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Abstract 

We demonstrate an automated method for proving temporal logic statements about solutions 
to ordinary differential equations (ODES), even in the face of an incomplete specification of the 
ODE. The method combines an implemented, on-the-fly, model checking algorithm for statements 
in the temporal logic CTL* with the output of the qualitative simulation algorithm QSIM. Based 
on the QSIM Guaranteed Coverage Theorem, we prove that for certain CTL* statements, @, if @ 
is true for the temporal structure produced by QSIM, then a corresponding temporal statement, 
di’, holds for the solution of any ODE consistent with the qualitative differential equation (QDE) 
that QSIM used to generate the temporal structure. @ 1997 Elsevier Science B.V. 
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1. Introduction 

The world is continuous and dynamic, but we want to use discrete symbolic means 
to reason reliably about it. We demonstrate a method for doing this for a significant 
range of cases by using qualitative simulation to generate a finite structure guaranteed 
to describe the behaviors of the continuous system, then interpreting that structure as a 
model to check the validity of statements in temporal logic. 

The main theorem of this paper can be stated informally as follows. Suppose A4 

is a QSIM behavior tree generated from the qualitative differential equation C. If M 
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is a model for a temporal logic formula, then the formula describes every solution to 
every ODE which abstracts to C. Of course, we will formalize all of these relationships 
carefully in this paper. 

In many applications in which ordinary differential equations are used, information 

about initial conditions or the specific relationship between a pair of quantities is not 

completely known. In some cases constants are only known to lie in a certain range or the 
relationship between quantities is only known to be monotonic. Qualitative reasoning 

allows this information to be used to generate descriptions of solutions to any ODE 
which abstracts to the known information. We call such an abstract ODE a qualitative 

differential equation (or QDE) . In many such applications we want to draw conclusions 

about the solution to any ODE consistent with the limited information we have about a 

system. 
Furthermore, there are a number of applications of model-based reasoning that can 

profit from reliable inference about time-ordered events over the set of possible behaviors 
of a continuous system. Since applications such as control, monitoring, diagnosis and 

design must often cope with conditions of incomplete knowledge, the ability to do 
temporal reasoning over the possible behaviors of a system described by a qualitative 
or semi-quantitative model is particularly valuable. Our program, TL, makes a formal 
connection between solutions to real differential equations and temporal logic model 

checking. 
A qualitative simulator, such as QSIM, constructs a tree-like structure whose branches 

represent the possible behaviors consistent with the qualitative differential equation and 
initial state input to the QSIM algorithm [ 13,141. This set of behaviors is expressed 
as a finite structure of qualitative state descriptions. In the case of QSIM, this struc- 
ture is guaranteed to contain a branch which describes any “reasonable” extended- 
real-valued function which is a solution of an ordinary differential equation which 

abstracts to the QDE under circumstances to be described. We call this property the 

“soundness” of QSIM, and this property is the content of the Guaranteed Coverage 

Theorem. 
Since the output of the QSIM algorithm is a structure whose paths describe reasonable, 

extended-real-valued functions, we would like to be able to formulate temporal questions 
about the system it describes and have those questions answered. This is accomplished 
using temporal logic model checking. A model checking algorithm takes as input a 
temporal logic formula and a tree-like structure and determines whether the structure is 
a model (in the logical sense of the word) for the formula. Temporal logic augments 

propositional logic with temporal operators on time-varying truth values, such as always, 

eventually, and until. Modal logic adds operators for truth values in alternate possible 
worlds (i.e., alternate behaviors or paths), such as necessarily and possibly. 

We have chosen to use the branching time temporal logic CTL* which is described 

by Emerson and Clarke [ 7,8]. 
Because QSIM is sound, for any CTL* statement @ which is “universal” in a sense we 

will define, if Cp is modeled by the structure produced by QSIM, then a corresponding 
theorem holds for the solution of any ordinary differential equation consistent with the 
QDE that generated the QSIM structure. Therefore, at least for universals, statements in 
temporal logic about continuous systems can be proved by qualitative simulation. This 
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allows a hybrid reasoning system to prove common-sense statements and to do expert 
reasoning about dynamical systems. 

We also provide a limited completeness result: in case all paths in the structure output 
by QSIM describe reasonable, extended-real-valued functions which are solutions to 

differential equations consistent with the QDE input to QSIM, then even CTL* formulas 
which are not universal may be used to prove properties of the system. 

The propositional part of the temporal language includes propositions which allow 

the construction of formulas containing numerical information. This can be used in 
conjunction with the numerical extensions to QSIM-Q2 [ 161, Q3 [2] and NSIM 

[ 121 -in order to prove numerical properties of physical systems. 
In Section 2 we describe and define the temporal logic language CTL* and present 

some basic definitions and facts which will be needed in our main theorem. The reader 
already familiar with CTL* may want to read only Section 2.1 to learn about our notation 

conventions and Section 2.4 to see the standard results from the literature which we will 

be using. 
In Section 3 we describe the QSIM framework and prove the Guaranteed Coverage 

Theorem. Even readers familiar with QSIM should read most of Section 3 since we use 
an updated formalization and add some new terminology. 

Section 4 begins to show how the QSIM framework and the underlying differential 

equations are related to the theory of temporal logic and CTL* formulas. There we 
explain how the output of the QSIM algorithm is used as a structure over which 
formulas in CTL* can be interpreted. We also show how CTL* formulas describe 
reasonable real-valued functions. 

In Section 5 we introduce the last hypothesis to the main theorem and prove the main 
theorem. We also prove some useful special cases and a completeness result. Section 5 

also discusses some issues concerning the implementation. 
In Section 6 we describe some applications of the combination of temporal logic 

model checking with qualitative simulation. 
Sections 2-4 lay the groundwork for the statement of the main theorem. We will 

be stating the main theorem in increasing degrees of formality as we develop the 
terminology. 

2. CTL* 

Computational tree logic (CTL and its extension CTL*) is a branching time temporal 
logic. The theory of branching time temporal logics is summarized by Emerson in The 

Handbook of TheoreticaE Computer Science [ 81. We will customize CTL* slightly in 
order to allow states with no successors because in continuous systems a state may have 
no successor (e.g. if time reaches infinity or if the value of some variable crosses a 

boundary of its range). In this section, we define the syntax and semantics of the CTL* 
language and, in Section 2.4, give some basic results and definitions which will be used 
by our main theorems. The presentation of CTL* here does not differ significantly from 

the presentation of the language in [8] except in the notation we use. We use this 
notation as a convenience for our implementation. 
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A model checking algorithm examines a temporal structure and a temporal logic 
formula and determines whether the structure is a model (in the logical sense of the 
word) for the formula. 

Our implementation (TL) of a model checking algorithm for CTL* is an “on-the-fly” 

model checker based on the algorithm of Bhat, Cleaveland and Grumberg [ 31. On-the- 

fly algorithms have the advantage over the more common “global” algorithms of being 
able to terminate with the correct result before constructing the entire exponentially 

large structure. If the formula happens to be in the sublanguage CTL of CTL* then 

the complexity of this on-the-fly algorithm is the same as the best known algorithms 

for CTL model checking. Our implementation is customized for expressing statements 
about continuous systems (see Section 4). 

2.1. Terminology and notation 

We interpret a CTL* formula over a temporal structure M = (S, X, L) where 
0 S is a set of states, 
l X is a set of fullpaths, 

l L:SxAP+{T,F} is an interpretation which takes a state s E S and an atomic 
proposition 4 E AP and assigns a Boolean truth value. 

Here AP is the set of atomic propositions. A fullpath is a path which is either infinite 
or terminates with a state which has no successor. 

We use the notation (SO, si, ~2,. . .) to denote an infinite or finite totally ordered set. 

We let A(x) denote the cardinality of a finite, totally ordered set x. If x is an infinite, 
totally ordered set, then by i < A(x) we mean i is any nonnegative integer. Here we 

use totally ordered sets to represent paths and fullpaths. Notice that the last state in a 
finite fullpath x = (SO, st, s2,. . .) is sh(*)_i. 

We now describe the path quantifiers and the basic temporal operators on propositions. 

The names we use for path quantifiers and temporal operators are equivalent to the more 
concise names used in the temporal logic research community: 

A z necessarily, G z always, X = next, 

E = possibly, F = eventually, u =_ until. 

We prefer to give a rough description before the formal syntax and semantics are defined. 
Suppose some state s and path x starting at s are given and that p is a formula. The 
two path quantifiers are 

l (necessarily p), which is true at s if p is true of every fullpath starting with s, 

and 
l (possibly p), which is true at s if p is true of Some fullpath starting at s. 

The elementary temporal operators are (next p) and (until p q) where p and q are 

formulas. 
l (next p) is true of the path x if A(x) = 1 or p is true of the path obtained from 

x by deleting its first state, and 
l (until p q) is true of x if q is true of some state in x and p is true of every 

state preceding the first state in which q is true. This operator is sometimes called 
strong-until, to distinguish it from weak-until to be defined below. 
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The precise syntax and semantics of until and next will be defined in the following 
sections. We will use the following abbreviations to define other operators in terms of 

until and next: 

(releases p q) 5 (not (until (not p) (not q> 11, 

(before p q) s (not (until (not p) q)), 

(strong-nextp) z (not (next (notp))), 

(eventually p) = (until true p), 

(always p) = (not (eventually (not p) > 1, 

(never p> 3 (always (not p> >, 

(weak-until p q) s (before q (and (not q) (not p) > > , 

(infinitely-oftenp) = (always (eventuallyp)), 

(almost-everywherep) z (eventually (alwaysp)). 

The formula (releases p q) is true of a path if q is always true or if q is true 
through the first state in which p is true. The statement (before p q) is true of a 

path if p is true in some state previous to the first state in which q is true (though 
q does not necessarily ever become true). The formula (weak-until p q) is true of 
a path if p is true in every state or in every state before the first state in which q is 

true. 
Because we are applying CTL* to structures which may have finite fullpaths, the 

temporal operator next may seem ambiguous. Therefore, we must distinguish between 

strong-next and weak-next. The statement (weak-next p) is true of a path if the 
path has no next state or if the path has a second state and p is true of it. The statement 
(strong-next p) is true of a path if the path has a second state and p is true of that 

state. In our discussion, we consider next alone to mean weak-next. 
In the following two subsections we give the formal definitions for the temporal 

operators and path quantifiers of CTL*. 

2.2. Syntax 

A state formula is a formula which is interpreted over a state and a path formula is 

a formula which is interpreted over a path. State formulas in CTL* are generated by 
rules (Sl)-( S3) below. The path formulas in CTL* are generated by rules (B l)-(B3) 

below. Although the semantics of releases, strong-next and or can be derived from 
their definitions as abbreviations, we include the definitions here so that the proofs later 

will be easier to follow. 

Definition 1. The syntax of CTL* is defined as follows: 
(S 1) each atomic proposition 4 is a state formula, 

(S2) ifpl,...,p, arestateformulasthensoare (and pl . ..p.), (or p,...p,,) and 
(not PI>, 
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(S3) if p is a path formula then (possibly p) and (necessarily p) are state 
formulas, 

(Bl) every state formula is a path formula, 

(B2) if pt, . . . ,p,, arepathfotmulas thensoare (and pt . ..P.,), (or pt . ..p.,> and 

(not pl>, 
(B3) if p and q are path formulas then so are (next p>, (strong-next p), 

(releases p q) and (until p q). 

We also allow the standard boolean abbreviation for implies. 

2.3. Semantics 

The following notation is needed before the semantics of our logic can be defined. 

Given a path x = (SO, $1, ~2,. . .), for every nonnegative integer i < A(x) we let xi 

denote the path (si, si+l, si+2,. . .), which is the suffix of x starting at si. Thus, for 

any nonnegative integer i < A(x), xi is the path obtained from x by deleting from 
x the first i states. Notice that if x is finite, then xi is not defined for i 2 A(x) and 

A(x’) = A(x) - i. 

Now we are ready to give the semantics for the language. We write M, SO k @ 

(respectively M, x k @) to mean that the state formula @ (respectively path for- 
mula CD) is true in the temporal structure M at the state SO (respectively of the path 

x). Each item below gives the interpretation of the corresponding item in the syntax 
above. 

Definition 2. If se is a state in M and x = (SO, st , . . .) is a nonempty fullpath in M 
starting at so, then we inductively define + as follows. 

(Sl) M,sa + C#J where C$ is an atomic proposition if and only if L( SO, 4) = T; 

(S2) M, so + (and PI . . -p,> ifandonlyifM,sa+~piforalli, l<i<n; 

M, so + (or PI . . -pn> ifandonlyifM,sa+piforsomei, l<i<n; 

M, SO k (not p) if and only if it is not the case that M, se + p; 

(S3) M, SO /= (possibly p> if and only if there is a fullpath y in M starting at SO, 
such that M, y /= p; 

M, SO k (necessarily p) if and only if for every fullpath y in M starting at 

so, M,Y FpP; 

(B 1) M, x /= p where p is a state formula if and only if M, SO k p; 

052) M,xi= (andpI.. .pn> ifandonlyifM,xkpiforalli,l<i<n; 
M, x b (or pr . . .p,,> if and only if M, x b pi for some i, 1 < i < n; 

M, x k (not p) if and only if it is not the case that M, x k p; 

(B3) M, x k (until p q) if and only if there is a nonnegative integer i < n(x), 

such that M, xi + q and for every nonnegative integer j < i, M, xj + p; 

M, x k (releases p q) if and only if for every nonnegative integer i < n(x), 

M, xi k q or there is a nonnegative integer i < A(x) such that M, xi + p and 
for every j < i, M, xj k q; 

M, x k (next p> if and only if A(x) = 1 or M, x1 k p; 

M, x k (strong-next p) if and only if A(x) > 1 and M,x’ /== p. 
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2.4. Basic results 

The proofs of our main theorems will use the fact that any formula can be written in 
the following form. 

Definition 3 (Positive normal form). A CTL* formula is in positive normal form if 
until, releases, next and strong-next are the only temporal operators in the 

formula and for every not in the formula, its scope is an atomic proposition. 

Here we require that implies first be rewritten in terms of not and and or or. Every 

CTL* formula is equivalent to a formula in positive normal form because all temporal 
operators can be written in terms of those mentioned above and nots can be propagated 
inward to propositions [ 31. 

Definition 4 (Universal formula). A CTL* expression @ is said to be universal if, 
when the formula is written in positive normal form, there are no occurrences of the 
path quantifier possibly. 

We call a path formula a pelfect path formula if it contains no path quantifiers. These 

are exactly the formulas which correspond to formulas in propositional linear time logic 

(PLTL) . If 0 is a formula in CTL*, then Cp’ denotes the perfect path formula obtained 
from @ by deleting all occurrences of the path quantifiers. For example, if p and 9 are 

propositions and 

@ = (necessarily (until p (necessarily s> >>, 

then 

@’ = (until p q) . 

We call @J’ the pellfection of @. 
The following lemma is needed in the proof of Lemma 6 which is used in the proof 

of one of the main theorems. 

Lemma 5. If @ is a universal formula and x is a fullpath in M such that M, x t== @, 
then M, x k Sp’. 

The proof of this is complex and not enlightening. Therefore, it has been put in 
Appendix C . 

Lemma 6. For every universal CTL* state formula @, and every temporal structure M 
and state s in M, if M, s k @ then for every fullpath x in M starting at s, M, x k @I. 

Proof. The proof follows easily by induction on the length of @ by using Lemma 5. 0 

3. QSIM 

In Section 3.1 we briefly describe the QSIM framework. We refer the reader to 
Kuipers’ full description of the QSIM framework [ 141 and to Appendix B for details 
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on the new definition of a reasonable function. Other reformalizations of concepts related 
to the Guaranteed Coverage Theorem are described in the present section. 

The QSIM algorithm takes as input the user’s qualitative or semi-quantitative descrip- 

tion of a physical system. This input is called a qualitative differential equation (QDE) . 

This description is formally related to some class of ODES as we explain below. The 

output from the QSIM algorithm is a tree whose nodes are states describing the values 
of the variables in the input QDE. 

The main theorem of this section (the Guaranteed Coverage Theorem) stated infor- 

mally says that every solution to any ODE related to the QDE is represented in the tree 
output by QSIM. We give the formal statement of the Guaranteed Coverage Theorem 
below. 

Sections 3.1 and 3.2 explain some of the basic terminology used in the statement of 
the Guaranteed Coverage Theorem. These sections also explain why the hypotheses of 

the theorem are necessary. Those sections are designed so that the basic ideas are easy 
to find. A casual reader should be able to understand the statement of the Guaranteed 

Coverage Theorem without reading all of the details in Sections 3.1 and 3.2. 
Section 3.1 among other things, formalizes the relationship between QDEs and ODES 

and the relationship between the finite output of QSIM and the generally infinite structure 
which it represents. Section 3.2 formalizes the relationship between fullpaths in QSIM 

structures and continuous functions. 
Now we give the formal statement of the Guaranteed Coverage Theorem. All unfa- 

miliar terms used in this statement (e.g., specification, splitting, closed, abstraction) are 
defined in Sections 3.1 and 3.2. 

Suppose M is a closed tree generated from the QDE and initial state (C, I). Suppose 
the ODE, F, abstracts to C and that the structural abstraction, F’, of F has solution set 
U. The QSIM algorithm is carefully crafted to guarantee that the quagtative structure of 

U is described by some rooted fullpath in the represented structure M: 

Theorem 7, (Guaranteed coverage). Under the conditions above, there is a rooted full- 
path x in A4 and a speci$cation (x, c) of x such that (x, c) qualitatively describes some 
splitting ({ ti}, U) Of U. 

The proof is given by Kuipers [ 13,141. Because most of the QSIM framework-the 
algorithm itself, for example-is beyond the scope of this paper, we will not detail the 
proof here. 

3.1. The QSIM framework 

A qualitative d@erential equation consists of a finite set of variables (each of which 
is associated with a quantity space which is a totally ordered set of landmarks), and a 
set of constraints on the values of the variables. A QDE is a structural abstraction of a 

class of ordinary differential equations. The QDE codifies the QSIM user’s incomplete 
knowledge of a physical system. 

Starting with a QDE, C, and an initial state, I, qualitative simulation with QSIM 
produces a finite tree, M = (S, R, B), of qualitative states, linked by the QSIM successor 
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relation, R. The finite tree which it produces is called a QSIM behavior tree in the 
literature. We let M = (S, R, B) represent the behavior tree where S is the set of states, 

R is the successor relation and B is the set of fullpaths starting at the initial state. Each 
behavior is represented as a finite, totally ordered set beginning at the initial state and 

terminating at a state with no R-successor. The set B is completely determined by the 
relation R and the initial state I. Because of the significance of the initial state, we call 
fullpaths whose first state is I rootedfullpaths. 

We will say that this QSIM behavior tree was generated by the pair (C, I) of the QDE 
and the initial state. A QSZM behavior is a path in the behavior tree, starting at the root 

and terminating at a leaf of the tree, i.e., B is the set of QSIM behaviors in M. Each 

state describes the qualitative value of each variable appearing in the QDE model. Each 
variable will represent a function of time. The qualitative value of a variable u over a 
state s is of the form (qmag, qdir), where qmag describes the magnitude of u as equal 
to a landmark or in an open interval defined by two landmarks, and qdir is the sign of 
the derivative of u. By considering the qualitative values of the variables at a state, and 

the constraints in the QDE, QSIM is able to derive a number of properties of the states 

and behaviors, including quiescence, stability and cycles. 
A QSIM state is called a transition state if it has no R-successors due to the fact 

that the value of one of its variables crosses a boundary of the QDE description. QSIM 

allows the user to produce transition relations between a transition state in one tree and 
the root of a tree generated by another QDE. This allows the user to produce a tree 
which has different models for its behavior in different ranges. The theorems here could 
be extended to take transition relations into account, however, the extension is tedious 

and unenlightening so, in the theorems in this paper, we assume that transition states 

have no successors. 

Structural abstraction 

The class of ODES related to a given QDE is that class of ODES which structurally 
abstract to the QDE. The concept of structural abstraction is best understood by example. 

Example 8. Given an ODE, F, there is associated with it a set, F’, of simultaneous 
equations which is derived from F. We will call F’ the structural abstraction of F. For 

example, consider an equation for simple harmonic motion: 

d*X 

dt = --x, 

We structurally abstract this equation in several steps. First we introduce a variable 
u so that v = dx/dt and again we let a = dv/dt. Finally, we write a = --x so that F’ 

is a set of three equations in three variables (not including time). At each step, the 
equation is broken down into its components until each equation is simple enough to 

be abstracted to a QSIM constraint. This set of three equations is called the structural 
abstraction of the original equation for harmonic motion and is denoted F’. From 
the structural abstraction, it is easy to create a QDE. See Section 3.3.1 of Kuipers’ 
book Qualitative Reasoning [ 141 for more details on the structural abstraction of an 
ODE. 
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The structural abstraction, F’, is useful because it can easily be abstracted into a 
QDE. Following our example, we obtain the following QDE from F’. 

(d/dt X V> 

(d/dt V A) 

(M- a X) 

From this QDE, QSIM will produce a temporal structure. Since the equation de- 
scribing simple harmonic motion abstracts to this QDE, we would like to know that the 

solutions to this ODE are described by some fullpath in the temporal structure generated 
by QSIM. The Guaranteed Coverage Theorem says just that. 

A solution, U, of F’ is a set of functions of time which simultaneously make each 
of the equations in F’ true. Since U is a set of functions we need a way of relating 
the functions in U to the variables in F’ for which they are supposed to be substituted. 

We will use the symbol $ to represent this bijection from the set of functions in U to 

the set of variables in F’. Similarly, if M is a QSIM tree produced by the QDE, C, 
abstracted from F’ and U is a solution to F’, we let +“,M be the bijection from U to 
the set of variables in C. The bijection is simply the relationship between the names of 

the variables in F’ and the names of the variables in C. 
It should be clear that a solution, (I, to F’ can be converted into a solution to F 

by going through this transformation in the other direction. For example, since U = 

{sin, cos, - sin} is a solution to F’, where @(sin) = x,$(cos) = o and $(-sin) = a, 
we can conclude that the sine function is a solution to the original equation for simple 

harmonic motion. 

The represented QSIM structure 

Here we make the important estinction betwezn the finite QSIM tree, M, and the 

corresponding infinite structure M. Essentially, M is obtained from M by following 
cycle states through the states which they match. However, we have to be careful to do 

this in a sensible way when the strong match criterion is used. 
QSIM may use various matching criteria when it detects cycles. The strong mutch 

criterion requires that the value of each variable in the states to be matched is a landmark 
(rather than an interval) and that those landmarks match the values of the variables in 
the previously existing state (the qualitative derivatives have to match regardless of the 
match criterion). The weak match criterion allows a match when the values are either 

intervals or landmarks, The QSIM user may also dictate whether cycles are detected 
across QSIM behaviors (cross-edge cycles) or only on the same QSIM behavior. 

The type of cycle detection chosen makes a difference in the interpretation of the 
tree. If strong matching is used, then a match represents a real cycle in the system. That 
is, the system has returned to a previous state and therefore, by the uniqueness theorem 
for differential equations, it must continue from that point exactly as it did before. 
Therefore, such a cycle behavior represents a singlefullpath in the infinite structure. If 
weak matching is used, then a match does not necessarily represent precisely the same 
state and hence, the system may continue from the cycle along a different path than the 
one it has already followed. 
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In the former case, there will be-a one-to-one correspondence between the behaviors 
in M and the rooted fullp_aths in M. In the latter case, we may end up with infinitely 
many rooted fullpaths in M. 

We want to do temporal reasoning about paths which pass th?ugh these cycle states. 
Therefore we will define what we call the QSIM structure, M = (S, X), represented 
by M = (S, R, B). Here X is the set of fullpaths represented in the behavior tree M. 
To construct X, we first define the set X, of rooted fullpaths. A rooted fullpath in 16? 
is a path starting at the root of the QSIM tree and continuing through cycle states 

in a semantically sensible way. That is to say, we only add fullpaths which satisfy 
the restrictions mentioned above related to the type of cycle matching used. If the 

strong match criterion was used with no cross-edge cycles allowed, then for each cycle 
behavior, we add a single infinite fullpath which follows that behavior then passes 
through the same cycle infinitely many times. If another kind of matchinkwas used, 
then we simply add the cycle pairs to the relation R to obtain the relation R and X, is 
the set of rooted fullpaths generated by E. Finally, we define X to be the suffix closure 

of x,. * 

In the case of strong matching with no cross-edge cycles, it will be useful to go into 
more detail. Since, in this case, each behavior becomes associated with a single rooted 

fullpath we can define the natural bijection, zo, from the set of rooted fullpaths, X,, to 

the set of behaviors, B. Since, in this case, any fullpath in X is a suffix of a unique 
rooted fullpath, we can extend the bijection zo to a function z : X + B so that for any 
x E X, z (x) = zo(x,) where x, is the rooted fullpath of which x is a suffix. (Thus, 
z is not generally a bijection.) We think of z as mapping a fullpath to its associated 
QSIM behavior. This assignment will be useful when we prove properties of systems 
about which we have some quantitative information. 

Closed trees 
Ideally, given a QDE, the QSIM algorithm will terminate, not because it runs out of 

memory or other resources, but because it has finished simulating all possible behaviors. 
When the QSIM algorithm terminates in this “natural” way, we call the tree it produces 

closed. In this case, every behavior in the behavior tree returned by QSIM terminates 
with a state which is a transition state, a cycle state or a quiescent state. There are cases, 
however, in which QSIM does not return a closed tree regardless of how long it is 

allowed to run. In cases where QSIM returns a tree which is not closed, the hypotheses 
of the Guaranteed Coverage Theorem do not hold. If the behavior tree M is not closed 
then it is possible that an actual beha$or of the system is not represented by any rooted 
fullpath in the represented structure M. 

The normal QSIM simulation style creates new landmarks for critical values, applies 
a strong cycle match criterion (all variables must have identical landmark values), and 

does not allow cross-edge cycles (i.e., considers cycle matches only within the same 
QSIM behavior). Under this simulation style, certain systems such as the damped spring 

2 Notice that, in the former case, X is not necessarily fusion closed and hence not R-generable. A set X is 

fusion closed if, whenever xls~q, x2sy2 E X, then x~s.vz E X for any states XI, .q and path s, !q, !Q. A set 
X is R-generable if it is naturally generated by some relation [ 8 1, 
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never close. However, by applying the envisionment simulation style (no new landmarks, 
weak cycle match criterion, and cycle matches anywhere in the behavior tree), every 

qualitative model has a finite closed behavior tree. (See Chapter 5 of Kuipers’ Qualitative 

Reasoning [ 141.) 

Quantitative information 

When strong cycle matching is used and cross-edge cycles are not allowed, then 
the QDE and the initial state may be augmented with quantitative information such 

as numerical interval bounds on the real values denoted by landmarks and other 
symbolic terms in the behavior prediction [ 2,12,14,16]. In this case, QSIM prop- 
agates this quantitative information and uses it to prune branches of the tree which 

are inconsistent with the information. The most important quantitative information for 
the purposes of this paper is the information which QSIM derives about the land- 

marks. 
A landmark in a quantity space of a QSIM variable is intended to name some real 

number. The quantitative extensions to QSIM are able to restrict the possible values 
of a landmark to some closed, extended-real interval. This quantitative information 
may be different on each QSIM behavior. Thus, the user cannot simply ask for the 
range of the possible values of a landmark. The user must ask for the range of the 

possible values of a landmark in a given behavior. So in this case, we will use the 
function z to determine which behavior a given fullpath is related to. If weak cycle 

matching is used or cross-edge cycles are detected, then the numeric information loses 

its sense. 

Example 9. In order to illustrate the fact that quantitative information is stored on 

QSIM behaviors rather than on states, we will construct a simple example with numeric 

information. Three billiard balls [20] start to move with constant velocities and initial 

positions shown in Fig. 1 (a). The QSIM QDE model for this scenario provides quantity 
spaces for position, velocity, and acceleration in the x and y directions, and constraints 

for constant velocity motion. Collisions are detected when the differences in x and y 
positions of two balls are simultaneously zero. 

When there is partial quantitative information about the speeds of the balls-A and B 
have velocity -2 units/second, and the velocity, Cxp, of C is some constant within the 
interval [ -3.5, -1.51 in units/second-QSIM predicts three possible behaviors, corre- 

sponding to C passing ahead of B, passing behind B, and colliding with B (Fig. 1 (b) ) . 
In case C collides with B, the collision takes place at t = 0.5 seconds. There is no 

possibility of C colliding with A. 
We chose to deal with this amount of information because it illustrated our point 

without much complexity. Naturally, if the user had more or less knowledge about the 
conditions on the system, another QDE and initial state could be constructed. 

Now, consider the value of horizontal velocity, Cxp, of C in the first state. We know 
that it is a real number between -3.5 and -1.5 and that it is constant. In the third state 
of the third behavior, we know that Cxp is equal to -2. In the third state of the second 
behavior, we know that Cxp is greater than -2. In the third state of the first behavior, we 
know that Cxp is less than -2. But since Cxp is a constant, its value over each behavior 
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Fig. I. Predicting behaviors of a real-time system. (a) Three balls on a billiard table, with initial positions 

and velocities. (b) Given incomplete knowledge of the speed of ball C, QSIM predicts that C may pass ahead 

of B, behind B, or collide with B at t = 0.5. 

does not vary, therefore, its value at the first state (which all three behaviors share) 
depends on which behavior we are in. QSIM must store the quantitative information 

about the values of landmarks not at each state but at each behavior. 
We shall return to this example in Section 6.1. 
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3.2. Qualitative description 

In this section, we give a formal meaning to the following informal phrase: “the 
QSIM fullpath x describes the set of real-valued functions U”. This is what we want to 

say when U is the solution to an ODE which abstracts to the QDE used to generate the 

behavior x. 
In order to do this, we will first partition the domain of the functions in U in such a 

way that the partition corresponds to the value of the time variable in the states in X. 
That will be called a spktting of U. Second, we will assign specific real numbers to the 
landmarks of the variables in x. This will be called a specification of x. From there, it 
will be relatively easy to define what it means for the fullpath x to describe the set of 

functions U. At the end of this section, we give a detailed example showing how the 
function sine is described by the rooted fullpath generated by QSIM, given the simple 

harmonic motion QDE. 

Splittings 
We are given a set of reasonable functions U = {ui: 1 < i 6 n} taking values in 

the extended reals. Since we are thinking of U as a solution to a set of simultaneous 

equations which was derived from an ODE, we will assume that each of the functions 
in U shares the domain, A, some interval (of time) in the extended reals. In order to 
say that U is described by a QSIM fullpath, we need a way of partitioning the domain 
of the functions in U that will be consistent with the values of the time variable in the 
fullpath. 

We define a splitting of U as follows. Let {ti} be a strictly increasing sequence of 
points (indexed from 0) in A satisfying the following conditions: 

(1) if t is a critical point of some nk, then t E {ti}, 
(2) {ti} has no finite limit point, and 

(3) {ti} converges to M only if co $ A. 
According to the definition of a reasonable function (Appendix B), such a set exists, 

and may be infinite only if co is the supremum of A and A is open on the right. We will 

call the pair ({ ti}, U) a splitting of U. Since the critical points of the functions all must 
be in { ti} (condition ( 1) above), one splitting is distinguished from another splitting 
by the choice of noncritical points in { ti}. If the set { ti} is finite, then we will let tJ be 
the greatest element of {ti}. Consequently, J + 1 is the cardinality of {ti}. 

Associated with any splitting ({ ti}, U) there is a natural partition {Dk} of the interval 

A. Each Dk is either a singleton containing one of the points in {ti} or an open interval 
whose endpoints are two consecutive points in {ti}. The indexes on the sets in the 

partition follow the order of the indexes in {ti}. That is, if A is closed on the left 
then DO = {to}, D1 = (to, tl ), and so on. If A is open on the left then Do = (a, to), 
D1 = {to}, D2 = (to, tl), and so on, where a is the infimum of A. If A is closed on the 

right then D~J = {tJ} (or DzJ+, = { tJ} if A is open on the left). To avoid the problem 
of going to this much trouble to figure out which ti is the left endpoint of Dk, we will 
let dk denote the index such that r& is the left endpoint of Dk. If A is open on the right, 
then as we have said, there may be infinitely many sets in {Dk}. 

When dealing with a splitting, ({ti}, U), of U, we will use the following abbreviations: 
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That is to say that U/l is the set of functions in U each restricted to the domain DI and 
Ull+ is the set of functions in U each restricted to the domain UIGk{Dk}. 

Specification of a fullpath 

In order to define the notion of a splitting being described by a fullpath, we will 

need to relate the landmarks in the fullpath to specific extended real numbers. We call 
a mapping of landmarks to extended real numbers satisfying certain sensible conditions, 

a speci$cation of the landmarks. We want the specification to preserve order. Also if 
quantitative information is assigned on a fullpath, we want the mapping to be consistent 

with that information. 
Suppose c is a function with domain, some partially ordered set V of landmarks, and 

range, the set R” of extended real numbers. The function c is called a speci$cation of 
V if c preserves the partial order and c(minf) = -co, c( inf) = cc and c(0) = 0. The 
reason the order on V is only partial is that the landmarks come from different variables. 
The landmarks of any single variable are totally ordered in V. 

Given a fullpath x and a specification, c, of the landmarks of the variables in x under 

the partial order determined by the quantity spaces of the variables in x, we call the pair 
(x, c) a specijication of x if c is also consistent with any numeric information which 
might be associated with z (x). (Recall, z (x) is the QSIM behavior associated with 
x when such can be determined uniquely.) In particular, if, on the behavior z(x), the 
qualitative landmark, Xl, has been determined, by a quantitative extension to QSIM, to 

refer to a number in the numeric range [nt,nz], then c(Xi) E [nt,n2]. 

Definition of qualitatively describes 
Now we can state the phrase “the QSIM fullpath x describes the set of real-valued 

functions U” formally. Given a specification (x, c) of a fullpath x = (so, ~1,. . .) in a 
QSIM directed graph M and a splitting ({ ti}, U) of the set of reasonable functions 
U = {Us: 1 < i < n} taking values in the extended reals, with common domain, A, we 

say that (x, c) qualitatively describes the splitting if the specification corresponds to the 
splitting as described in detail in the remainder of this subsection. 

The intention is that the partition, {Dk}, of the domain, A, determined by the splitting 
will correspond to the range of the time variable in the fullpath x in such a way that 

each element, Dk, of the partition will correspond to the value of the time variable in 
the state Sk and thus the values of the functions in u]k will correspond to the values of 
the QSIM variables in the state Sk. 

The function &J,,M referred to below is the bijection described in Section 3.1 which 
relates the variables in M with the variables in U. 

The cardinality of {ti} must equal the number of time point states in x. Therefore, 
since the states in x alternate between time point states and time interval states, (x, c) 
qualitatively describes ({ ti}, U) if and only if there is a correspondence between x and 
U in which Sk corresponds to u/k as follows. 
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Given any landmark Xl of a QSIM variable X = $~J,M( ui) and any nonnegative 
integer k, the qualitative value of X at the state Sk is Xl if and only if uij~n = c(X1). 
ui/nk > 0 if and only if the qualitative derivative of the variable $“,,M( Ui) in Sk is 

inc. 
u[[D~ = 0 if and only if the qualitative derivative of the variable q”,~(ui) in Sk is 

std. 
u~/D,, < 0 if and only if the qualitative derivative of the variable @u,M(Ui) in Sk is 

dec. 
If the fullpath x is finite and QSIM has labeled the last state in x with t=inf then 

tJ=m. 

If the fullpath x is finite and QSIM has labeled the last state in x with tcinf then 

tJ jm. 

Lemma 10. The specijication (x, c) of x qualitatively describes ({ti}, U) if and only 

if (xh, C) qualitatively describes ({ ti: dh < i}, U/h+) for every nonnegative integer 

h < A(x). 

Proof. The proof comes straight from the definition of what it means for a specification 
of a fullpath to describe qualitatively a splitting of a set of functions. This definition 
involves a correspondence between sh with D/, for every nonnegative integer h < 

A(x). 0 

It follows from this definition and the definition of the QSIM algorithm that if (x, c) 

qualitatively describes a splitting ({ti}, U) of a set of reasonable, extended-real-valued 
functions, then given any pair of landmarks, X0 and Xl, of a QSIM variable X= I,!$JM (ui) 

and any nonnegative integer k, if the qualitative value of X at the state Sk is the interval 

(X0 Xl> then Ui(Dk) C (c(XO), c(X1)). It also follows that the state Sk has been 
determined by QSIM to be quiescent if and only if u~/D~ = 0 for each 1 6 i 6 n. 

Example 11. Let us consider our simple example again. We will show how the Guar- 
anteed Coverage Theorem is satisfied in this example. Recall that we have the solution 
U = {sin, cos, - sin} to the structural abstraction of the equation 

d2X 

dt = -x 

where @(sin) = x, $(cos) = u and @(-sin) = a. We will show that some rooted 
fullpath in the structure represented by the output of the QSIM algorithm describes this 
set of functions. 

We translated the structural abstraction into the following QDE. 

(d/dt X V) 

(d/dt V A) 

(M- A X> 

If A4 is the tree produced by QSIM from this input, then $u,M( sin) = X, &J,M (cos) = V 
and $u,M( - sin) = A. 



B. Shults, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129 107 

.fi + f(x) = 0 

where f E W(x). 

(define-QDE Spring-for-TL 

(quantity-spaces 

(X (minf 0 X* inf) “Position”) 

(V (minf 0 inf > “Velocity”) 

(A (minf 0 inf) “Acceleration”) ) 
(constraints 

((d/dt X V)) 

((Udt V A)) 
((M- A X) (0 0) (minf inf) (inf minf)))) 

(defun spring-envisionment (> 
(setq SS (make-new-state :from-qde Spring-for-TL 

:sim (make-sim :no-new-landmarks ‘(X V A) 
:cycle-detection :weak) 

:assert-values ‘((X (0 nil)) 

(V ((0 inf) nil))))) 
(qsim SS) 
(qsim-display SS)) 

I 
Position 

~i’:I~~~ ,.....,.....,.... o p . ...,... 9 

Velocity Acceleration 

Each path in the behavior tree ends in a cycle state. Each cycle state matches the initial 
state. The three behaviors are distinguished by their amplitude. The second behavior is 
shown. 

Fig. 2. QSIM input and output for undamped spring. 

Given the abstraction of the simple harmonic motion ODE, we complete the input to 
QSIM by describing the initial state, and giving instructions to QSIM such as “do not 

create new landmarks”. (See Fig. 2.) In order to make the output more interesting, we 
add a single additional landmark X* to the quantity space of the position variable. From 
this, QSIM generates the tree, M, shown in Fig. 2. 
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_It is a consequence of the Guaranteed Coverage Theorem that some rooted fullpath in 
M has a specification which qualitatively describes some splitting of the sine function. 

Since we used weak matching, M has infinitely many rooted fullpaths and not all of 

those have specifications which qualitatively describe a splitting of the sine function. If 
we had used strong matching, then k would have exactly three rooted fullpaths, all of 
which are infinite and have specifications that qualitatively describe a splitting of the 
sine function. 

To demonstrate the G_uaranteed Coverage Theorem in this example, let’s consider the 
rooted fullpath in x E M which cycles through the second behavior (illustrated in Fig. 
2) infinitely many times. We must find a specification of x and a splitting of the sine 

function so that the two match as described in the definition of qualitative description. 

For the specification of x, we only need to find a function c which maps X* to some 
number between 0 and 1. Let’s say, c(X*> = l/2. 

Let us now select a splitting of the sine function. We describe the set {ti} as the 

union of the following sets ordered by <: 

f + 2kr: k is a positive integer , 
> 

kr 
2: k is a positive integer , 

1 
1171. 
6 + 2kn-: k is a positive integer 

> 
. 

Since lim,,, sinx does not exist in R*, the domain of our sine function is open on the 

right and so we are allowed to have an infinite set {ti} as a splitting. 

Now it is easy to show that (x, c) qualitatively describes ({ ti}, U). The partition {Dk} 

of the domain of sine determined by {ti} corresponds nicely with the domain of the 
time variable in x. Consider the landmark X* of X = $“,~(sin). In the third state of x, X 

has the value X*. Notice that Dz = {n-/6} and sin(rr/6) = l/2 = c(X*) as required by 
the definition of qualitatively describes. It is easy to check that the other requirements 

are also satisfied. 

4. QSIM and the logic 

The main theorem of this paper can be stated informally as follows. Suppose % is 
a QSIM structure generated from the QDE C. If k is a model for a CTL* formula, 

then the CTL* formula describes every solution to every ODE which abstracts to C. In 
order to state and prove this formally, we need two things. First, we need to explain 
what it means for a CTL* formula to describe a real-valued function. Second, we need 
to explain how temporal logic propositions are checked in QSIM structures. We do this 
in reverse order since the latter is helpful in understanding the former. 

In Section 4.1, we give the details of how model checking is applied to QSIM 
structures. In Section 4.2, we formalize the relationship between CTL* formulas and 
continuous functions and give an example. 
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(qval u (qmag q&r) >. Suppose u is a variable of the state s, qmag is a landmark 
or open interval defined by a pair of landmarks in the quantity space associated with 

u, and q&r is one of {inc, std, dec}. This proposition is true when the qualitative 
derivative of u in s is qdir and the qualitative magnitude of u in s is equal to or a 
subset of qmag. 
(status quiescent) is true exactly when the qualitative derivative of each variable 
in the state is std. 
t=inf is true at a state if QSIM was able to determine that the time variable in this 

state must be infinite. 
tcinf is true at a state if QSIM was able to determine that the time variable in this 
state must be finite. 

(in-range u (nr nz> >. Suppose u is a variable in the state s and nr and n2 are 
extended real numbers. If the value of uar in s is a landmark then this proposition is 

true if and only if the number represented by that landmark in s is known to lie in 

an interval which is a subset of [ 111, n2]. If the value of u~lr in s is an interval (Xl 
X2), then this proposition is true if and only if the interval [ ni , n2] contains both of 
the intervals in which QSIM has determined the numbers named by Xl and X2 to lie. 

Fig. 3. The propositional level of the language. 

4.1. QSIM structures for CTL” 

Given the structure k, the only thing needed to have a temporal structure as defined 

in Section 2.1 is an interpretation of propositions. 
The temporal structure 2, = (S, X, L), represented by a QSIM behavior tree M = 

(S, R, B), is obtained from i@ = (S, X) by the interpretation L of the propositions given in 
Fig. 3 in which s represents Ahe state over which the propositions are being interpreted. 

This temporal structure MTL is the structure over which we will interpret CTL* 
formulas. 

Our implementation, TL, of a model checking algorithm over QSIM structures, in- 
cludes propositions in the language which are not mentioned in Fig. 3 but are useful 
in practice. Since they add clutter to the statements of definitions and theorems in 
this paper, we will describe some of these operators in Appendix A and explain what 
adjustments need to be made to definitions and proofs in order to retain our theo- 
rems. 

The propositions t=inf and tcinf allow the user to express the difference between, 

for example, “eventually in a possibly asymptotic sense” and “eventually in finite time”. 
Alone, eventually really means “eventually in a possibly asymptotic sense”. In order to 
express “eventually in finite time”, use the propositions t=inf and t<inf. For example, 
we may say (eventually (and p t<inf >> to mean that p becomes true in finite 
time. 

The proposition in-range is sensible only in the states of behavior trees generated 
from a QDE containing some quantitative information. Simulation with quantitative 
information is handled by extensions to QSIM such as Q2 [ 161, Q3 [2] and NSIM 
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[ 121. The numbers referred to in these expressions are extended real numbers: they 
may be -inf or +inf as well as real values. The use of the numeric propositions and 
quantitative information derived by QSIM from the numeric information given in the 

QDE, allows TL to prove time-related properties of physical systems. 

The expressiveness of the application of CTL* to QSIM can easily be increased 
without adding to the complexity of model checking by augmenting the propositional 
part of the language. See Appendix A for some of such extensions. 

4.2. Temporal description 

Here we define what it means for a CTL* perfect path formula @ to describe a set of 

functions and we give an example of a simple CTL* formula and show that it describes 
the sine function. 

If c is a specification of the landmarks mentioned in a perfect path formula @ then we 
will call (@, c) a speci$cation of @. Let ({ti}, U) b e a splitting of a set of reasonable, 

extended-real-valued functions U = {ui: 1 < i < n} on a common domain A. Let {Dk} 
denote the partition of A associated with {ti}. Let Cc, be a bijection from some subset T 
of U to the set of variables mentioned in the formula Cp. We recursively define what it 
means to say that (@, c) temporally describes the splitting ({ti}, U) via t+h. We assume 

that @ is in positive normal form and so we make the definition according to the form 
of @ as follows. 

l If @ is a proposition, then it must correspond to the splitting according to the 
following cases: 

- Q, = (qval $(ui) (qmag qdir) > if and only if: 
if qmag is the landmark value X0 of $(ui) then uil~~ = c(X0); 

if qmag is an interval (Xl X2) in the quantity space of $(ui) whose endpoints 
are landmark values of +(Ui) then Ui(Da) C (c(Xl),c(X2)); 
qdir = inc if and only if uiIcO > 0; 
qdir = std if and only if u~/D,, = 0; 
qdir = dec if and only if u~[D,, < 0; 

_ 0 = (status quiescent) if and only if u~ID” = 0 for each 1 < i < n; 
- @ = t=inf if and only if DO = {CO}; 
- @ = tcinf if and only if every element of DO is a real number; 
- @= (in-range @(Ui) (nt n2)1 if and only if ui(Do) c [nl,nz]. 

. @= (andpI.. p,,) if and only if (pk, c) temporally describes ({ti}, U) via $ for 
each 1 < k < m. 

l @ = (or p1 . . . p,> if and only if (pk, c) temporally describes ({ti}, U) via Ic, for 

some 1 < k < m. 
l @ = (not p> if and only if (p, c) does not temporally describe ({ti}, U) via ti. 
l 0 = (until p q) if and only if for some nonnegative integer h, (q, c) temporally 

describes ({ti: dh < i}, Ulh+) via fl and for every nonnegative integer 1 < h, (p, c) 
temporally describes ({ti: dl < i}, UIl+) via #. 

l @ = (releases p q) if and only if for every nonnegative integer h such that (q, c) 
does not temporally describe ({ ti: dl, < i}, U/h+) via $, there is a nonnegative 
integer 1 < h such that (p, c) temporally describes ({ti: dr < i}, UIl+) via +. 
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l @ = (next p) if and only if A = DO or (p, c) temporally describes ({t;: di < i}, 

U/I+) via G+ 
l @ = (strong-next p> if and only if A $ DO and (p, c) temporally describes 

({ti: dt < i},UIt+) via fi. 

Example 12. As an example, let us convince ourselves that the formula 

(infinitely-often 

(before (qval X (0 dec)) 

(qval X (0 inc>>>> 

temporally describes the sine function restricted to [ 0,~). Let us call the formula 

under consideration @. We let the set U contain only the restricted sine function. The 
specification of @, in this case, is trivial: c(0) = 0. We will use the bijection $ : 
sin(t) H X. The splitting for sine will be {ti} = { iz-: where i is a nonnegative integer}. 

Let {Dk} denote the partition of [0, oo) associated with {tl}. We want to convince 
ourselves that (@, c) temporally describes ({ti}, U) via $. 

This amounts to proving that there are infinitely many nonnegative integers k satisfying 

the following conditions: (1) sin ID,, = 0, (2) cos (n,, < 0 and (3) there is some 1 > k 
such that sin In, = 0 and cos ID, > 0. Every positive odd integer satisfies these conditions 
so we are done. 

5. The main results 

The main theorem of this paper, which we can now almost state formally, says the 
following. Supp_ose M is a closed QSIM tree generated from the qualitative differential 

equation C. If MrL is a model for a universal CTL* formula (necessarily @>, then for 

every solution, U, to every ODE which abstracts to C, there is some splitting ({ti}, I/) of 
U and some specification (@‘, c) of the perfection, @‘, of @ such that (@‘, c) temporally 

describes ({ ti} 3 U) via @u,M. Therefore, TL is sound. In this section, we prove this 
theorem, discuss some corollaries and also prove a more limited completeness result. 

There is one more hypothesis which needs to be present in the main theorem. This 

hypothesis is usually satisfied by QSIM structures but still must be mentioned. It is 
possible, for some propositions, that QSIM may not determine all of the information 

needed to use that proposition with confidence. Section 5.1 explains this notion and 
contains a theorem that relates the qualitative and temporal descriptions of a set of 
functions as defined in Sections 3.2 and 4.2, respectively. The remainder of this section 
contains the theorems which are the most important for applications. 

5. I. Determined QSIM trees 

Suppose that x is a fullpath in a closed QSIM structure $ and further that I@~L, x + @ 
where @ is a perfect path formula. Suppose that (x, c) is a specification of x which 
qualitatively describes ({ti}, U). In this section, we will prove that (@,c) temporally 
describes ({ ti}, U) via @v,M. 
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In order to prove this, we need to be certain that QSIM determines the information 
in propositions completely and correctly. Otherwise, the induction step in the proof of 
Theorem 14 does not work. Formally, we need to know that if s is a state in a QSIM tree 

M and fire., s b 4 where CJ~ is an atomic proposition then for every fullpath, y, starting 

at s, (y, c) qualitatively describes ({ti}, I/) if and only if (I$, c) temporally describes 

({ti}, U) via &J,M. This is the conclusion of Lemma 13. In an arbitrary QSIM tree, this 
may not be true, although exceptions are not common. The only case that arises in the 
language of the body of this paper occurs in a transition state at which it is impossible 
to determine whether t=inf or t<inf. For example, consider the QDE x’ = f(x), 

where f E Mz (that is, f is a monotonically increasing function with f(0) = 0). 
With an initial state x(to) > 0 the behavior diverges, terminating at a qualitative state 

where qmag( x) is (inf , inc), which is a transition state. However, some choices of f 

(e.g., f(x) = x2) imply that x(t) becomes infinite at finite time, while others (e.g., 
f(x) = X) imply that x(t) becomes infinite only at infinite time, so the time label for 

the transition state is undetermined. 
Therefore, we define a QSIM state to be determined with respect to the propositions 

t=inf and t<inf if QSIM has determined one of t=inf or t<inf. With respect to 
the other propositions we have defined, all QSIM trees are determined. However, when 
we define new propositions, this issue needs to be addressed. That is to say, when one 
defines a new proposition, one needs to define what it means to be determined with 
respect to that proposition in such a way that the proof of Lemma 13 goes through as 

well as the induction step in Theorem 14. This can be a subtle point as you can see in 

Appendix A. 
The TL program can warn the user about any state which is not determined with re- 

spect to an atomic proposition being queried on that state. When a state is not determined, 

the TL program still operates but the hypotheses of the theorems relating the operation 
of TL with the reasonable, extended-real-valued functions are no longer satisfied. 

Lemma 13. Zf s is a state in a QSZM tree M which is determined with respect to 

the proposition C$ and GTL, s b 4, then for every fullpath, x, starting at s, if (x, c) 

is a specification of x, then (x, c) qualitatively describes ({ ti}, U) if and only if (4, c) 
temporally describes ((t;}, U) via +“%M. 

Proof. The result follows directly from the definition of the semantics of the proposition 
(given in Fig. 3)) the definition of the meaning of a specification of a formula temporally 

describing a splitting of a set of functions, and the definition of the meaning of a 
specification of a fullpath qualitatively describing a splitting of a set of functions. 

Notice that the determinedness hypothesis is needed in the part of the proof involving 
the propositions t=inf and tcinf because if QSIM does not determine this information, 
the proof fails. 0 

We say that a QSIM structure G is determined with respect to a proposition if every 
state in G is determined with respect to the proposition. 

Theorem 14 relates the two ways of describing a set of reasonable, extended-real- 
valued functions and will be used in the proofs of the main theorems of this paper. 
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Theorem 14. Suppose x is a fullpath in a QSIM structure 2 which is determined 
with respect to all of the propositions in Cp, a pelfect path formula, and kr~,x + @. 

If the specification (x, c) of x qualitatively describes ({ti}, U) then (@‘, c) temporally 

describes ({ ti} 3 U) via $n,~. 

The proof is complex and not enlightening. Therefore, it has been put into Appendix C. 
There are two reasons we did not simply make this theorem the definition of a 

temporal description. First, when we say that a formula describes a function, we want 

to be talking about a formula and a function without an intervening QSIM structure. 
Second, the subtleties involved in the definition of determined which are brought to light 

when one tries to prove Lemma 13 and Theorem 14 might be missed if the definition of 

temporally describes were given at such a high level. See Appendix A for an example 
of this. 

5.2. Main theorems for universal formulas 

This section contains the main results of this paper. As a consequence of the main 
theorems, the user of the TL and QSIM systems may prove temporal statements about 
dynamical systems as follows. First, the user constructs a QDE, C, and uses QSIM to 
generate a closed tr_ee, M. Then the user may use TL to check if a universal formula, 

@, is modeled by MTL. If it is, then the user has proved that the perfection, @‘, of @ 
describes the solution to any differential equation which abstracts to C. 

Theorem 15. Let U be a solution to the structural abstraction of any ODE which 

abstracts to the QDE, C. Suppose QSIM_generates the closed tree M from (C, I). Let 

@ be a universal formula in CTL*. Zf MEL, I k (necessarily @>, then there is a 

speci$cation c of the landmarks mentioned in @’ such that (@‘, c) temporally describes 

some splitting ({ti}, U) of U via *n,~. 

Proof. Let @ be a universal path formula and M a closed QSIM behavior tree which is 
determined with respect to the propositions in @. Suppose MEL, I k (necessarily @>. 

Let U be as in the hypotheses._By the Guaranteed Coverage Theorem, we know that 

there is a rooted fullpath yu in MTL and a specification, (ye, c), of 2~ such that (yU, c) 
qualitatively describes some splitting ({ti}, U) of U. By Lemma 6,, MEL, yu + a’. Since 
M is determined with respect to the propositions in @, and Mr~,yu + a’, we use 

Theorem 14 to conclude that (@‘, c) temporally describes ({ti}, U) via r,+“,M. 0 

The following corollary follows from the proof of Theorem 15. 

Corollary 16. Let U be a solution to the structural abstraction of any ODE which 

abstracts to the QDE, C. Suppose QSIM_generates the closed tree M from (C, I). Let 
@ be a universal formula in CTL*. If M r~, I k (necessarily @>, then there is a 
rooted fullpath x E X, and a specijcation, (x, c), of x consistent with the information 

derived by QSIM on the fullpath x, such that (@, c) temporally describes some splitting 

({ri>t f-4 of U via &J,M. 
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We include this corollary in the discussion because it provides more information 
about the specification c of the landmarks mentioned in the formula. This tells us that 

the specification must be the specification of some fullpath in G which qualitatively 
describes the splitting of U. 

The conclusion of the theorem states that the perfect path formula related to the 

universal formula describes the solutions to the equations. Quantifier nesting is irrelevant, 
as far as the conclusions of this theorem are concerned. While there are situations in 
which nested quantifiers are useful, such as gaining insight into some detail of the 

QSIM structure (see Section 6.2), these applications do not rely on the main point 
of our theorems, i.e., the relation between the QSIM prediction and the underlying 

dynamical system. 
Therefore, if the user is using TL only for the purpose of proving that a formula 

temporally describes the solutions to an ODE, then he or she may as well enter a 
formula of the form (necessarily @) where @ is a perfect path formula. 

5.3. Numeric queries 

The previous discussion is particularly relevant to queries involving numeric infor- 

mation. It has been mentioned that the numeric information which QSIM derives about 
landmarks may vary across behaviors. QSIM keeps track of numeric information with 
respect to QSIM behaviors, not with respect to states. This fact makes a more specific 

form of Theorem 15 desirable. 
To check a proposition involving numeric information (such as in-range) we must 

know which fullpath the state being checked is in. Furthermore, that fullpath must be 
associated with a particular QSIM behavior in M so that numeric information can be 

retrieved with respect to that QSIM behavior. This problem is solved by using the 
function z defined in Section 3.1. 

The following corollary is simply a special case of Corollary 16 in which we can 
also specify that the specification is consistent with the numeric information on some 

behavior of the QSIM tree. 

Corollary 17. Let U be a solution to the structural abstraction of any ODE which 

abstracts to the QDE, C. Suppose Q.SIM generates the closed tree M from (C, I) using 

s:rong match and no cross-edge cycle detection. Let @ be a universal formula in CTL*. If 
MEL, Z k (necessarily @> , then there is a rootedfullpath x E Xr and a speci$ication, 

(x, c) , of x consistent with the information derived by QSZM on the behavior z (x) , such 

that (@, C) temporally describes some splitting ({ ti}, I/) of U via flo,~, 

The proof of this corollary is exactly the same as the proof of Theorem 15. The 

difference is that since we specified the type of cycle detection, we know that the 
function z is defined and can use it to obtain numeric information. 

5.4. Completeness results 

Suppose the user has generated a QSIM tree, M, fro_” (C,I) and has an interest- 
ing CTL* perfect path formula @. We know that if MTL, I b (necessarily a>, 
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then the solution to any ODE which abstracts to C is described by @. But sup- 
pose M~L,Z k (necessarily @> is false but the user wants to know if there is 
some solution, U, to some ODE which abstracts to C, such that @ describes U. The 
user might test the formula (possibly @>. If this formula is modeled by the QSIM 
temporal structure then the user still cannot, in general, conclude that there is a so- 
lution, U, to an ODE which abstracts to C, such that @ describes (1. This is so 
because the QSIM temporal structure may have a rooted fullpath which is “spuri- 

ous”, i.e., a fullpath which does not describe any solution to any ODE which abstracts 

to c. 

In this section, we provide some circumstances under which the user may draw 

positive conclusions from a formula of the form (possibly @p> where @ is a perfect 

path formula. 
Suppose @ is a closed QSIM structure generated from a QDE and initial state (C, I). 

We sometimes would like to know whether there is any ODE, F, which abstracts to C 

whose solution is described by some given perfect path formula. In order to do this, the 
QSIM tree must be closed, determined with respect to the propositions in @ and satisfy 
the following completeness condition. 

Definition 18. We call a closed QSIM behavior tree, M, complete if for every rooted 
fullpath x in fi there is an ODE with structural abstraction, F’, which abstracts to the 

input QDE and a splitting of the solution to F’ which is qualitatively described by some 

specification of x. 

In other words, a closed tree is complete if every rooted fullpath in k describes some 
solution to an ODE which abstracts to C. 

One way to check for the completeness of a tree is to prove, either mathemati- 
cally or by numeric simulation, that there is a reasonable, extended-real-valued solution 
corresponding to each fullpath in the structure represented by the tree. 

Under these conditions, the user is able to draw sound conclusions about the solution 
so some (but not every) ODE which abstracts to the QDE as in the scenario described 
above. Theorem 19 details this result. 

Theorem 19. Suppose @ is a perfect path formula in CTL*. Suppose M is a closed, 

complete QSIM behavior tree generated from the QDE and initial state (C, I) and 

determined with respect to the propositions in @. If MTL,S + (possibly @>, then 

there is an ODE, F, whose structural abstraction, F’, has solution U and abstracts to 

C and there is a specijcation of @ which temporally describes some splitting of U via 

*lL.M. 

Proof. Let @ be a perfect path formula in CTL*, M a closed, complete QSIM behavior 
tree generated by the QDE and initial state (C, I). Suppose that M is determined with 

respect to the propositions in @ and firs, s k (possibly @>. 
We want to show that there is an ODE, F, whose structural abstraction, F’, has 

solution U and abstracts to C and there is a specification (@, c) which temporally 
describes a splitting of U via $u,,M. 
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We know from the semantics of CTL* that there is a fullpath x in 6, such that 
GTL, x + @. Because M is complete, we know that there is a set of reasonable, extended- 
real-valued functions U = {ui: 1 < i 6 ) n such that fJ is a solution to the structural 
abstraction of some ODE which abstracts to C and (x, c) qualitatively describes a 
splitting of U for some specification (x, c) of x. 

Therefore, (@,c) temporally describes this fixed splitting of U via eU,~ by Theo- 
rem 14. q 

6. Applications of CTL* and QSIM 

TL is the name of a CTL* model checker customized for use with QSIM. The current 

implementation replaces the experimental versions described and used in previous pub- 
lications [ 15,171. The underlying model checking algorithm is that of Bhat, Cleaveland 

and Grumberg [ 31. Bhat, Cleaveland and Grumberg prove that this algorithm has the 
same complexity as the best known global algorithms for both CTL* and CTL. Their 
algorithm has the added advantage of being “on-the-fly” rather than “global”; i.e., it is 

possible for the algorithm to halt with the correct answer without constructing the entire 
exponentially large structure required to check some formulas in CTL*. 

Temporal reasoning may be useful any time QSIM is used. QSIM has been used 
to simulate controllers, human organs and disease, abstract and real physical systems, 

electrical circuits, population dynamics, chemical reactions, etc. [ 141. 
TL can be used to prove that a QSIM tree is closed with the following query: 

(TL R (necessarily 
(eventually (or (status quiescent) 

(status cycle) 

(status transition>>>>> 

where R is the root of the tree. (See Appendix A for an explanation of arguments to 

the status proposition other than quiescent.) 

TL automatically reports when an atomic proposition is checked on a state in which 
that proposition is not determined. 

6. I. Examples 

First, we demonstrate the use of TL to ask and answer questions about some simple 
models: the undamped oscillator, whose behavior tree (Fig. 2) is rooted in the initial 
state SS; and the damped oscillator, whose behavior tree (Fig. 4) is rooted in the state 

DS. 

Example 20 ( Undamped oscillator). The simple spring conserves energy, so all behav- 

iors end in cycles, as shown by the behavior tree in Fig. 2. Therefore, the closedness 
query would return T. The three behaviors differ according to whether the amplitude of 

the oscillation passes a predefined landmark value, X*. The queries shown demonstrate 
that the solution to any ODE consistent with the QDE in Fig. 2 never becomes quiescent, 
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always reaches a cycle state, and necessarily has an infinite sequence of events crossing 
x = 0 in opposite directions. (Since the variable X can have only one qualitative value 
in a state, the last two formulas below are equivalent.) 

(TL SS (necessarily 
(always (not (status quiescent))))) 

=> T 

(TL SS (necessarily (eventually (status cycle)))) 
=> T 

(TL SS (necessarily (and (infinitely-often (qval X (0 inc))) 
(infinitely-often (qval X (0 dec)))))) 

=> T 

(TL SS (necessarily 
(infinitely-often 

(before (qval X (0 dec)) 

(qval X (0 inc)))))) 
=> T 

Since the simple spring tree is closed and determined, we have shown that every 

reasonable solution to an ODE which abstracts to the QDE in Fig. 2 has a splitting 
which is temporally described by a specification of the perfect path formula associated 
with each of the formulas above. 

The predicted tree is not complete, since behaviors that cycle through different 
branches are not possible. We could rewrite the QDE in various ways to make the 
tree complete. Simply removing the extraneous landmark in X would suffice. This would 
produce a single behavior. Using the strong match cycle criterion would also produce a 

complete tree in this case. The next example produces a complete tree. 

Example 21 (Damped oscillator). The damped spring loses energy. The first behavior 
in the behavior tree in Fig. 4 ends in a cycle representing a decreasing oscillation. The 

second two are partial cycles followed by “nodal” (i.e., over- or critically-damped) 
convergence to a quiescent state at the origin. These qualitative behaviors have specifi- 
cations which qualitatively describe real trajectories of nonlinear instances of the QDE. 
Since weak match cycles were detected, this finite behavior tree represents a structure 
with infinitely many rooted fullpaths, oscillating a finite number of half-cycles around 
the origin before “nodal” convergence and a single rooted fullpath which never be- 
comes quiescent. TL determines that each of the universal questions asked about the 
simple spring behavior tree above is false of the damped spring, but the corresponding 
existential statements are true. 

(TL DS (possibly (always (not (status quiescent))))) 
=> T 

(TL DS (possibly (eventually (status cycle)))) 
=> T 
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i + g(i) + f(x) = 0 

where f and g are in M+ (x1 

(define-QDE DSpring-for-TL 

(quantity-spaces 

(x (minf 0 inf) "Position") 

(v (minf 0 inf) "Velocity") 

(a (minf 0 inf) "Acceleration") 

(ff (minf 0 inf) "Fluid friction") 

(fs (minf 0 inf) "Spring force")) 

(constraints 

((d/dt x v)) 

((d/dt v a)) 

((m- X fs) (0 0) (minf inf) (inf minf)) 

(Cm- v ff) (0 0) (minf inf) (inf minf)) 

((add fs ff a)))) 

(defun dspring-envisionment () 

(setq DS (make-new-state 

:from-qde DSpring-for-TL 

:sim (make-sim :no-new-landmarks ‘(x v a ff fs) 
:ignore-qdirs ‘(a> 

:cycle-detection :veak 

:state-limit 200) 

:assert-values '((x (0 nil)) (v ((0 inf) nil))))) 

(qsim DS) 

(qsim-display DS)) 

Position Accellsration 

The first behavior in the tree ends in a cycle state which matches the root. The difference 
between the second two states is the direction from which they approach quiescence. 

The second behavior is shown. 

Fig. 4. QSIM input and output for damped spring. 
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(TL DS (possibly (eventually (status quiescent)))) 
=> T 

119 

(TL DS (possibly (and (infinitely-often (qval x (0 inc))) 
(infinitely-often (qval x (0 dec)))))) 

=> T 

(TL DS (possibly 
(infinitely-often 

(before (qval x (0 dec)) 
(qval x (0 inc)))))) 

=> T 

(TL DS (necessarily 
(always (possibly (eventually (status quiescent)))))) 

=> T 

(TL DS (necessarily 
(always (implies (not (status quiescent)) 

(possibly (always (not (status quiescent)))))))) 
=> T 

The damped spring structure is complete, since there are nonlinear choices for the 
two monotonic functions in the model that give “spiral in” behavior away from the 
origin, followed by “nodal” behavior close to the origin. If both monotonic functions 
are linear, of course, the only possibilities are pure “nodal” and pure “spiral in” behavior. 
Therefore, we have proved that for each of the first five formulas above, there is a set 
of functions which is a solution to an ODE which abstracts to the QDE given in Fig. 4 

and is temporally described via $v,,M by a specification of the perfect path formula 
corresponding to the CTL* formula. 

The last two formulas say that, no matter how many oscillations you’ve seen so far, 
it is always possible that (a) the behavior could terminate with nodal convergence to 
a quiescent state, and (b) the behavior could go on oscillating forever. Since the last 
two formulas are not universal, Theorem 15 gives no information. These two formulas 
are used for the purpose of discovering features of the QSIM structure, M, and not for 
proving properties of dynamical systems. 

Example 22 (A quantitative example). Now we reconsider the billiards example in or- 
der to show the use of quantitative information in QSIM QDEs and the resulting proofs 

that TL provides for time-critical systems. Refer to Fig. 1 and the description of the 
system given in Section 3.1. 

With only qualitative information about the balls’ positions and speeds, QSIM gives a 
closed tree with 55 different behaviors, representing the different orders in which balls 

can collide, pass each other’s positions, or reach infinity. With complete quantitative 
information, specifying identical speeds of 2 position units per second (in the indicated 
directions), QSIM predicts a single behavior in which balls B and C collide at t = 0.5 
seconds. With the information provided, QSIM produces a tree with three behaviors. 
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The queries given below were checked on the tree with the information described 
in Section 5.3-A and B have velocity -2 units/second, and the velocity, Cxp, of C is 

some constant within the interval [ -3.5, - 1.51 in units/second. 
Because the predicted tree of behaviors is complete, we can draw conclusions from 

the answers to each of the following queries. 

(TL SS (necessarily 

(always (implies (and (in-range dxBC (0 0)) 
(in-range dyBC (0 0))) 

(in-range time (.5 .5)))))) 
=> T 

(TL SS (possibly 

(eventually (and (in-range dxBC (0 0)) 
(in-range dyBC (0 0)) 

=> T 
(in-range time (.5 .5)))))) 

(TL SS (necessarily 

(always (not (and (in-range dxAC (0 0)) 

(in-range dyAC (0 0))))))) 
=> T 

The first TL query proves that in the solution to any ODE which abstracts to the QDE 

if B and C collide then it happens at time 0.5. The second query proves (by Theorem 
19) that there is a solution to an ODE consistent with the given QDE in which B and C 
do collide at time 0.5. The third query shows that A and C cannot collide in any ODE 

consistent with the given QDE. This is so because B blocks C in the behavior in which 

C might hit A. 

6.2. TL as a debugging tool for QSIM models 

Because QSIM is not complete in general, a QSIM behavior tree may contain paths 
which do not correspond to real behaviors. Therefore, the truth of certain CTL* state- 
ments (e.g. those beginning with the quantifier possibly), do not imply the truth of 
the corresponding statement in an actual behavior. This provides an opportunity for a 
tool such as TL to be used to find such paths. If the QSIM user knows that a certain 

sequence of events cannot occur in a real behavior, he can use TL to find out if that 
sequence of events occurs in any of the paths in the QSIM behavior tree. The user can 
have TL print information which will isolate the path on which the spurious behavior 

occurs. Also, as in the damped spring example, nested quantifiers can be used to gain 
insight into some interesting structures of the represented QSIM structure. 

The program can be and has been used on terminals which do not support the graphical 
display of QSIM behavior trees. In these circumstances, the user can learn everything 
he or she may need to know about a QSIM behavior tree by evaluating a few carefully 
chosen CTL* statements. 
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6.3. Proving properties of controllers 

Kuipers and Astriim [ 151 have used TL and QSIM to prove properties of heteroge- 
neous control laws. A heterogeneous controller is a nonlinear controller created by the 

composition of local control laws appropriate to different, possibly overlapping, operat- 
ing regions. Such a controller can be created in the presence of incomplete knowledge of 
the structure of the system, the boundaries of the operating regions, or even the control 
action to take. A heterogeneous control law can be analyzed, even in the presence of 
incomplete knowledge, by representing it as a qualitative differential equation and using 
qualitative simulation to predict the set of possible behaviors of the system. By express- 

ing the desired guarantee as a statement in CTL *, the validity of the guarantee can be 

automatically checked against the set of possible behaviors. Kuipers and AstrGm [ 151 

demonstrate the design of heterogeneous controllers, and prove certain useful properties, 
first for a simple level controller for a water tank, and second for a highly nonlinear 

chemical reactor. 
Gazi and Ungar also use TL to prove properties of models of chemical reaction 

controllers [ 9, lo]. 
There are three programs-Q2 [ 161, 43 [ 21 and NSIM [ 121 -which extend QSIM 

to take advantage of numeric information, to prune spurious behaviors and to derive 
numeric bounds on landmark values and time points. The program TL is easily ap- 
plied to the behavior trees output by these QSIM extensions which use quantitative 
bounding information and produce quantitative bounds on the predictions. For these 

applications we use the propositional part of the language with the numeric propositions 
to include numerical information in the state propositions. These propositions allow TL 
to prove time-critical properties of models of a system, even in the face of incomplete 
knowledge. 

6.4. TeQSIM: temporal constraints on simulation 

In this paper, we use temporal logic formulas to check the output of QSIM. Bra- 
jnik and Clancy [4-61 extend the interaction between qualitative simulation and model 
checking to treat temporal logic statements as an input. TeQSIM (pronounced tek’sim) 
interleaves model checking with QSIM’s simulation agenda, allowing simulation only 

of branches that can satisfy the given temporal logic formula. This makes it pos- 
sible to focus simulation on a particular portion of the state space, which is use- 

ful for large, complex models that might not otherwise be tractable. It also allows 
the user to specify exogenous inputs, discontinuous changes, the results of obser- 
vations, and various other types of boundary conditions. One can use temporally 
guided simulation to explore critical portions of a large state space to discover, for 
example, constraints on an exogenous variable required for a plan to succeed, fol- 

lowed by unguided simulation of a model incorporating the new constraints to de- 
rive a performance guarantee. Brajnik and Clancy [5,6] demonstrate TeQSIM on 
a realistic control and planning problem from the domain of water supply manage- 
ment. 
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7. Relation to other work 

The results described in this paper are related to other work done in the fields of 
temporal logic model checking and simulation and control. 

Probably the most work in temporal logic model checking has been done in appli- 
cations of CTL and CTL* to computer processes such as parallel computing [ 8,181. 
More closely related work has been done by Moon et al. [ 191 who checked statements 

in CTL against state transition graphs in discrete-time systems generated from pro- 
grammable logic controller ladder diagrams. Their specific application was to chemical 

process control. TL makes it possible to apply a more complex temporal logic (CTL*) 

to continuous-time control systems, and indeed to dynamical systems in general. 

Alur and Henzinger [ 11 use a logic called metric temporal logic (MTL) to check 
properties of discrete-event systems. Metric temporal logic is, strictly speaking, not as 
expressive as CTL*. However, it integrates time information at a higher level of the 
language, therefore it is easy to express some statements in MTL which are difficult to 

express in CTL*. 
Jahanian [ II] modeled real-time systems in the Modechart language. Statements 

in Real Time Logic were checked against a Modechart model. Real Time Logic is 
undecidable in general but certain classes of statements are shown to be decidable. 
Model checking CTL* is decidable [8]. However, Real Time Logic is especially suited 

for expressing statements which are useful in time-critical systems, whereas some such 

statements are more difficult to make in CTL*. 
Other systems exist which allow temporal logic sentences to be checked against a 

structure representing discrete event systems. TL makes a formal connection between 
continuous dynamical systems and time-critical temporal logic model checking. 

8. Conclusion 

TL implements a method for using modal and temporal logic formulas to prove 
properties of the behavior of a continuous physical system even with an incomplete, 
qualitative or semi-quantitative description. If the user can describe a physical system in 

terms of a set of qualitative constraints, then by using QSIM and TL, he or she can prove 
theorems about the behavior of any reasonable, extended-real-valued function consistent 
with those constraints. This applies even to systems with time-critical requirements. This 

provides a meaningful and sound interpretation for the phrase, “proof by simulation”. 
This link between logic-based and simulation-based inference methods will support a 

variety of hybrid reasoning techniques that could be of substantial value for the design 
and validation of continuous and piecewise-continuous systems. 

Appendix A. Extensions to the propositional language 

The implementation, TL, of the language includes other propositions, some of which 
we describe in this appendix. In most cases, the added propositions are useful only to 
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describe the predicted QSIM structure, and not to prove theorems about the underlying 
dynamical systems. Some of them can be included in the proof of the theorems but this 
inclusion would require distracting special treatment. This appendix discusses issues 
involved in adding new propositions to the language. 

First we mention the “proposition” of the form (funcall f> where f is a lisp 
function. This returns the value returned by the lisp function called with the state as its 
single argument. This is used mainly for side effects such as printing information about 

a state. Note that the proposition funcall cannot be considered as part of the logic 

when we talk about complexity, soundness or the main theorems. It is added for user 
extensions and convenience and should be used with care. 

The next proposition we mention illustrates the major issues involved in adding a 

proposition to the language. The syntax is: 

(contains-range u (ni n2) > 

where u is a variable name in the state s and nt and n2 are extended real numbers. This 
proposition is true when the numeric range, in which the number named by u in the 
current behavior has been determined to lie, contains the interval [ n1, n2] as a subset. 

If the theorems in the paper are going to be applied to a new proposition, then we 

must be able to include it in the proof of Lemma 13 in such a way that the induction 
step in the proof of Theorem 14 can be performed. Therefore, we must define what it 

means for a specification of this proposition to describe temporally a splitting of a set 
of reasonable, extended-real-valued functions and determine what is required for a state 
to be determined with respect to the proposition. Once Lemma 13 and Theorem 14 are 

proved for the proposition, the rest of the theorems will follow. 

We say that a specification of the proposition 

(contains-range fi(ui) (nl n2>> 

temporally describes ({ ti}, {ui: 1 < i < n}) via 1+9 if and only if [nl,n2] c ui(&) 

where {Dk} is the partition of the domain corresponding to the splitting. 

The reader might want to try to prove Lemma 13 and Theorem 14 at this point in 

order to see the problem which now arises. Without a strict definition of what it means 
for a state to be determined with respect to this new proposition, the proof does not 
go through. In fact, Theorem 14 is false without such a definition. Since the set U of 
functions is fixed, we cannot prove that the subrange [ nl , n2] specified in the proposition 
contains the value of the specific function Ui. I.e., it is possible that a fullpath x describes 

a set of functions and a path formula containing the contains-range proposition be 

modeled by x but the path formula may not describe the set of functions. 
Consider the following as a counterexample. Suppose that the variable V in the QDE 

has real-valued function solutions U(X) = rx2 for r E [ l/2,2] due to the constraints 
and numeric information provided by the user. Further, suppose that V has the quantity 
space (minf 0 a b inf > where the real value named by the landmark a is known to 
fall within the interval [ l/2,2] and the real value named by the landmark b is known 

to fall in the interval [2,8] on the behavior in Fig. A.l. Suppose that, in a certain 
path (Fig. A.1)) at time t = 0 we have (qval V (0 std) 1, for time t E (0,l) we 
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- inf 

T -b 12.81 

T -a [l/2,21 

0 -0 10.01 

0 1 2 - minf 
I I I 

Fig. A. I. Qualitative behavior with quantitative landmark bounds 

have (qval V ((0 a) inc)), at time t = 1 we have (qval V (a inc) ), for time 
t E ( I, 2) we have (qval V ( (a b) inc)) and at t = 2 we have (qval V (b inc) ) , 

The following formulas will be true on this fullpath yet they describe functions which 
are not real solutions to the QDE: 

(eventually 

(and (contains-range V (l/2 i/2)) 

(strong-next (strong-next (contains-range V (8 8)))))) 

(eventually 

(and (contains-range V (2 2)) 
(strong-next (strong-next (contains-range V (2 2)))))) 

These path formulas describe real-valued functions which cut across the ranges in a way 
an actual solution to the QDE could not do. In this case, the use of nontrivial range 

information and the contains-range proposition, can combine to describe a function 
which is spurious. 

In order for Lemma 13 and Theorem 14 to hold in general, for a QSIM state to be 

determined with respect to (contains-range u (nt n2) ), the numeric range associated 
with a landmark of the variable u in the state must be trivial (i.e., contain a single point). 

Other propositions such as intersects-range might be useful to the TL user. 
However, because of the strict condition required for determinedness, such propositions 
are intended to be used more for gaining information about the QSIM prediction than 
proving theorems about continuous systems. The exception, of course, is in the case 

that there is such complete information that programs such as Q2 are able to narrow 
the possible values associated with a landmark to a single real number. In this case, 
contains-range and other similar propositions may be used to prove theorems about 
continuous systems but they become equivalent to the in-range proposition. 

Finally, we mention that the status proposition can take any of the arguments 
{quiescent, stable, unstable, transition, cycle}. The proposition will be true 

when QSIM has determined the state to have the named property. A state has the 
stable property if it is quiescent and in stable equilibrium. A transition state is a 

terminal state in a path in which the value of one of the variables crosses a boundary 
of its range. A cycle state is a state which matches a previously generated state and 
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whose successors are already represented in the tree. Other than quiescent, stable 
and unstable these properties have more to do with the QSIM interface than with the 

underlying functions being described. That is the reason we did not include a discussion 
of these properties in the discussion of the logic. 

We define a QSIM state to be determined with respect to the propositions (status 
stable) and (status unstable) if it is not quiescent or if it has been determined to 
be stable. This is because QSIM may be incorrect when it determines a quiescent state 

to be unstable. 
Additional propositional operators can also be added to allow the user to gain other 

information about QSIM states. For example, the newest release of QSIM produces 
“chatter-sink” states in order to express more succinctly the fact that certain variables 

may chatter indefinitely or, at some point, stop chattering. So, we could add the propo- 
sition chatter-sink-p to the language such that it is true of a state if and only if the 
state is a chatter-sink state. In this case, the proposition has no real meaning when trans- 

lated to the domain of real-valued functions. Therefore, once again, it is used mainly to 

draw information about QSIM’s output. 

Appendix B. Refined definition of a reasonable function 

In this appendix, we use R to denote the reals and R* to denote the extended reals. 

The traditional definition of a reasonable function [ 141 is too restrictive for our current 
purposes. Giving a satisfactory definition of reasonable is not simple. We would like to 

let functions such as sine on [a, co) and tangent on [--r/2, r/2] to be reasonable. On 
the other hand, we do not want to allow functions to be reasonable which cannot be 
simulated by QSIM. Finding a balance between including functions which QSIM does 

simulate and excluding functions which make simulation impossible is an area open to 
further investigation. The definition must be such that the QSIM algorithm simulates 
every reasonable solution to any ODE which abstracts to the input. However, we want 
it to be inclusive enough to cover interesting functions. 

The following questions come up in this context. Should we allow infinite derivatives 
at points in IX? Should we allow the limits of f’ not to exist at *co? Should we allow 

infinitely many critical points in R? Is there a concise way of expressing the definition 
which gives us the best of both worlds? 

The definition we offer here is adequate for the purposes of this paper. This defini- 

tion is more inclusive than the traditional one [ 141, but more inclusive definitions are 

possible. 

Definition 23. Suppose A is an interval in R* with supremum b and infimum a. f : 

A -+ JR* is a reasonable function over A if 
(i) f is continuous on A, 

(ii) f is continuously differentiable on (a, b) with derivative f’, 
(iii) f has only finitely many critical points in any bounded interval of Iw n A and 
(iv) if a E R then lim,,,+ f’(t) exists in lR* and if b E R then lim,,b- f’(t) exists 

in I%*. 
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According to this definition, sine is reasonable on any interval [a, 00) for a E IR, 
but not over [a, 001. Tangent is reasonable over [--r/2, +7~/2], but sin( l/x) and 
x sin( 1,‘~) are not reasonable over (0, a) for 0 < a < 00. 

Appendix C. Proofs 

Proof of Lemma 5. We want to show that if @ is a universal formula and x is a fullpath 
in M such that M, x b @, then M, x k @‘. 

Without loss of generality, we assume that @ is in positive normal form. The proof 
of the lemma is by induction on the length of @. 

Since atomic propositions are perfect, Q, = CD’ and hence M,x k @ if and only if 
M, x b @‘. This justifies the base case. 

Suppose that every universal formula of length less than k makes the theorem true 
and that CD has length k. 

If @ = (necessarily p), then for every fullpath y starting at the first state in X, 
M, y + p. Therefore, by induction, for every fullpath y starting at the first state in X, 

M, y k p’. In particular, M, x /= p’ and hence M, x + @‘. 
If@ = (and pl'. .p,,>, then M, x k pi for each i, 1 < i < n. We need to show that 

M, x b pi for each i. This follows by induction, Thus, M, x k Cp’. 
If @ = (or pi . p,,), then M, s + pi for some i, 1 < i 6 n. We need to show that 

M, x + p( for some i. This follows by induction. Therefore, M, x k @‘. 
If @ = (not p), then Sp is an atomic proposition since @ is in positive normal form 

and so p = p’. 

If @ = (until p q), then there is a nonnegative integer i < A(x) (we choose the 
smallest) such that M,x’ b q and for every nonnegative integer j < i, M,xj k p. 
Therefore, M, xi /= q’ and for every nonnegative integer j < i, M, xi k p’ by induction. 
Therefore, M, x + (until p’ 4’). 

If @ = (releases p q), then for every nonnegative integer i < A(x) such that 

M, xi p q there is a nonnegative integer j < i such that M, xi b p. 
First suppose that for every nonnegative integer i < A(X) , M, xi k q. Then M, xi k q’ 

for every nonnegative integer i < A(x) by induction. Therefore, M, n b @‘. 
Now suppose that there is a nonnegative integer i < A(x) such that M, x p q. We 

select i to be the smallest such nonnegative integer. Thus, there is a nonnegative integer 
j < i such that M,d k p. For all such j we also have M,xi + p’ by induction. 
For every nonnegative integer k < i, we have M, xk j= q by the choice of i and so 
M, xk + q’ by induction. Therefore, we get that for every nonnegative integer 1 < A(x) 
such that M, xl k q’ there is a nonnegative integer j < I such that M, xj k p’. That is 

to say, M, x /= (releases p’ q’). 
If Q, = (next p), then if A(x) > 1 then M, x’ b p and we are done by induction. If 

A(x) = 1 then M, x b (next p’) as well. 

If di = (strong-next p>, then A(x) > 1 and M,x’ /= p so we are done by 
induction. Cl 
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Proof of Theorem 14. Suppose x is a fullpath in a QSIM structure 6 which is de- 
termined with respect to all of the propositions in @J, a perfect path formula, and 

~TL, x b @. If the specification (x, c) of x qualitatively describes ({ti}, U) then we 
show that (46, c) temporally describes ({ti}, U) via &JM. 

Without loss of generality, we assume that @ is in positive normal form. Suppose that 
x is a fullpath in a QSIM structure M which is determined with respect to all of the 
propositions in @, a perfect path formula in positive normal form, and %r~, x /= @. We 

will apply induction on the length, k, of @J. In the base case, @ is an atomic proposition. 

This case follows from Lemma 13. 

Our induction hypothesis says that for any fullpath y in a QSIM structure such that 

firs, y /= W where W is a perfect path formula in positive normal form of length less 

than k and M is determined with respect to every proposition in q, if (y, c) qualitatively 
describes a splitting ({Yi}, V) then (P,c) temporally describes ({ri}, V) via $“,M. 

If @ = (and pt . .p,,), then we must sho_w that if (pi, c) temporally describes 

(Iti)> V ti , f vta UM or each j, 1 < j < m, then Mr~,x b p,i for each j, 1 < j < m. This 

follows by the induction hypothesis. 
If CD = (or pt . .p,,,), then we must SLOW that if (pj, c) temporally describes ({ti}, U) 

via r+4~,~ for some j, 1 < j 6 m, then A4 r~, x /= pi for some j, 1 < j 6 m. Again, this 

follows by induction. 
If @ = (not p>, the? we must show that if (p, c) does not temporally describe 

({ti}, U) via &J,M then MEL, x k p. Since, by the definition of positive normal form, p 

must be an atomic proposition, this follows from the induction hypothesis and Lemma 13. 
If @ = (until p q) , then we must show that if (x, c) qualitatively describes ({ti}, U), 

then (@J, c) temporally describes ({t;}, U) via @“,,M. By the semantics of until we 

know that there is a nonnegative integer h < A(x) such that iii,, xh b q and for every 

nonnegative integer I < h, Mr~,.x’ k p. Since (x, c) qualitatively describes ({ti}, U), 
(x”, c) q ua I a ive y I’t t’ 1 d escribes ({ti: d,, < i}, UI,,+) by Lemma 10. Thus (q, c) temporally 

describes ({ti: dh < i}, UI,,+) via $“,M by induction. For every nonnegative integer 

1 < h, (x”,c) qualitatively describes ({ti: dl 6 i}, UIl+) by Lemma 10. Thus (p,c) 

temporally describes ({ti: dl < i}, LIIl+) via @“,M by induction. So (@,c) temporally 

describes ({ ti} 9 U) via $u,M. 
If @ = (releases p q), then we must show that if (x,c) qualitatively describes 

({ti}, C/) then (@, c) temporally describes ({ti}, U) via $U,,M. Smce %r~, x b @ we 
know that for every nonnegative integer_h < cl(x) such that MEL, xh k q there is 
a nonnegative integer 1 < h such that M r~, x1 + p. First suppose that MTL, xh b 4 

for every nonnegative integer h < A(x). We know that (x”, c) qualitatively describes 

({t;: 41 ,< 97 U/1+) f or every nonnegative integer h < n(x) by Lemma 10. Therefore, 

(q, c) temporally describes ({ti: dh < i}, UI,,+) via @II,,+, for every nonnegative integer 
h < ii(x) by induction and so (x, c) qualitatively describes ({ti}, U). 

Now suppose that there is a nonnegative integer h < n(x) such that kr~,x” p q 

and it is the smallest such h. There is a nonnegative integer 1 < h such that GijTL, x1 /= 

p. For every nonnegative integer j < h, G r~, xi /= q and since (.I$, c) qualitatively 

describes ({ti: d,i 6 i}, U/j+), (4, c)_temporally describes ({ri: d,i < i}, Ul,i+) via &J,M 
by induction. For one of these j, MEL, xi /= p and hence (p, c) temporally describes 

({ti: d,i 6 i}$ u(,+) via $U,M by induction. So we have that if there is a nonnegative 
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integer h < A(x) such that % rL, xh F 4, there is a nonnegative integer j < h such 

that (p, c) temporally describes ({ti: dj < i}, Uj,i+) via #,&M and for every nonnegative 

integer 1 < j, (4, c) temporally describes ({ti: dr < i), UI(l+) via +U,M. Therefore, (a, c) 

temporally describes ({ ti}, U) via &J,,M. 
If @ = (next p) , then we must show that if 0 = 25 or (p, c) temporally describes 

({ti: di < i},UIi+) via $/(I# then A(x) = 1 or (x1, c) qualitatively describes ({ti: 
dl 6 i}, UI ,+). This follows by induction and the use of Lemma 10. 

If @ = (strong-next p) , then we must show that if 0 < 23 and (p, c) temporally 

describes ({ti: dl < i}, U\ I+) via +U,M then A(x) > 1 and (xl, c) qualitatively de- 
scribes ({ti: dl < i}, UI( I+). Once again, this follows from the induction hypothesis and 

Lemma 10. 0 
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