + ωc = 1) 4.

We define accuracy to measure the precision of the features that the hypothesis

explains. Thus, accuracy pa(Ft|Mi) reflects the overall error of the features that are

explained by Mi. Since different hypotheses may explain different subsets of the features

Ft, we compute the weighted RMS error error(Ft,Mi) of the features that hypothesis

Mi explains,

error(Ft,Mi) =√
ωv
∑

vj∈Vi
t
εp(vj,Mi)2 + ωc

∑
cj∈Cit

εc(cj,Mi)2

ωv|Vi
t|+ ωc|Ci

t|

(7.7)

εp(vj,Mi) and εc(cj,Mi) are the error of Mi explaining feature vj and cj. (One can

define their own error metric. Our metric is presented in Section 7.6.1 and 7.6.2.) The

RMS error is modeled by a Gaussian distribution with zero mean and σ2 variance.

Mathematically,

pa(Ft|Mi) ∝

0 if |Vi
t|+ |Ci

t| = 0

exp −error(Ft,Mi)
2

2σ2 otherwise
. (7.8)

Note that both coverage and accuracy require a hypothesis to explain at least one feature

in order to obtain a non-zero likelihood. In other words, a hypothesis will be filtered out

by the Bayesian filter if it explains nothing in the environment.

4In indoor environment, a vertical-plane feature is more likely to be part of a wall plane, while a
point-set feature is more likely to be clutter. Thus, we set ωv > ωc. In our experiments, we set ωv = 0.7
and ωc = 0.3.
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(a) Frame t

(b) Vertical-plane features
extracted from the observa-
tion of frame t

(c) M1 — A simple one-wall
model that perfectly explains
some features

(d) M2 — A simple one-wall
model that explains all the
features moderately well

(e) M3 — A complex four-
wall segment model that per-
fectly explains all the features

Figure 7.4: Example of multiple valid hypotheses. (Best viewed in color.) From the
environment shown in (a), assume four vertical-plane features are extracted as shown
in (b) and three valid hypotheses (thick blue lines) are generated: (c) Hypothesis M1

models the environment with one wall that perfectly explains only two of the features
(green), leaving the other two unexplained (red); (d) Hypothesis M2 models the envi-
ronment with one wall that explains all the features but explains them poorly (yellow);
(e) Hypothesis M3 models the environment with four wall segments that explain all four
features perfectly. Depending on the parameters in each term, the likelihood function
can prefer any of the hypotheses (Table 7.1).

Coverage and accuracy define how well a hypothesis explains the observed environ-

ment. Given two hypotheses with similar levels of explanations, the likelihood function

prefers a hypothesis that uses less information to achieve this level of explanation. There-

fore, we define simplicity to prefer a hypothesis with fewer parameters.

Simplicity ps(Ft|Mi) measures the amount of information that hypothesis Mi used

to explain the features. Thus, simplicity is a regularization term that prevents the

Bayesian filter from over-fitting the features. ps(Ft|Mi) is modeled by a generalized

logistic function with a negative the growth rate,

ps(Ft|Mi) ∝
1

1 + expγ(|Mi|t − nmaxγ )
. (7.9)

|Mi|t is the number of walls that are visible in frame t, γ is the decay rate, and nmaxγ is

where the maximum decay occurs.

We show an example (Figure 7.4 and Table 7.1) to illustrate the trade-offs among

the three terms (coverage pc(Ft|M), accuracy pa(Ft|M), and simplicity ps(Ft|M)) in

the likelihood function. The importance of each term is controlled by two parameters,
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Hypothesis M1 M2 M3

coverage pc(Ft|Mi) 0.50 1.00 1.00
accuracy pa(Ft|Mi) (σ = 0.2 ) 1.00 0.88 1.00
accuracy pa(Ft|Mi) (σ = 0.05) 1.00 0.14 1.00
simplicity ps(Ft|Mi) (γ = 0) 0.50 0.50 0.50
simplicity ps(Ft|Mi) (γ = 1) 0.88 0.88 0.27

Likelihood p(Ft|Mi) = pc(Ft|Mi)pa(Ft|Mi)ps(Ft|Mi)
CASE 1: σ = 0.20, γ = 0 0.25 0.44 0.50
CASE 2: σ = 0.20, γ = 1 0.44 0.77 0.27
CASE 3: σ = 0.05, γ = 0 0.25 0.07 0.50
CASE 4: σ = 0.05, γ = 1 0.44 0.12 0.27

Table 7.1: Example for the three-way trade-off among the likelihood factors. As shown
in Figure 7.4, there may be multiple valid hypotheses. Top Table: The top half of
this table shows the value of each term of each hypothesis with respect to different pa-
rameters. Depending on the parameters in each term, the likelihood function can prefer
any of the hypotheses. If σ is small, accuracy pa(Ft|Mi) is important since the Gaus-
sian function in pa(Ft|Mi) gives large penalties to poor explanations. Contrary, if σ is
large, accuracy pa(Ft|Mi) becomes less important because the Gaussian function is less
discriminative between poor and good explanations. In this example, pa(Ft|M2) dra-
matically increases when σ increases. The decay rate γ controls the preference towards
simpler hypotheses (Figure 7.5). When γ = 0, there is no preference for the simplicity
of the hypothesis. As γ increases, the likelihood function will increases its preference
towards simpler hypotheses. Bottom Table: The bottom half of this table shows the
likelihood function of each hypothesis with respect to different parameters. The hypoth-
esis with the maximum likelihood with each parameter set is shown in bold. In CASE
1, coverage is the most important factor, and since M3 has a slightly better accuracy
than M2, M3 has the highest likelihood. In contrast to CASE 1, CASE 2 considers
both coverage and simplicity important, and thus, M2 has a higher likelihood than the
complex hypothesis M3. In CASE 3, where only coverage and accuracy are considered,
M3 is the best because it perfectly explains all the features while M1 and M2 have issues
with coverage and accuracy, respectively. In the above three cases, M1 is not preferred
because M1 has a lower coverage. However, if considering all three factors (CASE 4),
M1 is the best.
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Figure 7.5: Simplicity. (Best viewed in color.) This graph visualizes simplicity ps(Ft|Mi)
with respect to different decay rate γ with a fixed nmaxγ = 3. The horizontal axis |Mi|t
is the number of walls in view and the vertical axis is ps(Ft|Mi). In the extreme case,
where γ = 0, the likelihood function has no preference towards simpler hypotheses. As
γ increases, the Bayesian filter is more likely to converge to a simpler hypothesis.

the variance of the Gaussian function σ2 in accuracy pa(Ft|M) and the decay rate γ in

simplicity ps(Ft|M). The variance σ2 mainly controls the importance of accuracy. A

large variance σ2 in accuracy means that the difference between good and poor expla-

nations is low, and therefore, the likelihood function is more reflective on the feature

coverage. Contrary, a small variance σ2 means that the penalty for poor explanation is

high, and therefore, the accuracy of the explanation is highly important. The decay rate

γ controls the preference towards having a simpler model as shown in Figure 7.5. In the

extreme case, where γ = 0, simplicity will be the same for all hypotheses and thus, the

likelihood will not prefer simpler hypotheses. As γ increases, the likelihood function will

start preferring a simpler hypothesis with reasonable coverage and accuracy.

On the one hand, the parameters in the likelihood function allow the user to set their

preferences based on their applications. If the purpose of exploration and mapping is

to determine free-space for safe navigation, then one set of parameter values might be

preferred, while if the purpose is to create an architectural CAD model of the environ-

ment, a different set of values may be preferable. On the other hand, the parameters

may seem to be sensitive to the hypothesis that the Bayesian filter converges to. In

fact, for the purpose of navigation, it is reasonable to converge to any of the three hy-
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(a) M4 — A good hypothesis (b) M5 — A mediocre hypothesis

Full Explanation Partial Explanation
Hypothesis M4 M5 M4 M5

coverage pc 1 1 0.46 0.94
accuracy pa 0.12 0.25 0.95 0.29
simplicity ps same
Likelihood 0.12 0.25 0.44 0.31

(c) Likelihood comparisons between explaining all the features and
explaining only a subset of the features

Figure 7.6: Importance of partial explanation. (Best viewed in color.) The environment
in Figure 7.2 and 7.3 demonstrates the importance of allowing a hypothesis to explain
only a subset of the features. Both M4 and M5 use one wall (blue thick line) to represent
the environment, so simplicity for both hypotheses are the same. If we force both
hypotheses to explain all the features, then M5 has a higher likelihood than M4 because
it has a lower RMS error (ωv = 0.7 and σ = 0.2). If we allow the hypotheses to explain
only a subset of the features, M4 is most likely to have a higher likelihood. Green features
are perfectly explained (0 error) by the hypothesis, yellow features are explained with
errors, and red features are not explained.

potheses in Figure 7.4. Both M1 and M3 specify the same part of the environment as

free-space, but they specify the free-space in a different way. M2 is less precise in spec-

ifying the boundaries of free-space, and its accuracy pa(Ft|M2) will suggest a robot to

be more cautious about the boundaries. In other words, accuracy pa(Ft|Mi) provides a

confidence measurement of free-space for navigation algorithms [54]. In a simple empty

environment like this example, most hypotheses are reasonable. However, in a more

complex or cluttered environment, many bizarre hypotheses will be generated and the

likelihood function allows us to converge to a reasonable hypothesis (see Section 7.7).

Figure 7.6 is an example that shows why it is important to allow a good hypothesis

to explain only a subset of the observed features. If we require a hypothesis to explain

all the observed features (pc(Ft|M4) = pc(Ft|M5) = 1), then the mediocre hypothesis M5

dominates M4 because it has lower RMS error. However, if a hypothesis can distinguish
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between clutter and non-clutter features, then the higher-quality partial explanation M4

can dominate the nearly complete but lower-quality hypothesis M5.

7.6.1 Explaining vertical-plane features

A vertical-plane feature v is considered to be explained by hypothesis M if v can be

explained by a wall segment Sij in M . Feature v is considered to be explained by M

if the error εp(v,M) is less than a threshold ε (0.1 in our experiments). The error

metric εp(v,M) is computed as follows. First, find the wall plane Wmatch ∈ M that

best matches the feature. We start by computing the displacement dist(v,Wi) between

feature v and each wall Wi by comparing their corresponding lines in the ground-plane

map. For efficiency, we only consider a wall that has a similar angle to the vertical-plane

feature (min(‖αi − αv‖, π − ‖αi − αv‖) < αsame ). If none of the walls are within the

angle constraints, v is not explained by M . For each wall, we construct a coordinate for

computing the displacement by an origin (xgi , y
g
i ) and an angle θgi [66]:

xgi =
li(x

i
1,1 + xi2,mi) + lv(xv1 + xv2)

2(li + lv)

ygi =
li(y

i
1,1 + yi2,mi) + lv(yv1 + yv2)

2(li + lv)

θgi =
liαi + lvαv

li + lv

(7.10)

where lv is the length of feature v and li is the total length of Wi that has been modeled.

The x-axis of the coordinates is along the weighted average direction of the two lines and

thus, the displacement dist(v,Wi) of the two lines is defined as the maximum difference

along the y-axis. A point ([x]m, [y]m) in the ground-plane map can be transformed to

this coordinate ([x]gi , [y]gi) by

[x]gi = ([y]m − ygi )sinθ
g
i + ([x]m − xgi )cosθ

g
i

[y]gi = ([y]m − ygi )cosθ
g
i − ([x]m − xgi )sinθ

g
i

. (7.11)

Wmatch is found by Wmatch = arg max
Wi

(dist(v,Wi)). Finally, if the entire feature v lies

within a single wall segment in Wmatch, then εv(v,M) = dist(v,Wmatch). Otherwise, the

feature is not explained by M .
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7.6.2 Explaining point-set features

Similar to the vertical-plane feature, a point-set features c is considered to be explained

by hypothesis M if c lies on a wall segment Sij in hypothesis M . We define an error

metric εc(c,M) to be the shortest distance of the point-set feature (xc, yc) to a wall Wi in

M . Feature c is not explained by M if the error is larger than a threshold ε. (This is the

same threshold ε for explaining vertical-plane features.) Feature c is also not explained if

the projected location of the feature does not lie within the bound of any wall segments

of Wi. Moreover, we take into consideration the distribution of the points Pc in c. Only

if 70% of the points are within ε of distance to wall Wi, point-set feature c is explained.

7.7 Evaluation

7.7.1 Repeatability of Feature Extraction

Due to the randomness in the process of extracting the ground plane and the features,

we ran a small experiment to show the stability and the repeatability of these process.

Note that the randomness comes from RANSAC and the clustering methods involved in

these processes (see Section 7.1 and 7.3). We extract vertical-plane features and point-

set features in the frame shown in Figure 7.3 50 times. At each run, we first extract the

ground-plane and transform the non-ground-plane points to the local 3D coordinate.

Then, we extract vertical-plane features and point-set features from the non-ground-

plane points. The result of this experiment is shown in Figure 7.7. Our result shows the

features extracted in each run are similar. This experiment also reveals the amount of

noise we get from feature extraction.

7.7.2 Evaluation of the Framework

Our on-line generate-and-test framework for cluttered environments is evaluated using

the Michigan Indoor Corridor 2014 Video Dataset (See Chapter 4). Parameters for the

likelihood function are set as follows. The weights between the vertical-plane features

and the point-set features are ωv = 0.7 and ωc = 0.3 because a vertical-plane feature is

more likely to be part of a wall segment than a point-set feature. For accuracy pa(Ft|Mi),

the variance σ2 is set to σ2 = 0.04. The value is selected based on two factors. The first

factor is the error of a single vertical plane observed from various distances and angles
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(a) Extracted vertical-plane features in multiple runs

(b) Extracted point-set features in multiple runs

Figure 7.7: Extracted features in multiple runs. (Best viewed in color.) Features ex-
tracted within one run is shown in the same color. (a) Vertical-plane features from the
wall, the pillar, and the blue trash can are extracted in all runs. Due to the noise in
the depth sensor, multiple vertical-plane features are extracted along the wall. These
vertical-plane features have very similar parameters (αv, dv) that specify the line in the
ground-plane map but different in the two location of the two end-points (xv1, y

v
1) and

(xv2, y
v
2). This figure also shows the amount of noise we generally get from our depth

camera. The noise of the vertical-plane feature increases as the distance to the robot
increases. The noise from the wall is about 0.1 meter. In half of the runs, one or two
vertical-plan features are extracted from the red round can, and in the other half, several
point-set features are extracted. (a) The majority of the point-set features are extracted
from the red round can. Other point-set features are noise from the wall and around the
pillar. More point-set features are extracted from the left end of the wall because that
end is further away from the robot where depth measurements are less accurate.
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Figure 7.8: Simplicity used in our experiments. Parameters of simplicity ps(Ft|Mi) is
set to γ = 0.3 and nmaxγ = 10 (black line). Simplicity will be 0.93 if one wall is used to
describe the current view and 0.81 when using five walls. Simplicity drops significantly
if more than six walls are used. In Section 7.7.3, we use a set of parameters, γ = 0.7
and nmaxγ = 3 (dashed line), that strongly prefers simple structures to compare and
demonstrate the effects of simplicity.

after converting to the local ground-plane map at a single snapshot. Based on our data,

the maximum error of a point belonging to a vertical plane can be as large as 0.1 meter.

Figure 7.7 shows how we collect this statistics. The second factor accounts for the pose

estimation because the likelihood is computed after transforming the points to the global

ground-plane map. Since the error in pose estimation is accumulative, in a more realistic

setting, the variance σ2 should increase over time. For simplicity ps(Ft|Mi), γ = 0.3 and

nmaxγ = 10. A visualization of simplicity ps(Ft|Mi) with these parameters are shown in

Figure 7.8. These values are selected to ensure that the likelihoods for having one to five

walls are similar because these are the common numbers of walls that could appear in a

single snapshot based on the field of view (57 degree horizontally) of our depth camera.

Figure 7.9 visualizes the results on these videos. Our method converges to a reason-

able hypothesis to describe each environment in 3D. Based on the maximum a posteriori

(MAP) hypothesis, we separate out clutter, observations that were not explained by the

hypothesis. At each frame, each hypothesis has its own partition of explained and un-

explained features. The unexplained observations are the 3D points that contribute to

these unexplained features at each frame. We further cluster these unexplained obser-

vations into a set of 3D regions based on their Euclidean distances. In most cases, a

cluttered region is either an object or a pile of objects, but in some situations (Dataset
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INTERSECTION), the cluttered region may be part of the building, such as a pillar along

a wall. In Dataset LAB, the white board is tilted about 25 degree, and since it is not

perpendicular to the ground plane, it is separated out as clutter and not a part of the

PSM. Notice that some of the clutter points are caused by errors in the pose estimation.

The pose estimation is less accurate in Dataset CORRIDOR because a large portion of

the pixels have unreliable depth measurements due to distances.

As stated in Chapter 1, once clutter points are clustered into regions, each clutter

region becomes a smaller interpretation problem. Although the focus of this thesis is

to parse the scene into a structural model and clutter regions, we show an example of

reasoning about objects segmented out from one clutter region. We select to demonstrate

this example using the functionality-based object reasoning method proposed in [28],

because this method reasons about objects based on their geometric properties in 3D,

and the preprocessing of this method is to identify and remove ground and wall-plane

points. This example is shown in Figure 7.10. This example demonstrates that the on-

line generate-and-test framework proposed in this thesis connects well with and simplifies

researches on object reasoning.

To evaluate our method quantitatively, two accuracy metrics, Plane Accuracy and

Scene Accuracy, are defined to measure how a hypothesis agrees with the ground-truth

labeling at one frame. Although the hypothesized interpretation are in 3D, the ground-

truth is manually labeled in the projected image space. Plane Accuracy measures the

accuracy of the hypothesized PSM model and the estimated camera pose without con-

sidering clutter. The PSM is projected to the image space according to the estimated

robot pose. With the projected PSM, each pixel is assigned to a plane in PSM (ground

plane or a wall). Plane Accuracy is the percentage of the pixels that agrees with the

ground-truth plane labels. Scene Accuracy measures the accuracy of the whole interpre-

tation (PSM + clutter) and the estimated camera pose. To measure Scene Accuracy,

both the PSM and the clutter points are projected to the image space. The projected

clutter regions are first determined by performing a morphological close operation on

the projected clutter points. Pixels from non-clutter regions are then assigned to a

plane according to the projected PSM. Scene Accuracy is the percentage of the pixels

that agrees with the ground-truth labeling in terms of plane label and clutter. When

computing the accuracies, only non-ceiling pixels with valid depth data are considered,

because ceiling is not modeled in PSM and pixels with invalid depth data are not used

to compute the likelihood. For each dataset, two types of quantitative accuracy are
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Figure 7.9: Qualitative evaluation of the our framework in cluttered environments. (Best
viewed in color.) First column: image from our dataset. (The depth images are not
shown.) Second column: 3D interpretation (PSM + clutter) obtained by our method
visualized in the ground-plane map. For PSM, the blue lines are the wall planes and the
big dots are the endpoints, color coded based on their types (green: dihedral; yellow:
occluding; red: indefinite). Clutter is represented by a 3D point cloud (tiny red dots).
Third column: image projection of the PSM. The ground is green and each wall is shown
in a different color. The part of the images that are not painted are too far away from
the robot to obtain a reliable depth data. The robot will start modeling those regions
as it gets closer. Fourth column: clutter regions in the image space with different colors.
(See text for more details.)
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(a) Clutter region from our method (b) Post processing

(c) 3D Points of the
largest segment

(d) Physical simula-
tion for object func-
tionality [28]

Figure 7.10: An example of interpreting a clutter region with objects. This example
demonstrates that our proposed method supports researches that reason about objects.
(Best viewed in color.) (a) We select a frame in Dataset LAB that contains sufficient
information to reason about the chairs. (b) In order to segment out the chair in the
center, we perform connected component analysis on the 2D image and select the the
largest component (red). Note that a more generalized method can be developed to
better segment out individual objects. Since segmentation is not the focus of this thesis,
we apply simple method that works for this specific example. (c) We collect 3D points
that associate to the 2D pixels of the red component, and apply the functionality classifier
[28] to this 3D point cloud to reason about the functionality of this object. (d) A physical
simulation is performed by dropping balls on to the objects [28]. The classifier then
uses the distribution of the balls to classify the object. Among all functionality classes
(“sittable”, “table-like”, “cup-like”, and “layable”), this 3D point cloud is classified as
a “sittable” object.
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Dataset CORNER LAB CORRIDOR INTER. Overall
# Frames 49 131 106 110 396

Clutterness 34.84 20.80 9.50 10.22 16.50

Plane Acc.
MAP 98.18 % 99.31 % 97.83 % 98.25 % 98.49 %

Weighted 90.18 % 91.99 % 97.03 % 91.56 % 92.97 %

Scene Acc.
MAP 92.82 % 95.10 % 91.76 % 98.16 % 94.83 %

Weighted 86.47 % 86.83 % 90.89 % 89.72 % 88.68 %

% Best Selected 80.00 % 100 % 90.91 % 91.67 % 92.86 %

Table 7.2: Quantitative evaluation of our framework in cluttered environments. See text
for more discussion.

reported using the two accuracy metrics described above. MAP hypothesis accuracy

is the accuracy of the hypothesis of the maximum posterior probability at each frame.

Weighted accuracy is the weighted average accuracy of all the existing hypotheses at

each frame where the weight of each hypothesis is equal to its posterior probability. The

average of these accuracies are reported in Table 7.2.

In order to understand how cluttered each dataset is, we report the Clutterness

based on the ground-truth labeling. Clutterness is the percentage of pixels that are

labeled as clutter. To further evaluate our method, we report how often our method

selects the best hypothesis. The best hypothesis is the hypotheses with the maximum

Plane Accuracy among the active set of hypothesis at each frame. The metric, % Best

Selected, is the percentage of frames that the accuracy of the MAP hypothesis equals to

the best hypothesis. In general, our method starts selecting the best hypothesis before

the tenth frame. In Dataset LAB, we can even select the best hypothesis solely from the

observations made in the first frame.

7.7.3 Analyzing the Likelihood Function

To empirically analyze the importance of each term in the likelihood function, we ran

our framework multiple times with different likelihood settings. Table 7.3 summarizes

the experiments that we ran to analyze the likelihood function. In order to have a fair

comparison, these experiments are setup so that the output from the preprocessing steps

(e.g. ground-plane extraction, pose estimation, and feature extraction) are exactly the

same. By using the same set of features, all experiments start with the same initial set

of hypotheses but the hypotheses that were incrementally generated in each experiment
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Experiment coverage pc accuracy pa simplicity ps
Full-Likelihood X X X

Omit-Clutter-Concept Omit the concept of clutter
Omit-Coverage-Term X X
Omit-Accuracy-Term X X
Omit-Simplicity-Term X X

Extreme-Simplicity-Term X X γ = 0.7, nmaxγ = 3

Table 7.3: List of experiments that are used to analyze the likelihood. A Xin the
table means the likelihood term is used in that run, and the parameters for that term
is the same as those presented in Section 7.7.2. An empty box means the term is
not used. Full-Likelihood runs the framework with the proposed likelihood (all three
terms), and results about this run was discussed in Section 7.7.2. Omit-Clutter-Concept
assumes the environment is empty and omits the concept of clutter. This is the same
assumption we made in Chapter 5 and Chapter 6. Without the concept of clutter,
the hypothesized model are tested based on their abilities to explain all the observed
features. In this experiment, coverage will always be one because the hypothesized model
are assumed to explain all features, and accuracy is computed by combining errors
from all features. Comparing the results from Omit-Clutter-Concept with those from
Full-Likelihood demonstrates the importance of allowing a hypothesized model to have
partial explanation of the environment. In Omit-Coverage-Term, Omit-Accuracy-Term
and Omit-Simplicity-Term, we take out a term from the likelihood function. Comparing
the results from each of these runs with the results from Full-Likelihood, we analyze
the importance of the omitted term. Note that although we are not using coverage in
Omit-Coverage-Term, this experiment still allows partial explanation because accuracy
pa(Ft|Mi) only considers features that are explained. Extreme-Simplicity-Term uses all
three terms but sets the parameters of simplicity to have a strong preference towards
very simple structures. This simplicity is visualized in Figure 7.8. (In other experiments,
γ = 0.3 and nmaxγ = 10.)
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Experiment Plane Accuracy Scene Accuracy
Full-Likelihood 98.49% 94.83%

Omit-Clutter-Concept 67.11% 58.93%
Omit-Coverage-Term 81.87% 74.74%
Omit-Accuracy-Term 98.16% 94.70%
Omit-Simplicity-Term 98.49% 94.83%

Extreme-Simplicity-Term 98.21% 94.99%

Table 7.4: Results for analyzing likelihood function. These experiments are described in
Table 7.3. Comparing Full-Likelihood and Omit-Clutter-Concept shows the importance of
allowing partial explanation. Comparing the results from experiments that omit a term,
we discovered that coverage is the most important factor in the likelihood function.

may be different. This is because the incremental hypothesis generation process depends

on the active set of hypotheses, and different likelihood settings may result in a different

active set of hypotheses. The overall accuracies of these experiments are reported in

Table 7.4.

By comparing Omit-Clutter-Concept and Full-Likelihood, we demonstrate the impor-

tance of allowing a hypothesis to explain only a subset of the features. In Omit-Clutter-

Concept, the likelihood function combines the scores from all features, and the score of

each feature depends on the error between the feature and the hypothesized PSM model.

Note that the likelihood function in Omit-Clutter-Concept is equivalent to the likelihood

function proposed in Chapter 5 and 6. In Omit-Clutter-Concept, only INTERSECTION

ends up with the correct hypothesis. The reason for INTERSECTION to have comparable

result is because the only region that is not described by the PSM is the pillar. The error

between the pillar and the correct PSM model is relatively small (0.3 meter) compare to

the clutter regions in other datasets, and therefore, Omit-Clutter-Concept is still able to

select the correct hypothesis. For the other three datasets, the MAP hypothesis at the

last frame diverges greatly from the correct hypothesis. The overall MAP Plane Accu-

racy is only 67.11%, while Full-Likelihood has 98.49%. In fact, the correct hypothesis has

a very bad posterior probability from the beginning of each video and thus, is removed

by the Bayesian filter before the end of the video. Thus, having a likelihood function

that allows partial explanation is a key to handle cluttered environments.

The most important term in the likelihood function is coverage pc(Ft|Mi). Among

Omit-Coverage-Term, Omit-Accuracy-Term and Omit-Simplicity-Term experiments, Omit-

Coverage-Term performs the worst while the other two experiments have similar results
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to Full-Likelihood. In Omit-Coverage-Term, only one of the dataset (LAB) converges to

the correct hypothesis at the end of the video. However, unlike Omit-Clutter-Concept,

the correct hypothesis still remains in the active set of hypotheses, except it does not

have the maximum posterior probability. The overall MAP Plane Accuracy for Omit-

Coverage-Term is 81.87%, while Full-Likelihood has 98.49%.

Simplicity is also an important term in the likelihood function. Since the parameters

we set in simplicity is less discriminative when the number of walls is less than five

(the maximum number of visible walls in our dataset is three), the overall MAP Plane

Accuracy in No-simplicity is the same as that in Full-Likelihood. To really demonstrate

the importance of simplicity, we run Extreme-Simplicity-Term, which has a simplicity that

strongly prefers a simple structure. In Extreme-Simplicity-Term, three datasets (LAB,

CORNER, CORRIDOR) converges to the correct hypothesis. Since there is only one

wall in LAB, Extreme-Simplicity-Term converges to the correct hypothesis earlier than

Full-Likelihood. However, Extreme-Simplicity-Term converges to a wrong hypothesis in

INTERSECTION because the initial part of INTERSECTION has three visible walls. Both

Extreme-Simplicity-Term and Full-Likelihood end up with the same two hypotheses at the

last frame, but they have a very different posterior probability distribution over the two

hypotheses. These results are shown in Figure 7.11.

The effect of accuracy pa(Ft|Mi) is relatively small compare to coverage and sim-

plicity in our experiments. In Omit-Accuracy-Term, the overall MAP Plane Accuracy is

98.16%, which is very similar to that in Full-Likelihood. Since we are using a depth cam-

era, most of the explained features are pretty accurate. Thus, the difference in accuracy

among the hypotheses at each frame is low. However, if a different sensor is used, the

importance of accuracy may increase.
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(a) Hypotheses M1 (b) Hypotheses M2

Experiment p (M1|F1,F2, ...,Ft) p (M2|F1,F2, ...,Ft)
Full-Likelihood 0.87 0.13

Omit-Simplicity-Term 0.90 0.10
Extreme-Simplicity-Term 0.18 0.82

(c) Posterior Probability Distribution

Figure 7.11: Final hypotheses from INTERSECTION. In Full-Likelihood, Omit-Simplicity-
Term, and Strong-Simplicity, the framework end up with two hypotheses (M1 and M2)
at the last frame of INTERSECTION. However, their posterior probability distributions
are different. In Full-Likelihood, M1 is the MAP hypothesis. In Omit-Simplicity-Term, M1

is also the MAP hypothesis but the posterior probability of M1 is slightly higher. The
reason for Omit-Simplicity-Term to have a higher preference towards M1 is because Omit-
Simplicity-Term only tests the hypotheses based on their ability to explain the features
without any preference of the simplicity of the structure. M1 has a better coverage
than M2. Contrarily, in Extreme-Simplicity-Term, M2 is the MAP hypothesis because
in Extreme-Simplicity-Term, simplicity drops significantly when there are more than two
walls in view. Thus, M1 has a much lower likelihood than M2 at the beginning of the
video, when the robot is at the first corridor.
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7.8 Summary

In this chapter, we generalize the on-line generate-and-test framework to handle clut-

tered indoor environments. We define the concept of “clutter” as regions in the local

environment that cannot be represented by the Planar Semantic Model (PSM). Thus,

in a cluttered environment, a PSM hypothesis explains only a subset of the observed

environment, and different hypotheses have different partitions between regions that are

explained by the model and regions that are clutter. We propose a likelihood function

that allows a good hypothesis to provide a partial explanation of the observations. The

likelihood function makes explicit a three-way trade-off among coverage of the observed

features, accuracy of the explanation, and simplicity of the hypotheses. We evaluate the

effectiveness of each factor analytically and empirically.

We implement our on-line generate-and-test framework with partial explanation us-

ing a stream of RGB-D images. Our experimental results on a variety of videos demon-

strate that our method is capable of interpreting cluttered environment by a Planar

Semantic Model and clutter. Finally, we compare our framework with and without the

concept of clutter. This comparison demonstrates the importance of allowing partial

explanation for model-based interpretation in cluttered environments.
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Chapter 8

Focusing Attention on Features that

Matter

As described in Chapter 5, we extract and track point features in the image space to serve

as observations for testing the PSM hypotheses 1. The typical way to collect features

is extracting features that are easily detectable with a fix threshold. In fact, some of

the most informative features to discriminate the hypotheses may not be extracted if

features are detected by fixed thresholds, because the most informative regions may not

have high image contrasts for features to be detected.

This chapter demonstrates that by focusing attention on features in the informa-

tive regions, we can test the hypotheses more efficiently. We divide the image into

regions based on the expected information gain that each feature provides, which we

call informativeness. The idea of focusing on informative regions of the image space

is inspired by the idea of saliency detection [36, 35, 62]. While these works typically

define saliency regions based on image and motion properties of the pixels in the images

[36, 35] or based on human fixations [62], our informative regions are defined in terms

of the robot’s current set of hypotheses about the geometric structure of the indoor

environment. We adapt the threshold for extracting features for each region based on

its informativeness. If a region is more informative, features with lower image contrasts

are allowed to be used for hypotheses testing. We demonstrate the attention focusing

method on the on-line generate-and-test framework described in Chapter 6 2.

1Materials presented in this chapter were published in [72].
2The attention focusing method is equally applicable to other scene understanding problems (e.g.

[45, 25, 57, 44]).
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Refine 
Quantitative Precision 

of each Hypothesis

Generate 
Children Hypotheses

Test Hypotheses
using a Bayesian Filter

Extract New Informative Features
to Add to Tracked Features

Select  Informative Features
from the set of Tracked Features

Remove Hypotheses
with Low Posterior Probabilities

Figure 8.1: Framework with attention focusing method. (Best viewed in color.) The
steps with solid gray blocks are demonstrated in Chapter 6, and the steps with dashed
blue blocks show where we select and extract the informative features. After generating
children hypotheses (|{M}′t−1| ≥ |{M}t−1|) , we select point features from the current set
of tracked features that are informative to discriminate among the hypotheses {M}′t−1.
Once the posterior probabilities of the hypotheses are updated and hypotheses with low
probabilities are removed ( |{M}t| ≤ |{M}

′
t−1|), we identify new informative features

based on the current set of hypotheses {M}t to add into the tracking set. These features
will be used to test hypotheses in future frames.

Figure 8.1 describes the on-line generate-and-test framework with the attention fo-

cusing method. This chapter describes a method for selecting the set of point features

P that are most informative for testing the set M of hypothesized models. The goal is

to select features P that maximize the information gain IG(M,P):

IG(M,P) = H(M)−H(M|P) (8.1)

where H(M) is the entropy of the current set of hypotheses and H(M|P) is the entropy

given the set of point features P. To explicitly maximize Equation 8.1, we need to

test the hypotheses with all combinations of all possible features, and then select the

combination that returns a minimum expected entropy H(M|P). This process is very

costly. However, we observe that a point feature will increase IG(M) only if at least

two hypotheses have different explanations about its 2D motion. In other words, a point

pj is “informative” if it lies in a region where at least two hypotheses make different

predictions. We define I(pj,M) ∈ [0, 1] to be the informativeness of point pj, measuring

its discriminating power among the set M,

I(pj,M) = log(|M|)−H(Mu|pj), (8.2)

where H(Mu|pj) is the expected entropy of the set M with uniform prior. Higher

informativeness I(pj,M) means the point is able to provide larger information gain.
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If all hypotheses explain the 2D motion of point pj in the same way, the point is not

informative I(pj,M) = 0. Section 8.1 describes how the informativeness I(pj,M) of a

point is computed, and Section 8.2 describes how we identify a set of informative points

P for a set M of hypotheses. Our experimental results (Section 8.3) demonstrate that

this bias of the search toward the most informative point features helps the Bayesian

filter to converge to a single hypothesis more efficiently, without loss of accuracy.

8.1 Compute Informativeness of a Point Feature

For any point pj in the image space, its informativeness I(pj,M) reflects how informative

that point is for testing the current set of hypotheses M = {M1,M2, ...,MN}. I(pj,M) ∈
[0, 1] is positive if the point is capable of discriminating at least two hypotheses, and is

zero if the point does not provide any information to discriminate among any hypotheses.

Given two hypotheses, if a point is informative I(pj,M) > 0, the two hypotheses

have different explanations about its 2D motion. A hypothesis predicts the 2D motion

of point pj by reconstructing the point in 3D based on the 3D plane that the point is

on, and then projects the point onto another frame (Chapter 5). Thus, the key for the

two hypotheses to have different predictions is when the two hypotheses assign the point

to different 3D planes. If there is a difference from this pair of hypotheses, I(pj,M) of

point pj increases. At the end, I(pj,M) is the sum of scores from all possible pairs of

the current hypotheses.

In fact, the informativeness I(pj,M) of all the points can be divided into several

regions, where all points within each region have the same I(pj,M). Figure 8.2(b) is

an example of these regions. For efficiency, instead of computing the precise boundaries

of these regions, we approximate these regions with a set of non-overlapping boxes that

specify which portions of the image are informative. The upper bounds of these boxes are

the top image border. All points within each box are set to the same I(pj,M) > 0 value,

and any point that is outside the boxes has I(pj,M) = 0. Figure 8.2(c) is an example

of our box approximation. Note that it is possible that a point that originally has zero

informativeness becomes non-zero in our box approximation, but all informative points

remain informative. Thus, we do not lose any information by using this approximation.

Formally, we represent our box approximation based on a set of non-overlapping

boxes {b1, b2, ..., bnb}. The informativeness I(bk,M) of each box bk is proportional to the
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(a) Hypotheses (b) Informative Regions (c) Box Approximation

Figure 8.2: Informative regions. This figure is an example of the informative regions
and our box approximation for those regions. (Best viewed in color.) (a) The current
set of hypotheses at this frame. (b) The gray-scale value reflects the informativeness
I(pj,M) ∈ [0, 1] of each pixel pj in the current image based on the four hypotheses
shown in (a). Since the hypotheses are qualitatively distinctive, the image divides into
several regions based on the informativeness. However, to precisely compute the exact
boundary of these regions can be computationally expensive. Thus, we use a set of boxes
to approximate these regions as shown in (c). All points within each box are set to the
same I(pj,M) > 0 value, and any point that is outside the boxes has I(pj,M) = 0.
The informativeness of each box is set to the maximum informativeness among all pixels
within the box, so no information is lost by using the box approximation.

number of hypothesis pairs that the point can discriminate,

I(bk,M) =

 1
nb(nb−1)/2

∑
Mm,Mn∈M δ(bk,Mm,Mn) if N > 1

0 otherwise
(8.3)

where δ(bk,Mm,Mn) ∈ {0, 1} equals to 0 if hypotheses Mm and Mn are the same within

box bk, and equals to 1 if the hypotheses differ. Two hypotheses are the same if the

associated 3D wall that is projected to the box area bk is the same for the two hypotheses.

We check whether the two walls are the same in 3D. Since the walls are perpendicular to

the ground, a 3D wall is parameterized by a line W = (α, d) on the ground plane, where

α is the orientation of the line which implies the normal direction of the wall plane in

3D, and dj is the directed distance from the origin of the ground-plane map to the line.

With this parameterization,

δ(bk,Mm,Mn) =

0 if |αm − αn| < αsame and |dm − dn| < dsame

1 otherwise
(8.4)

where (αm, dm) and (αn, dn) are the walls in hypothesis m and n, respectively. αsame and
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dsame are the thresholds for considering the two walls to be the same. In our experiments,

αsame = 0.00872 radian and dsame = 0.05 meter.

To find the boxes, we start by finding their left and right bounds, and then find the

lower bound. (The upper bound lies along the top image border.) The left and right

bounds of the boxes correspond to a set of break points along the image columns. These

break points only occur at the projected image locations of the vertical wall borders of

the current hypotheses. We sort all the break points from the left to the right to form

the bounds of the boxes, and form a set of candidate boxes using adjacent bounds. We

then compute the informativeness of each box using Equation 8.3, and remove boxes that

have I(bk,M) = 0. For each informative box, the lower bound is the lowest horizontal

line that encloses the ground-wall boundary segment of all hypotheses that pass through

this box. Note, if the lowest horizontal line of a box is below the border of the image,

the lower bound is set at the image border.

8.2 Select Informative Point Features

To test the hypotheses M = {M1,M2, ...,MN}, a common approach is to extracts point

features that have high corner responses from the entire image It. The corner response

V (pj) of a point pj is defined as the minimum eigenvalue of the covariance matrix of

derivatives over its neighborhood S(pj) [63][ ∑
S(pj)

(dIt
dx

)2
∑

S(pj)
(dIt
dx

dIt
dy

)∑
S(pj)

(dIt
dx

dIt
dy

)
∑

S(pj)
(dIt
dy

)2

]
(8.5)

However, efforts are being wasted when points with high corner responses lie within un-

informative regions, and opportunities may be missed when points in informative regions

have relatively low corner responses. Thus, we need to adjust the threshold for extracting

point features in the informative regions to allow point features to be extracted even if

they have lower corner responses. Moreover, when testing the hypotheses, instead of us-

ing all the tracked features, we only use point features that are capable of discriminating

among the current hypotheses to reduce the computational cost.

An informative feature may not necessarily be a good feature to track if we adjust

the feature extraction threshold. The tracking quality of the point will greatly affect

the hypotheses testing process, because an ill-tracked point may not agree with the
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predicted 2D motion of a correct hypothesis. Thus, there is a trade-off between the

informativeness of a feature and the quality of feature tracking. We introduce a cost

term C(pj) to penalize the system for using point pj,

C(pj) = 1− V (pj)

Vmax
(8.6)

where V (pj) is the corner response of point pj, and Vmax is the value of the maximum

corner response from the current image It.

Given a set of candidate point features Pc in the current image It, we determine which

points are to be added into the tracking set for testing the hypotheses in a later frame
3. (We will discuss how these candidate point features are extracted later.) Inspired by

[12], the most efficient way to test hypotheses is to use a diagnosis method that can well

discriminate the hypotheses and has a low cost at the same time. Thus, to select the

set of point features for testing, we maximize∑
pj∈Pc

(I(pj,M)− C(pj))δ(pj) (8.7)

where δ(pj) ∈ {0, 1} equals to 1 if the point is selected to be tracked and 0 if the point is

not going to be used. Maximizing Equation 8.7 is equivalent to selecting all the points

that have more informativeness than cost I(pj,M) > C(pj). By maximizing Equation

8.7, a more informative point can be selected even with lower corner response, and a

point that is less informative needs to have high corner response in order to be selected.

For efficiency, in our experiments, we only allow at most 20 points to be added at each

frame. If
∑

pj∈Pc δ(pj) > 20, we add 20 points with the highest gain I(pj,M)− C(pj).

The set of candidate point features Pc are extracted in the non-zero informativeness

regions with a minimum corner response τ ,

τ = min(Vmax(1−max
pj

(I(pj,M))), τmin). (8.8)

If the corner response is less than this threshold, it is impossible to be used based on

Equation 8.7. We set a hard threshold τmin, to avoid using unreliable points to ensure

the quality of hypotheses testing. In our experiments, we set τ = 0.0000001. In addition,

a candidate point is not considered if that point is too close (less than 20 pixels) to an

3A point feature needs to be tracked for at least one frame in order to be used to test the hypotheses.
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existing tracked point in the image space.

Besides the informative features, we also extract corner features with high corner

responses as they become available because these features can potentially be informative

for testing the hypotheses that are generated in future frames. For the same reason, we

keep track of a point feature as long as it is trackable even when it is not informative for

the current set of hypotheses. Thus, at each frame, we select the subset of the tracked

points Pt with non-zero informativeness I(pj,M) > 0 to test the hypotheses. To test the

hypotheses, we extract point correspondences between frame ts and the current frame

t > ts. Given a hypothesis, we construct the 3D location of a point feature in the global

frame of reference given its tracked location in ts, and then, project the point onto the

current frame t to compare with the observation, the tracked location of the point at

frame t (re-projection error). The likelihood of that hypothesis is a function of the re-

projection error. The likelihood function is more informative when ts is larger, so we

automatically adjust ts ∈ [5, 20] to ensure the number of features exceeds a threshold 4.

8.3 Evaluation

We implement our attention focusing method within our on-line generate-and-test frame-

work described in Chapter 6. We compare results of our framework with and without

the attention focusing method. We call the framework without the attention focus-

ing method baseline. The baseline framework uses point features (with high corner

responses) that are extracted by a fixed threshold. The evaluation is done using the

Michigan Indoor Corridor 2012 Video Dataset (See Chapter 4). Our implementation

uses the same parameters for the one with the attention focusing method and the one

without, except for those that are related to point feature extraction.

We compare the effectiveness of our method with the baseline by computing the

informativeness of the selected features at each frame. We define the informativeness

I(P,M) of a set of point features P relative to a set of hypotheses M as

I(P,M) = log(|M|)−H(Mu|P). (8.9)

where Mu is the set M of hypotheses at the current frame, but with uniform prior. We

then compute the likelihood of each hypothesis based on P, and update the posterior

4We only use points that can be tracked for at least five frames to ensure that the point is reliable.
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probabilities of the hypotheses. H(Mu|P) is the entropy of the posterior probability

distribution.

We use the set of hypotheses Ma that exist at each frame when running the attention

focusing method. At the meantime, we tracked two sets of point features. The first set

Pb is obtained by tracking features with high corner responses as it is in Chapter 6,

and the second set Pa is obtained by the attention focusing method where features are

extracted in the informative regions even when their corner responses are low 5. Point

features in both sets may overlap. At each frame, we compute the informativeness by

using each set of features (I(Pb,Ma) and I(Pa,Ma)) to test the current set of hypotheses

Ma. We repeat the same comparison using the set of hypotheses Mb when running the

baseline, and compute the informativeness (I(Pb,Mb) and I(Pa,Mb)) at each frame.

Notice that since Ma and Mb may consist of different hypotheses, the set of informative

points Pa may be different in the two comparisons. However, the set of baseline features

Pb in both runs are the same because these features are extracted independent of the

hypotheses. These comparisons are shown in Table 8.1.

In most cases, the informative set Pa provides more informativeness than the base-

line set Pb. This is because more features in the informative set Pa lie in the region

where the current hypotheses give different predictions than those in the baseline set

Pb. In some extreme cases, none of the baseline points lie in the informative regions.

Figure 8.3 shows examples of these situations. The attention focusing method achieves

higher informativeness because more point features that are capable of discriminating

the hypotheses are tracked. In general, there are 1.5 to 6.5 times more point features

that are capable of discriminating the hypotheses in the informative set Pa than in Pb.

In some extreme cases (last row), the baseline set Pb does not contain any features to

discriminate the hypotheses so the informativeness I(Pb,M) at those frames are zero.

Sometimes the baseline features Pb provide equal or more informativeness than the in-

formative features Pa. This happens at the first few frames when a large set of children

hypotheses are generated. Because the informative set Pa is so focused on discriminating

the parent hypotheses, Pa may not contain features that can discriminate the children

hypotheses at the first few frames when they are generated. However, the attention fo-

cusing method adds new informative features that discriminate the children hypotheses

at the frame when they are generated, so after tracking these features for some times

(at least 5 frames), Pa provides more discriminative power than Pb. Figure 8.4 is an

5Subscript a represents attention and b represents baseline.
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Dataset L + T 1 T 2 Overall∑
I(Pa,Ma) 11.67 5.08 5.5 1.21 23.46∑
I(Pb,Ma) 4.34 3.81 3.98 0.03 12.16

I(Pa,Ma) > I(Pb,Ma) 79.92% 63.41% 61.02% 72.99% 71.80%
I(Pa,Ma) < I(Pb,Ma) 10.81% 19.02% 20.34% 0% 10.76%

% Frames |Ma| > 0 75.95% 65.92% 15.09% 51.34% 50.48%
MAP Ma Accuracy 94.31% 93.8% 92.8% 95.47% 94.12%

Weighted Ma Accuracy 92.79% 93.08% 92.57% 94.79% 93.35%∑
I(Pa,Mb) 34.04 13.88 6.06 21.36 75.34∑
I(Pb,Mb) 11.48 4.45 4.9 0.9 21.73

I(Pa,Mb) > I(Pb,Mb) 70.62% 67.98% 52.16% 52.82% 61.71%
I(Pa,Mb) < I(Pb,Mb) 8.25% 17.98% 7.23% 2.82% 8.28%

% Frames |Mb| > 0 88.86% 73.31% 17.65% 94.89% 68.09%
MAP Mb Accuracy 94.30% 94.03% 91.65% 94.62% 93.68%

Weighted Mb Accuracy 93.33% 92.82% 92.27% 92.38% 92.67%

Table 8.1: Quantitative comparison with and without attention focusing. The top half of
the table is the results of running the attention focusing method, and the bottom half is
the results of running the baseline.

∑
I(P,M) reports the sum of informativeness over

all the frames with more than one hypothesis (|M| > 0). In all videos, the informative
set Pa captures more informativeness than the baseline set Pb. To further analyze the
effectiveness of the informative features, I(P1,M) > I(P2,M) reports the percentage
of frames when feature set P1 is more informative than P2 among all the frames that
have more than one hypothesis (|M| > 0). These statistics show that the informative
set Pa provides more informativeness than the baseline set Pb in most of the frames. In
a small amount of frames, the baseline set Pb provides equal or more informativeness
than the informative set Pa. These are frames when a large set of children hypotheses
are generated. Since Pa is so focused on discriminating the parent hypotheses, Pa

may not have features to discriminate the children hypotheses for the first few frames
when they are generated. We also report the accuracy of the framework with and
without the attention focusing method. MAP Accuracy is the average accuracy of the
hypothesis with the highest posterior probability at each frame. Weighted Accuracy
is the average weighted accuracy of the set of hypotheses at each frame, where the
weight is the posterior probability of each hypothesis. By comparing these accuracy
statistics, we show that the bias towards informative features reaches comparable or even
better accuracy. Thus, by focusing attention on point features that are informative, our
framework converges to a single hypotheses more often without loss of accuracy.
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Figure 8.3: Qualitative evaluation of the attention focusing method. (Best viewed in
color.) Each row is a snapshot of one of the four datasets. The first column is the set of
hypotheses M at that frame. The second column visualizes the point features (green)
that are used to test the hypotheses from the informative set Pa. The third column shows
the point features (red) from the baseline set Pb that are visible at the current frame. For
the second and the third column, only the informative regions (I(bk,M) > 0) are shown,
and non-informative regions are shown in white. The last column is the informativeness
of using each feature set. The attention focusing method I(Pa,M) is shown in green
solid lines, and the baseline framework I(Pb,M) is shown in red dashed lines.

104



example of this situation.

Since the point features that are used in the attention focusing method and the

baseline framework are different, the hypotheses that the two methods tested may differ.

The total number of hypotheses tested in our method is larger than those in the baseline

method. This is due to a threshold on the posterior probability for determining whether

a hypothesis is good enough to generate children hypotheses. The attention focusing

method tests the hypotheses more efficiently than the baseline and thus, more hypotheses

exceeded this threshold and generated children hypotheses. Even though the attention

focusing tests more hypotheses, it converges to a single hypotheses more often. As shown

in Table 8.1, about 50% of the time, the attention focusing method converges to a single

hypothesis while only about 30% of the time, the baseline framework converges to a

single hypothesis.

In Table 8.1, we report the accuracy of the attention focusing method and the baseline

framework based on this implementation. The accuracy of the attention focusing method

reaches similar accuracies as those shown in Chapter 6. This suggests that by focusing

attention on regions that are informative, regions where the current hypotheses have

different explanations of the point features, we can converge to a single hypothesis more

efficiently with no loss of accuracy.

Although we demonstrated the effectiveness of our attention focusing method on

point features, the method can also be applied to other types of features that are used

in Chapter 7. The informativeness of a vertical-plane feature can be approximated by

the average informativeness of the pixels enclosed in the image region of the projected

vertical-plane feature. The informativeness of a point-set feature can be computed by

the average informativeness of the projected 3D points.
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Figure 8.4: Example when baseline framework is more informative. An example where
the informative set Pa provides less informativeness than the baseline set Pb. (Best
viewed in color.) Since there is only one hypothesis prior to frame 287, our attention
focusing method does not add in new points to the informative set Pa (green dots) prior
to frame 287. At frame 287, a set of children hypotheses are generated so our method
adds new informative features into the informative set Pa. Once these points are tracked
for some frames (second row), these informative points are used to discriminate the
hypotheses. This phenomenon is reflected on the large increasing slope of informativeness
I(Pa,M) (green solid line) between the two blue arrows. At the meantime, the baseline
set Pb (red dots) continues to add in points with high corner responses so at frame
287 the baseline set happens to have more points that are capable of discriminating the
hypotheses.
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8.4 Summary

In this chapter, we demonstrate that by focusing attention on visual features that are

informative, we can test a set of hypothesized models of the environment more efficiently.

A feature is informative if it is capable of discriminating among the hypotheses. Specifi-

cally, we define informativeness of a point feature mathematically and propose a method

to identify informative features. We show that by using informativeness to control the

process of feature acquisition, we can use computational resources more efficiently to

discriminate among the hypothesized models of a visual scene, with no loss of accuracy.

Informativeness allows our method to focus computational resources on regions in the

scene where different hypotheses make different predictions.

We implement the attention focusing method on our on-line generate-and-test frame-

work (Chapter 6), and compare the results with and without the attention focusing

method. Our experimental results demonstrate that this bias of search towards infor-

mative features allows the framework to converge to a single correct hypothesis more

often, with no loss of accuracy.

The attention focusing method presented in this chapter is an important step to-

wards active vision. While this chapter selects a set of informative features from the

current view, in active vision, the goal is to compute a robot motion to maximize the

informativeness of the upcoming frames. For example, it is more informative to move

towards a region where two hypotheses have different explanations than to move along

the region where all hypotheses have similar explanations. (More discussions on future

work is presented in Chapter 10.)
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Chapter 9

Application — From Structure to

Opportunities for Action

In addition to modeling the geometric structure of the indoor environment, this chapter

takes one step forward to reason about the opportunities of robot action 1. In this

chapter, we present a two-layer representation of the local indoor environment. Each

layer represents a different level of understanding of the environment. The first layer

models the geometric structure of the local environment by the Planar Semantic Model

(Chapter 6). The second layer is a pure symbolic representation that describes the

opportunities for robot action, based on the PSM determined in the first layer. Figure

9.1 illustrates the two-layer representation.

To represent the opportunities for robot action, we present the Action Opportunity

Star (AOS) to describe a set of qualitatively distinctive opportunities for action at a

given location (Section 9.1). An opportunity represents a group of trajectories that can

be described by the same semantic meaning of the robot’s action. AOS captures where

each opportunity is valid in the PSM and the relationships among these opportunities.

Since AOS is an abstracted representation, if the PSM of the robot’s surroundings in

two locations are similar, AOSs extracted in both locations will be the same. Finally,

we demonstrate an algorithm that extracts AOS from PSM at a given location.

As discussed in Chapter 1, a semantic meaningful representation needs to reflect

the robot’s action opportunities. The proposed representation for action opportunities,

AOS, is designed for a robot that navigates on the ground plane. A robot with different

1Materials presented in this chapter were published in [70].
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Physical World
Knowledge Representation

Action Opportunity Star (AOS)

Planar Semantic Model (PSM)

(a) Two-layer representation with complete
knowledge

Physical World
Knowledge Representation

Action Opportunity Star (AOS)

Planar Semantic Model (PSM)

(b) Two-layer representation with incomplete
knowledge

Figure 9.1: Two-layer representation. (Best viewed in color.) The representation is
illustrated on the ground-plane map. Each layer represents a different level of under-
standing of the local environment. The first layer models the geometric structure of the
local environment. The second layer is a pure symbolic representation that describes
the opportunities for robot action at a given location, based on the geometric struc-
ture determined in the first layer. Both layers are capable of representing incomplete
knowledge as shown in (b). In the physical world, black solid lines represent the part
of the environment that is observed by the robot, and the gray dashed lines represent
the part of the environment that is not observed by the robot. The first layer is the
Planar Semantic Model (PSM), which models the geometric structure of the local en-
vironment in terms of meaningful planes — the ground plane and a set of walls that
are perpendicular to the ground plane but not necessarily to each other. (PSM was
introduced in Chapter 6.) Each wall contains a set of disjoint wall segments (red lines),
delimiting where the wall is present and where is an opening. Each wall segment is
represented by two endpoints, and each endpoint has its properties indicating the level
of understanding of the bound of the wall segment. While a dihedral endpoint (green
dot) provides the full knowledge of the bound of its corresponding wall segment, an
occluding endpoint (yellow dot) and an indefinite endpoint (red hollow dot) provide
different types of partial knowledge of the wall intersection. The second layer is the
Action Opportunity Star (AOS), describing the robot’s surrounding environment by a
structured set of qualitatively distinct opportunities for robot action. Each opportunity
is visualized by an arrow pointing towards its associated direction, and the tip of the
arrow reflects its type. The opportunity type represents different purposes or different
levels of understanding of the opportunity. A green arrow means that the opportunity
is observed and navigable, while a red line means that the opportunity is unnavigable.
A green hollow arrow means that the opportunity is navigable but the actual boundary
of the opportunity is only partially observed.
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motion capabilities or with different goals may require a different representation for

its action. For example, a robot arm may require a representation that captures the

graspable regions in the environment rather than the paths for traveling.

Both layers of the representation, PSM and AOS, are capable of representing incom-

plete knowledge of the local environment so that the robot can plan to explore unknown

regions to incrementally fill in missing information. Our representation is useful to the

robot in making plans at different levels. While PSM allows the robot to precisely gen-

erate a trajectory to get from one pose to another, AOS allows the robot to make plans

at a higher level, such as turning right at an intersection or going forward (rather than

reverse) in a corridor. Moreover, our representation is useful for building a topological

map [8]. For example, from the AOS, we can easily detect whether a robot is at a topo-

logical place, such as a hallway intersection, or on a path that links two places. Finally,

our representation is not limited to monocular vision sensors. The AOS representation

is available for any sensors that provide sufficient information to extract the ground

plane and the walls to build the PSM. AOS extraction depends solely on the PSM and

is independent of the input sensors.

9.1 Action Opportunity Star

An Action Opportunity Star (AOS) is a qualitative description of the small finite set

of opportunities for robot action abstracted from an infinite number of trajectories that

are available within the region around the robot (the field of interest). An opportunity is

an abstraction, representing a group of trajectories that have the same qualitative effect

on the robot’s state. An opportunity for action is intended to be similar to the concept

of an affordance [22]. We define a gateway as a line segment on the metric map, PSM,

that specifies which trajectories belong to an opportunity. All trajectories that cross a

particular gateway from the side closer to the robot to the side farther from the robot

belong to the same opportunity.

In addition to representing individual opportunities, the AOS models the relation-

ships among opportunities in terms of the paths they are on. Two opportunities that

unambiguously represent opposite directions from the same field of interest are consid-

ered to be on the same path. We say that when the robot has exactly two opportunities

unambiguously representing opposite directions, then the robot is on a path. In any

other situation, the robot is at a place, which typically involves the need to make a
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decision, selecting among the available opportunities [8]. For example, when the robot

is at a T-intersection, it is surrounded by three opportunities, associated with two paths,

one of which passes through the place, while the other ends at that place.

Formally, at a given robot location, the AOS, ς is defined by a list of opportunities

Ai circularly ordered in the counter-clockwise direction,

ς = {A1, A2, ..., Ak} (9.1)

where k is the number of opportunities around the given location. Each opportunity,

Ai, is defined as,

Ai = 〈πi, ρi, τi,gi〉 (9.2)

where πi ∈ {0, 1, ..., Np} is the path that the opportunity is on, among the Np paths

that pass through the field of interest. ρi ∈ {+,−} is the direction along the path that

the opportunity is leading onto. The path πi and the direction ρi specify the relation

between opportunity Ai and another opportunity Aj where πi = πj and ρi = −ρj. gi is

the gateway associated to the opportunity Ai, which is a line segment φi parameterized

by two ends (p1
i ,p

2
i ) in the ground-plane map, and the qualitative traveling direction ψi

of the opportunity is the normal direction of the gateway pointing away from the robot.

Finally, τi specifies the type of the opportunity.

There are six different types of opportunity: observed, partially observed, unnaviga-

ble, potential, beginning and exiting representing different purposes or different levels of

understanding of the opportunity. An observed opportunity is navigable and leads the

robot into or out of a path intersection where more than two unaligned opportunities

are presented. Both ends of an observed gateway, p1
i and p2

i , are fully determined. A

partially observed opportunity plays the same role as an observed opportunity, except

only one of the two gateway-ends is determined, which leaves the actual width of the

gateway undetermined. An unnavigable opportunity prohibits the robot to travel along

the path due to obstacles. A potential opportunity exists when the region that the

opportunity is leading to has not yet been observed by the robot, and thus, there is a

potential opportunity for traveling along that direction. Similar to a potential oppor-

tunity, a beginning opportunity crosses the boundary between observed and unobserved

regions, except a beginning opportunity leads the robot into the observed region. A

beginning opportunity only occurs at the beginning of an episode (the first few frame of

an image stream), where the robot only observes the environment in front of it, instead
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observed

partially observed

unnavigable

potential

beginning

exiting

Figure 9.2: Visualization of different opportunity types. (Best viewed in color.) A filled
arrow means the opportunity type captures the full knowledge of that opportunity,
while a hollow shaped arrow means the opportunity contains incomplete knowledge.
Navigable opportunities are marked as green, while opportunities that are marked as
red are unnavigable. Yellow arrows represent a potentially navigable direction, and by
acquiring more observations around the opportunity, it can become an observed or an
unnavigable opportunity. From the color and the shape code, an exiting opportunity
is navigable (green) and the knowledge of that opportunity is complete. A partially
observed opportunity is also navigable (green) but it contains incomplete knowledge
(the actual width of its gateway has not yet been determine). A beginning opportunity
occurs at the beginning of each video sequence because the robot only observes the
environments that are in front of it. Thus, a beginning opportunity is navigable but
contains incomplete knowledge.

of its surrounding environment. The ends of the associated gateway of a potential or a

beginning opportunity are specified so that the right side of the vector
−−→
p1
ip

2
i is the ob-

served region while the left side of the vector
−−→
p1
ip

2
i is unobserved. While the above five

opportunity types reflect the structure of the local environment, an exiting opportunity

leads the robot out of the robot’s field of interest. This type of opportunity usually

appears when a robot is traveling on a long corridor where going forward and turning

backward are the only two possible qualitative actions. Visualization of different types

of opportunities are shown in Figure 9.2. Examples of the AOS in different situations

are shown in Figure 9.3.

9.1.1 Extracting Opportunities from PSM

Since a gateway links its associated opportunity to the geometric structure of the en-

vironment, we start by extracting a set of gateways within the field of interest, given

a robot location. In this section, we determine only the gateway g = (p1,p2) and the

type τ of each opportunity. In Section 9.1.2, we determine the other two elements, π

and ρ, of the opportunities by comparing the gateways to see which opportunities are

well-aligned to be on the same path.
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observed
unnavigable
exiting

(a) w/ complete knowledge

observed
partially observed
unnavigable
potential
beginning
exiting

(b) w/ incomplete knowledge

Figure 9.3: Examples of the AOS in different locations. (Best viewed in color.) AOS is
an abstract representation of the local surrounding in terms of the action opportunities
for a navigating robot at a given robot location. AOS captures where each opportunity
is valid in the metric map and the relationships among the set of opportunities Since
AOS is an abstract representation, AOSs extracted at all location within a region that
has the same surrounding geometric structure are the same. The regions are shown in
different colors. In (b), due to the limited field of view of a monocular camera, it is quite
often that the robot has incomplete observations of the local environment. Black solid
lines represent the part of the environment that is observed by the robot, and the gray
dashed lines represent the part of the environment that is not observed by the robot.
Each opportunity is illustrated by an arrow and the tip of the arrow reflects the type of
the opportunity (see Figure 9.2).
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Given the PSM, there are two major steps to collect the set of gateways within

the field of interest. The first step extracts gateways that reflect the structure of the

surrounding environment. All of these gateways have at least one end anchored at a PSM

endpoint. The type of the PSM endpoint at which a gateway is anchored affects the

type of its associated opportunity. Possible opportunity types at this stage are observed,

partially observed, potential and beginning. The rest of this section describes how we

extract these gateways in detail. Given the gateways from the first step, the second step

extracts exiting opportunities from regions that are not explained by either a PSM wall

segment or an existing gateway, through a circular scan around the field of interest. The

gateway of an exiting opportunity is perpendicular to, and intersects with, a PSM wall

segment or another gateway.

By using each endpoint in the PSM as an anchor, two gateways can be extracted with

their directions ĝ parallel to the associated PSM wall of the endpoint, and another two

gateways can be extracted with their directions perpendicular to the wall segment. A

gateway is valid only if it lies along the free space of the PSM. For a gateway anchored at

an occluding or an indefinite endpoint, it must lie on the free space side of the associated

wall of the PSM endpoint. If a gateway anchors at a dihedral endpoint, it must lie on the

free space side of both walls associated to the PSM endpoint. Furthermore, gateways

that are not within the field of interest are not considered.

Given p1 and the direction ĝ of the gateway, we find the other gateway-end p2.

If the gateway anchors at an occluding endpoint that connects a wall segment and a

wall opening along the same wall, p2 is the other PSM endpoint that associates to the

opening. Otherwise, p2 is the closest intersection point of a ray pointing from p1 in ĝ

direction and a wall segment in the PSM. In the case where no wall segment intersects

with the ray, p2 is left undetermined and thus, the gateway width is also undetermined.

We exclude a gateway if p2 is determined but the gateway is too narrow for the robot

to pass through. Finally, a gateway is removed, if its direction and its gateway-ends are

too similar to another gateway.

From each remaining gateway, we form an opportunity and determine its type τ by:

1) the type of the PSM endpoint at which the gateway is anchored; 2) whether p2 is

determined; and 3) the robot’s location. From a gateway that anchors at a dihedral

or an occluded endpoint, an observed opportunity is formed if p2 is determined, and a

partially observed opportunity is formed if p2 is undetermined. A gateway that anchors

at an indefinite endpoint is a boundary line between an observed and an unobserved

114



region in the PSM, and thus forms a potential or a beginning opportunity. We arrange

the order of the two gateway-ends (p1,p2) so that the observed region is on the right side

of the vector
−−→
p1
ip

2
i and the unobserved region is on the left side. A potential opportunity

is formed if the robot is located on the right side, the observed side, of the
−−→
p1
ip

2
i , and a

beginning opportunity is formed otherwise.

9.1.2 Extracting AOS from Opportunities

Given a set of opportunities with each provided with only the gateway g and the oppor-

tunity type τ , this section determines the other two elements 〈π, ρ〉 of each opportunity

and the ordering among the opportunities to construct the complete AOS. Since 〈π, ρ〉
of the set of opportunities capture the relationships among them, the complete AOS

is extracted by pairing up opportunities if their gateways are well-aligned to form a

path. In other words, AOS is extracted by determining the number of paths Np passing

through the field of interest.

First, we define a bounding box to represent the smallest bounding box enclosing all

gateways. Second, for each pair of opportunities, their gateways (gi,gj) are compared

using the similarity measurement,

sim(gi,gj) = − cos(ψi − ψj) ∗max(0,
lgi,gj
lgi

) (9.3)

where ψi is the normal direction of gateway gi pointing away from the robot. lgi is the

length of the bounding box edge that intersects by a line in the opposite direction of

ψi, and lgi,gj is the shortest distance from the gateway line φi to the center of gateway

gj. Note that this quantity is not symmetric, sim(gi,gj) 6= sim(gj,gi). The similarity

measurement is designed to account for two factors. The first metric considers how

similar the gateway directions are. Orthogonal gateways are not on the same path,

while gateways with ψg pointing in opposite directions may be on the same path. The

second metric considers the amount of overlap between the gateways relative to the size

of the bounding box enclosing all gateways. More overlap between the two gateways is

better. If there is no overlap at all, then the gateways will not be on the same path.

Starting from an empty set of paths Π that pass through the field of interest, we

carry out an exhaustive search among the opportunities to find unambiguous matches

using the similarity measurement. If a single, unambiguous match is found between two
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(a) aligned opportuni-
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(b) unaligned oppor-
tunities

Figure 9.4: Matching opportunities to form AOS. (Best viewed in color.) Given the
robot location (blue dot), three observed opportunities are extracted and their gateways
(pink lines) are determined from the PSM. If a single, unambiguous match is found
between two gateways, then their associated opportunities are considered to be on the
same path. (a) Gateway 1 and Gateway 3 are an unambiguous match, and thus their
associated opportunities are on the same path. Gateway 2 does not aligned to any other
gateways, thus, it is on its own path. (b) In a Y-intersection as shown, Gateway 4 is
aligned with Gateway 5 but Gateway 5 is aligned to both Gateway 4 and Gateway 6.
Thus, there are no unambiguous matches among the three gateways. The opportunities
associated with all three gateways are on separate paths.

opportunities, they are considered to be on the same path, and thus the path is added to

the set Π. If an opportunity belongs to no paths or to more than one path in the existing

path set Π, a separate path is created for the opportunity. Figure 9.4 are examples for

aligned and unaligned gateways. After the search is done, if a path in Π is associated

to only one opportunity Ai, an unnavigable opportunity Aj is generated with πj = πi

and ρj = −ρi to describe the opposite side of the path. Once all the opportunities are

fully determined, the complete AOS is formed by ordering the opportunities so that the

normal directions of their gateways are sorted in the counter-clockwise direction.

9.2 Evaluation

We implement the Action Opportunity Start (AOS) on top of the on-line generate-and-

test framework presented in Chapter 6 using The Michigan Indoor Corridor 2012 Video

Dataset. (See Chapter 4 for more description on the dataset.) For each frame t, we select

the maximum a posteriori PSM hypothesis at the current frame and extract the AOS

from the PSM at the current robot location. For each example (Figure 9.5,9.6,9.7,9.8),
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the first column is the image projection of the ground-wall boundaries of the PSM onto

the indicated frame of the video. The second column visualizes the PSM in the ground-

plane map with the robot pose plotted in blue. In the PSM, a green dot represents

a dihedral endpoint, and a yellow dot represents an occluding endpoint. A red hollow

dot represents an indefinite endpoint. Each wall in the PSM has an index automatically

assigned by the implemented system, and all the wall segments contained in that wall are

marked by the same index. The third column is the AOS at the current robot location.

Each opportunity Ai in the AOS is shown directed along its associated path with an

arrow reflecting its type (Figure 9.2), and a label for its path index and its direction

along the path 〈πi, ρi〉.
Figure 9.5 demonstrates the AOSs extracted in various locations within the PSM

constructed from the on-line generate-and-test framework. At Frame 20, a simple PSM

is constructed to describe the current view. Due to the field of view of the monocular

camera, no information of the PSM around the robot’s immediate surrounding is avail-

able when the process begins. Only the environment in front of the robot is observed.

Thus, the beginning opportunity leads the robot into the region that has been modeled

by the PSM. At Frame 141, as more observations become available, PSM with more

details (the first L-intersection) of the environment are incrementally built. Although

there is still incomplete knowledge in the PSM in the distance, the robot is now in a long

corridor with full knowledge of its current surrounding. Thus, in the AOS, the observed

opportunity leads the robot towards the L-intersection, while the exiting opportunity

leads the robot out of its field of interest. At Frame 170, the robot is at the first L-

intersection and has full knowledge of the opportunities available at the intersection. At

Frame 200, our method continues to capture the geometric structure of the environment

with the PSM representation. At the current frame, the robot has incomplete knowl-

edge of its surrounding. The wall on the left side of the robot is unobserved. Thus, the

potential opportunity leads the robot towards the unobserved region. At Frame 235, the

robot is in the second L-intersection but unlike the first one, the robot has incomplete

knowledge of the intersection. Finally at the last frame, the final PSM of the local envi-

ronment is constructed. Notice that, at this point, the system cannot yet conclude that

the endpoint of Wall 4 is an dihedral endpoint that connects to Wall 1.

Figure 9.6 demonstrates that PSM is a step forward from a pure planar model because

it represents a richer set of relationships among planar segments. At Frame 147, PSM

models the +-intersection by three walls (Wall 0, 2, and 3). Each wall contains two
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Figure 9.5: Examples of the two-layer representation on a long video. (Best viewed in
color.) These examples are results from Dataset L, where there are three L-intersections.
The robot traveled through two long corridors connected by two adjacent L-intersections
and finally made a U-turn at the last L-intersection. (See text for more details.)
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Figure 9.6: Examples of the two-layer representation in a cross intersection. (Best
viewed in color.) This dataset has one +-intersection along a long corridor, and the
robot traveled from one end of the corridor to the intersection without making any
turns. (See text for more details.)

disjoint wall segments that share the same plane equation in 3D. At the current frame,

the robot is at the long corridor as illustrated by the AOS. At Frame 300, the robot

is at the +-intersection, and has full knowledge of the intersection. Notice that it is

impossible for the robot to realize that it is at a +-intersection solely from the current

image due to its limited field of view. Thus, a temporally contiguous stream of images

is essential for coherent visual scene understanding.

Figure 9.7 compares results from two sequences acquired around the same intersec-

tion with different trajectories. At (T1)Frame 200, PSM models the T-intersection by

three walls (Wall 0, 2 and 3). Wall 2 contains two disjoint wall segments, and the gap

between the wall segments is the opening of the T-intersection. The AOS captures the

opportunities for actions at the T-intersection with full knowledge. At (T1)Frame 410,

PSM continues to model the dead-end at the minor corridor. Due to lack of observations,

the video sequence contains no clue for Wall 5 to intersect with Wall 2. Thus, in the

AOS, the potential opportunity captures the incomplete knowledge of the missing infor-

mation between Wall 5 and Wall 2. At (T2)Frame 110, the robot is at approximately

the same location as the robot in (T1)Frame 410 but in the opposite direction. Since

the observations of the two sequences of the same environment are different, PSMs from

the two sequences captures different forms of partial knowledges of the environment.

Consequently, the AOSs extracted from the two sequences captures partial knowledge of
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Figure 9.7: Examples of the two-layer representation at T intersections. (Best viewed
in color.) These examples are from Dataset T 1 and Dataset T 2. In the two video
sequences, the robot traveled around the same T-intersection in the physical world. In
Dataset T 1, the robot traveled from the major corridor and made a right turn onto
the minor corridor at the intersection, whereas, in Dataset T 2, the robot traveled from
the minor corridor to the major corridor. We process each sequence independently and
compare the results from the two. To clarify the comparison, we aligned the wall indices
so that the same wall in the physical world has the same index. (See text for more
discussions.)
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Figure 9.8: Example of incorrect PSM but correct AOS. (Best viewed in color.) Due
to lack of feature points, our method may fail to identify the correct PSM hypothesis.
(The maximum a posteriori hypothesis is not a correct PSM hypothesis.) In this case,
the actual location of Wall 7 is not correctly identified. However, if the incorrect PSM
has the correct structure layout, the extracted AOS will still be the same as the correct
PSM hypothesis.

different part of the robot’s surrounding. The two AOSs contains no conflicting oppor-

tunities. Note that since the robot was facing in opposite direction in the two sequences,

one of the AOSs needs to be rotated at about 180 ◦ in order to match the other one.

Thus, by acquiring more observations around a potential opportunity, it can become

an observed or an unnavigable opportunity. At (T2)Frame 230, the robot is at the T

intersection and has full knowledge of the intersection. Since the robot is at the same

T-intersection as the (T1)Frame 200, the AOSs in both situations are the same. In fact,

any location within the T-intersection will have the same AOS. Moreover, if the struc-

ture and the knowledge of the robot’s surrounding of two locations are similar, AOSs

extracted in both locations will be the same.

The maximum a posteriori PSM hypothesis is correct 2 92% of the time. The main

reason that our method fails to select the correct hypothesis is lack of feature points.

2We consider a PSM hypothesis correct if the geometric structure within 4 meters of the vision
cone is correctly modeled. Thus, for a given frame, it is possible to have more than one correct PSM
hypothesis, if the differences are further than 4 meters away.
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However, among the frames with an incorrect PSM, our method extracted the correct

AOS 73% of the time. This happens because the incorrect PSM hypothesis has the

same structure layout of the correct one, except the actual locations of the walls are off.

Figure 9.8 is an example of this situation.
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9.3 Summary

In this chapter, we move one step forward from modeling the geometric structure of the

indoor environment to reason about opportunities for navigation. We propose the Action

Opportunity Star (AOS) to describe a set of qualitatively distinctive opportunities for

robot action at a given location. An opportunity represents a group of trajectories that

can be described by the same semantic meaning of the robot’s action. AOS captures

where each opportunity is valid, the property of each opportunity, and the relationships

among these opportunities. We presented a method to extracts AOS from PSM.

Since AOS is an abstract representation, if the surrounding PSM at two locations

are similar, AOSs extracted at both locations will be the same. Similarly, if two PSM

hypotheses have the same structure but differs in the exact wall parameters, AOS ex-

tracted from the two PSM hypotheses will be the same. Therefore, AOS allows the

robot to make plans even when there are ambiguities in modeling PSM.

AOS opens up several interesting future research directions that can be build on

top of this thesis. First, the action opportunity star supports topological mapping [8]

because the robot can detect whether it is at a topological place which requires making a

decision (e.g. hallway intersection) or not by checking the number of paths in the AOS.

Second, AOS also supports active sensing where a robot actively explores the unobserved

parts of its local environment. Our representations, AOS and PSM, allows the robot

to make plans in different levels. The robot can select an opportunity from the AOS

based on its active exploration strategy. From the selected opportunity, the robot can

identify a target pose that leads the robot towards that opportunity. A motion planning

algorithm [54] can then be applied to find the optimal trajectory that gets the robot

from its current pose to the target pose within the free-space of PSM. (More discussions

on future work is presented in Chapter 10.)
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Chapter 10

Conclusion and Future Work

In this chapter, we summarize our contribution to solving the problem of scene under-

standing for indoor navigating robots (Section 10.1). We then suggest extensions to our

proposed method and future research directions for indoor navigating robot to build on

top of this thesis (Section 10.2).

10.1 Summary

An indoor navigating robot with vision sensor needs to understand the geometric struc-

ture of its local environment in order to navigate. The input to the visual perception is

a temporally contiguous stream of images, and the output of visual scene understanding

must be a representation of the local environment that is useful for the robot to make

plans. Moreover, visual scene understanding must be an on-line and efficient process so

that the robot’s representation can be incrementally updated as visual data is acquired.

In this thesis, we propose the Planar Semantic Model (PSM) to represent the locally-

sensed indoor environment. PSM is a concise planar representation that describes the

environment in terms of meaningful planes — ground plane and walls. PSM is a step

forward from existing floor-wall models because it captures richer relationships among

the wall segments. PSM is capable of capturing incomplete knowledge so that missing

information can be incrementally assimilated when observations become available. In

addition, we move one step forward from modeling the geometric structure of the indoor

environment to reason about opportunities for robot actions. We propose the Action

Opportunity Star (AOS) to describe a set of qualitatively distinctive opportunities for

action at a given location. We demonstrate a method to extract AOS from PSM.
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We demonstrate an on-line generate-and-test framework to efficiently construct PSM

of the local environment as the robot travels within it. Our framework includes two

key elements: 1) incremental hypothesis generation, and 2) on-line hypothesis testing.

Hypothesized PSM models are incrementally generated by transforming the current set

of hypotheses into a set of new hypotheses that describe the same environment with more

details. These hypothesized models are tested through a recursive Bayesian filter based

on their abilities to explain the 2D motion of a set of tracked features in the image when

using a monocular camera, or their abilities to explain a set of 3D features in the 3D

coordinate when using a depth camera. In order to interpret cluttered environments, we

introduced a hypothesis testing mechanism that addresses a three-way trade-off among

the coverage of the hypothesized model, the degree of accuracy with which the model

explains the features, and the simplicity of the model. This testing mechanism not only

allows us to converge to the correct PSM in cluttered environment, but also segment

out clutter regions that cannot be represented by that PSM. In addition, we propose an

attention focusing method to select informative features (observations) to discriminate

more efficiently among the current active set of hypotheses.

We evaluate our on-line generate-and-test framework in three phases. First, we

evaluate the effectiveness of the on-line testing mechanism to select the best model from

a set of hypotheses about a simple empty three-wall environment generated at the first

frame of the video. We compare our results with existing single-image layout estimation

methods and demonstrate that by using temporal information, we can construct the

geometric structure of the local environment more accurately. We also show that using

a planar structure is more concise and more meaningful than a 3D point cloud, which

is what most existing on-line methods produce. Second, we evaluate the whole on-line

generate-and-test framework in an empty environment with more complex structure

(hallway intersections) and demonstrate the expressive power of the PSM representation.

We also compare our framework with and without the attention focusing method and

demonstrate that with this bias search towards informative features, our framework

converges to a single hypothesis more often, with no loss of accuracy. Finally, we evaluate

our framework in cluttered environments, where portions of these environments are not

representable by the PSM and demonstrate the effectiveness of the three-way trade off

among converge, accuracy and simplicity. A potential weakness of our evaluation is that

we only tested on the datasets that we collected with the same robotic platform in the

same campus. A more extensive evaluation on our framework using different robotic
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platforms in a larger variety of environments is part of our future work.

To summarize, this thesis contributes to solving the problem of visual scene under-

standing for an indoor navigating robot from both the representation aspect and the

algorithm aspect. In terms of representation, we propose the Planar Semantic Model to

concisely represent the geometric structure of the indoor environment and propose the

Action Opportunity Star to describe qualitative actions available at a given location. In

terms of algorithm, while existing plane-based indoor scene understanding algorithms

use either a single-image approach or a batch multiple-image approach, we propose an

on-line generate-and-test framework to incrementally and efficiently construct a planar

structure of the indoor environment.

10.2 Future Work

In this section, we propose a few ways to extend or improve our current on-line generate-

and-test framework (Section 10.2.1). We also identify research directions related to

indoor navigating robots that could be built on top of this thesis (Section 10.2.2).

10.2.1 Extension of Proposed Method

Combine Pose Estimation and Scene Understanding

This thesis assumes that the robot pose between consecutive frames is either computed

by the visual data or provided by additional source (e.g. laser). In other words, robot

poses are treated as known values in the on-line generate-and-test framework for scene

understanding. However, robot pose estimation may be noisy, and the overall robot

trajectory may drift over time. One common way to improve pose estimation is to

use the geometric structure to provide constraints for refining the estimated poses in the

global frame of reference. Thus, one extension to our framework is to add the uncertainty

of pose estimation into our scene understanding process.

There are several potential methods to incorporate pose estimation into our frame-

work. The simplest method is to maintain an uncertainty measurement for the estimated

pose, and then refine the pose according to the hypothesized model with the maximum

posterior probability. A threshold on the posterior distribution is needed to make sure

the maximum a posteriori hypothesis outperforms the rest of the hypotheses substan-

tially to avoid misleading the pose estimation due to the noise in hypothesis testing. It
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is possible to have multiple compelling hypotheses that vary slightly. In this case, the

portion that these hypotheses agree on should be used to refine the pose.

Another method to incorporate the uncertainty of pose estimation is for each hy-

pothesis to not only maintain the precision of the planar model but also maintain an

estimate of the robot pose. In other words, each hypothesis is an interpretation of the

3D environment and the robot pose within that environment. Each hypothesis is an

independent SLAM process where the robot pose and the planar model are jointly up-

dated in each frame. The role of the Bayesian filter is to test which combination of pose

and model best explains the observed features. A potential issue of this method is that

a combination of bad pose and bad model may explain all observations very well, and

thus, a likelihood function may need to be designed to overcome this issue.

Handle Dynamic Obstacles

The method proposed in this thesis assumes the world is static. However, it is quite

common to have dynamic objects (e.g. pedestrians) moving relative to the static envi-

ronment. Features from dynamic objects do not provide the same constraints as those

from static environments, and thus, may mislead the Bayesian filter to converge to an

incorrect hypothesis. Thus, one extension to our framework is to handle dynamic ob-

jects.

One simple way is to detect features from potential dynamic objects and remove

these features from the hypothesis testing step. If the robot pose is provided by external

sources, features that do not fulfill the rigid-body constraints given by the robot pose

are dynamic. If the robot pose is estimated from the visual data, dynamic features

may also be detected as part of the pose estimation process. Pose estimation is usually

obtained by fitting a 3D rigid-body transformation. One could apply an outlier rejection

method, like RANSAC, to identify outliers that are not part of the dominant rigid-body

transformation. These outliers are either noise or dynamic features, and should not be

used to test the hypothesized models.

Handle Stairways and Ramps

The Planar Semantic Model assumes that the ground plane is flat. However, indoor

environments usually contain stairways and ramps, which cannot be expressed by a

single ground plane. Thus, one extension to our framework is to extend the PSM to
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allow the ground to consists of multiple planes.

The ground should be specified by a base plane, the plane that covers the majority

of the ground, and a set of sub-planes that capture stairways and ramps. A stairway

can be represented by a sequence of sub-planes that are parallel to the base plane. Each

sub-plane is represented by its height from the base plane along with a set of vertices

on the ground-plane map specifying where the plane is present. One could also apply

constraints (e.g. constant step heights or relative locations between two steps) to the

sub-planes to further reduce the parameters required to represent a stairway. A ramp is

a sub-plane that are tilted from the base plane. This sub-plane can be represented by

an angle specifying the slope of the ramp and a set of vertices on the ground-plane map

specifying where the ramp is present.

Given a good calibration or estimation between the camera and the base plane of

the ground, our on-line generate-and-test framework can be extended to generate chil-

dren hypotheses with ramps and stairways. Geometric properties about the ramps and

stairways can also be derived.

Since stairways and ramps may be dangerous for certain types of navigating robots,

such as a wheelchair robot, we can further extend our representation to capture the

safeness for the robot to navigate through these regions. Starting from the extended

PSM, a safety map [50, 49] of the indoor environment can be constructed. Then, the

AOS can be extended to capture the safeness about each opportunity. For example, an

opportunity that leads to a ramp can be navigable but unsafe.

Apply to Indoor Flying Robots

Another interesting future work is to apply this thesis to indoor flying robots, like

a quadrotor. Unlike wheeled robots, a semantically meaningful representation for a

flying robot must express the maximum height of the building in order to determine

the limits of the flying height. The Planar Semantic Model needs to be extended to

include the ceiling. Including the ceiling raises several interesting questions for the

representation. First, unlike the ground-plane, ceiling may need to be represented by

multiple planes, instead of one. Second, while assuming the ceiling is parallel to the

ground plane reduces the degrees of freedom of the representation, in many real-world

environments, ceilings are not parallel to the ground. Third, the representation must be

able to express incomplete knowledge about the boundary between the ceiling and the

walls.
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10.2.2 Future for Scene Understanding for Indoor Navigating

Robots

Detect Scene Changes

Assume a robot has obtained an understanding of the local environment using our frame-

work. An understanding means the robot has a set of hypothesized interpretations (PSM

and clutter) of this environment and a posterior probability distribution over the set of

hypotheses. Ideally, there is one hypothesis with a relatively high posterior distribution

among the set. When the robot revisits this environment, the robot needs to localize

itself in the coordinate frame of the previous understanding and update its previous

understanding based on observations from current visit.

There are two ways to localize the robot to its previous understanding. A simple

way is to compare current observations with the hypothesis with the maximum posterior

probability to determine its pose. We can also extend our hypothesis to include pose

estimation as described in Section 10.2.1. In this case, each hypothesized interpretation

will maintain its own localization. Once the robot is localized within its previous under-

standing, our generate-and-test framework can be applied to update its understanding

of the local environment. The framework will now start with the set of hypotheses from

the previous understanding, and use the previous posterior distribution as the prior

distribution.

The local environment may change between the two visits. For example, an object

may be placed in a different position, or may even be moved in or out from that environ-

ment. Thus, an important issue about updating the scene interpretation is to identify

these quasi-static regions, regions that are static at each visit but may not remain in

the same position between visits. These quasi-static regions usually consist of objects,

like furniture, that are not part of the building. One can segment out these regions by

comparing the previous clutter regions with the current ones.

A door, which is a part of the building and contains important properties for navi-

gations, is also quasi-static. While a closed door can be explained by a wall segment, an

open door creates an opening along the wall and the door itself will be identified as part

of clutter. The best interpretation that describes the same environment depends on the

status of the door. Thus, an interesting research direction is to extend our PSM rep-

resentation to include doors and extend our hypothesis generation process to generate

hypotheses with doors. AOS also needs to be extended to include opportunities that are
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“quasi-navigable”, opportunities that are navigable at some visits and are unnavigable

at other visits.

Active Vision: Explore the Indoor Environment

In this thesis, we process the visual data that the robot acquires and update its un-

derstanding of the local environment. This is considered as passive visual processing,

because the robot does not decide where to look. In fact, scene understanding becomes

more efficient, if the robot can control where to look for observations that best update

its knowledge of the local environment. Thus, an interesting research direction is active

exploration for indoor scene understanding, and this thesis provides a useful foundation

for active exploration.

From a high-level point of view, active exploration requires the robot to know which

portions of the environment are not fully explored. Our proposed representations, PSM

and AOS, capture incomplete knowledge of the local environment, and provide infor-

mation for planning in different levels. With the AOS, the robot can easily select an

action opportunity that is navigable but contains incomplete knowledge (e.g. partially

observed, potential, and beginning opportunities) to explore. With the selected action

opportunity, the robot can refer to the PSM to plan a trajectory that leads to an unex-

plored portion of the environment while avoiding obstacles in the modeled portion.

From a lower-level point of view, having more informative features that can discrim-

inate among the hypotheses allows our generate-and-test framework to converge to a

single hypothesis more frequently. In Chapter 8, we defined an informativeness mea-

surement to identify regions that are informative for testing the hypotheses. In this

thesis, we adjust the threshold for extracting visual observations based on the informa-

tiveness to allow more informative features to be extracted and to avoid wasting efforts

on uninformative regions. This informativeness measurement is also useful for active ex-

ploration. For active exploration, the goal is to compute the motion that maximizes the

informativeness of the entire image. A simple example is to compute the predicted infor-

mativeness by slightly varying each dimension of the robot pose and then selecting the

dimension that produces the maximum predicted informativeness. A more sophisticated

method can be developed to maximize the ratio between the predicted informativeness

and the amount of robot motion.
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