
ELSEVIER Artificial Intelligence 92 (1997) 91-129

Artificial
Intelligence

Proving properties of continuous systems:
qualitative simulation and temporal logic *

Benjamin Shults a,‘, Benjamin J. Kuipers b,*

B Department of Mathematics, University of Texas at Austin, Austin, TX 78712. USA

h Computer Science Department, University of Texas at Austin, Taylor Hall, Austin, 7x 78712, USA

Received February 1996; revised September 1996

Abstract

We demonstrate an automated method for proving temporal logic statements about solutions
to ordinary differential equations (ODES), even in the face of an incomplete specification of the
ODE. The method combines an implemented, on-the-fly, model checking algorithm for statements
in the temporal logic CTL* with the output of the qualitative simulation algorithm QSIM. Based
on the QSIM Guaranteed Coverage Theorem, we prove that for certain CTL* statements, @, if @
is true for the temporal structure produced by QSIM, then a corresponding temporal statement,
di’, holds for the solution of any ODE consistent with the qualitative differential equation (QDE)
that QSIM used to generate the temporal structure. @ 1997 Elsevier Science B.V.

Keywords: Temporal logic; Qualitative simulation; Model checking; Differential equations

1. Introduction

The world is continuous and dynamic, but we want to use discrete symbolic means
to reason reliably about it. We demonstrate a method for doing this for a significant
range of cases by using qualitative simulation to generate a finite structure guaranteed
to describe the behaviors of the continuous system, then interpreting that structure as a
model to check the validity of statements in temporal logic.

The main theorem of this paper can be stated informally as follows. Suppose A4

is a QSIM behavior tree generated from the qualitative differential equation C. If M

*This work has been supported in part by the National Science Foundation (grant IRI-9216584) and by the

Electric Power Research Institute. A preliminary report on this work appeared as [171.

* Corresponding author. E-mail: kuipers@cs.utexas.edu.

’ E-mail: bshults@math.utexas.edu.

0004-3702/97/$17,00 @ 1997 Elsevier Science B.V. All rights reserved
/WS0004-3702(96)00050-l

92 B. Shuks, B.J. Kuipers/Artifrcial Intelligence 92 (1997) 91-129

is a model for a temporal logic formula, then the formula describes every solution to
every ODE which abstracts to C. Of course, we will formalize all of these relationships
carefully in this paper.

In many applications in which ordinary differential equations are used, information

about initial conditions or the specific relationship between a pair of quantities is not

completely known. In some cases constants are only known to lie in a certain range or the
relationship between quantities is only known to be monotonic. Qualitative reasoning

allows this information to be used to generate descriptions of solutions to any ODE
which abstracts to the known information. We call such an abstract ODE a qualitative

differential equation (or QDE) . In many such applications we want to draw conclusions

about the solution to any ODE consistent with the limited information we have about a

system.
Furthermore, there are a number of applications of model-based reasoning that can

profit from reliable inference about time-ordered events over the set of possible behaviors
of a continuous system. Since applications such as control, monitoring, diagnosis and

design must often cope with conditions of incomplete knowledge, the ability to do
temporal reasoning over the possible behaviors of a system described by a qualitative
or semi-quantitative model is particularly valuable. Our program, TL, makes a formal
connection between solutions to real differential equations and temporal logic model

checking.
A qualitative simulator, such as QSIM, constructs a tree-like structure whose branches

represent the possible behaviors consistent with the qualitative differential equation and
initial state input to the QSIM algorithm [13,141. This set of behaviors is expressed
as a finite structure of qualitative state descriptions. In the case of QSIM, this struc-
ture is guaranteed to contain a branch which describes any “reasonable” extended-
real-valued function which is a solution of an ordinary differential equation which

abstracts to the QDE under circumstances to be described. We call this property the

“soundness” of QSIM, and this property is the content of the Guaranteed Coverage

Theorem.
Since the output of the QSIM algorithm is a structure whose paths describe reasonable,

extended-real-valued functions, we would like to be able to formulate temporal questions
about the system it describes and have those questions answered. This is accomplished
using temporal logic model checking. A model checking algorithm takes as input a
temporal logic formula and a tree-like structure and determines whether the structure is
a model (in the logical sense of the word) for the formula. Temporal logic augments

propositional logic with temporal operators on time-varying truth values, such as always,

eventually, and until. Modal logic adds operators for truth values in alternate possible
worlds (i.e., alternate behaviors or paths), such as necessarily and possibly.

We have chosen to use the branching time temporal logic CTL* which is described

by Emerson and Clarke [7,8].
Because QSIM is sound, for any CTL* statement @ which is “universal” in a sense we

will define, if Cp is modeled by the structure produced by QSIM, then a corresponding
theorem holds for the solution of any ordinary differential equation consistent with the
QDE that generated the QSIM structure. Therefore, at least for universals, statements in
temporal logic about continuous systems can be proved by qualitative simulation. This

B. Slzults, B.J. Kuipers/Art@cial Intelligence 92 (1997) 91-129 93

allows a hybrid reasoning system to prove common-sense statements and to do expert
reasoning about dynamical systems.

We also provide a limited completeness result: in case all paths in the structure output
by QSIM describe reasonable, extended-real-valued functions which are solutions to

differential equations consistent with the QDE input to QSIM, then even CTL* formulas
which are not universal may be used to prove properties of the system.

The propositional part of the temporal language includes propositions which allow

the construction of formulas containing numerical information. This can be used in
conjunction with the numerical extensions to QSIM-Q2 [161, Q3 [2] and NSIM

[121 -in order to prove numerical properties of physical systems.
In Section 2 we describe and define the temporal logic language CTL* and present

some basic definitions and facts which will be needed in our main theorem. The reader
already familiar with CTL* may want to read only Section 2.1 to learn about our notation

conventions and Section 2.4 to see the standard results from the literature which we will

be using.
In Section 3 we describe the QSIM framework and prove the Guaranteed Coverage

Theorem. Even readers familiar with QSIM should read most of Section 3 since we use
an updated formalization and add some new terminology.

Section 4 begins to show how the QSIM framework and the underlying differential

equations are related to the theory of temporal logic and CTL* formulas. There we
explain how the output of the QSIM algorithm is used as a structure over which
formulas in CTL* can be interpreted. We also show how CTL* formulas describe
reasonable real-valued functions.

In Section 5 we introduce the last hypothesis to the main theorem and prove the main
theorem. We also prove some useful special cases and a completeness result. Section 5

also discusses some issues concerning the implementation.
In Section 6 we describe some applications of the combination of temporal logic

model checking with qualitative simulation.
Sections 2-4 lay the groundwork for the statement of the main theorem. We will

be stating the main theorem in increasing degrees of formality as we develop the
terminology.

2. CTL*

Computational tree logic (CTL and its extension CTL*) is a branching time temporal
logic. The theory of branching time temporal logics is summarized by Emerson in The

Handbook of TheoreticaE Computer Science [81. We will customize CTL* slightly in
order to allow states with no successors because in continuous systems a state may have
no successor (e.g. if time reaches infinity or if the value of some variable crosses a

boundary of its range). In this section, we define the syntax and semantics of the CTL*
language and, in Section 2.4, give some basic results and definitions which will be used
by our main theorems. The presentation of CTL* here does not differ significantly from

the presentation of the language in [8] except in the notation we use. We use this
notation as a convenience for our implementation.

94 B. Shults, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129

A model checking algorithm examines a temporal structure and a temporal logic
formula and determines whether the structure is a model (in the logical sense of the
word) for the formula.

Our implementation (TL) of a model checking algorithm for CTL* is an “on-the-fly”

model checker based on the algorithm of Bhat, Cleaveland and Grumberg [31. On-the-

fly algorithms have the advantage over the more common “global” algorithms of being
able to terminate with the correct result before constructing the entire exponentially

large structure. If the formula happens to be in the sublanguage CTL of CTL* then

the complexity of this on-the-fly algorithm is the same as the best known algorithms

for CTL model checking. Our implementation is customized for expressing statements
about continuous systems (see Section 4).

2.1. Terminology and notation

We interpret a CTL* formula over a temporal structure M = (S, X, L) where
0 S is a set of states,
l X is a set of fullpaths,

l L:SxAP+{T,F} is an interpretation which takes a state s E S and an atomic
proposition 4 E AP and assigns a Boolean truth value.

Here AP is the set of atomic propositions. A fullpath is a path which is either infinite
or terminates with a state which has no successor.

We use the notation (SO, si, ~2,. . .) to denote an infinite or finite totally ordered set.

We let A(x) denote the cardinality of a finite, totally ordered set x. If x is an infinite,
totally ordered set, then by i < A(x) we mean i is any nonnegative integer. Here we

use totally ordered sets to represent paths and fullpaths. Notice that the last state in a
finite fullpath x = (SO, st, s2,. . .) is sh(*)_i.

We now describe the path quantifiers and the basic temporal operators on propositions.

The names we use for path quantifiers and temporal operators are equivalent to the more
concise names used in the temporal logic research community:

A z necessarily, G z always, X = next,

E = possibly, F = eventually, u =_ until.

We prefer to give a rough description before the formal syntax and semantics are defined.
Suppose some state s and path x starting at s are given and that p is a formula. The
two path quantifiers are

l (necessarily p), which is true at s if p is true of every fullpath starting with s,

and
l (possibly p), which is true at s if p is true of Some fullpath starting at s.

The elementary temporal operators are (next p) and (until p q) where p and q are

formulas.
l (next p) is true of the path x if A(x) = 1 or p is true of the path obtained from

x by deleting its first state, and
l (until p q) is true of x if q is true of some state in x and p is true of every

state preceding the first state in which q is true. This operator is sometimes called
strong-until, to distinguish it from weak-until to be defined below.

B. Shults, B.J. Kuipers/Artifcial Intelligence 92 (1997) 91-129 95

The precise syntax and semantics of until and next will be defined in the following
sections. We will use the following abbreviations to define other operators in terms of

until and next:

(releases p q) 5 (not (until (not p) (not q> 11,

(before p q) s (not (until (not p) q)),

(strong-nextp) z (not (next (notp))),

(eventually p) = (until true p),

(always p) = (not (eventually (not p) > 1,

(never p> 3 (always (not p> >,

(weak-until p q) s (before q (and (not q) (not p) > > ,

(infinitely-oftenp) = (always (eventuallyp)),

(almost-everywherep) z (eventually (alwaysp)).

The formula (releases p q) is true of a path if q is always true or if q is true
through the first state in which p is true. The statement (before p q) is true of a

path if p is true in some state previous to the first state in which q is true (though
q does not necessarily ever become true). The formula (weak-until p q) is true of
a path if p is true in every state or in every state before the first state in which q is

true.
Because we are applying CTL* to structures which may have finite fullpaths, the

temporal operator next may seem ambiguous. Therefore, we must distinguish between

strong-next and weak-next. The statement (weak-next p) is true of a path if the
path has no next state or if the path has a second state and p is true of it. The statement
(strong-next p) is true of a path if the path has a second state and p is true of that

state. In our discussion, we consider next alone to mean weak-next.
In the following two subsections we give the formal definitions for the temporal

operators and path quantifiers of CTL*.

2.2. Syntax

A state formula is a formula which is interpreted over a state and a path formula is

a formula which is interpreted over a path. State formulas in CTL* are generated by
rules (Sl)-(S3) below. The path formulas in CTL* are generated by rules (B l)-(B3)

below. Although the semantics of releases, strong-next and or can be derived from
their definitions as abbreviations, we include the definitions here so that the proofs later

will be easier to follow.

Definition 1. The syntax of CTL* is defined as follows:
(S 1) each atomic proposition 4 is a state formula,

(S2) ifpl,...,p, arestateformulasthensoare (and pl . ..p.), (or p,...p,,) and
(not PI>,

96 B. Shults, B.J. Kuipers/Art$icial Intelligence 92 (1997) 91-129

(S3) if p is a path formula then (possibly p) and (necessarily p) are state
formulas,

(Bl) every state formula is a path formula,

(B2) if pt, . . . ,p,, arepathfotmulas thensoare (and pt . ..P.,), (or pt . ..p.,> and

(not pl>,
(B3) if p and q are path formulas then so are (next p>, (strong-next p),

(releases p q) and (until p q).

We also allow the standard boolean abbreviation for implies.

2.3. Semantics

The following notation is needed before the semantics of our logic can be defined.

Given a path x = (SO, $1, ~2,. . .), for every nonnegative integer i < A(x) we let xi

denote the path (si, si+l, si+2,. . .), which is the suffix of x starting at si. Thus, for

any nonnegative integer i < A(x), xi is the path obtained from x by deleting from
x the first i states. Notice that if x is finite, then xi is not defined for i 2 A(x) and

A(x’) = A(x) - i.

Now we are ready to give the semantics for the language. We write M, SO k @

(respectively M, x k @) to mean that the state formula @ (respectively path for-
mula CD) is true in the temporal structure M at the state SO (respectively of the path

x). Each item below gives the interpretation of the corresponding item in the syntax
above.

Definition 2. If se is a state in M and x = (SO, st , . . .) is a nonempty fullpath in M
starting at so, then we inductively define + as follows.

(Sl) M,sa + C#J where C$ is an atomic proposition if and only if L(SO, 4) = T;

(S2) M, so + (and PI . . -p,> ifandonlyifM,sa+~piforalli, l<i<n;

M, so + (or PI . . -pn> ifandonlyifM,sa+piforsomei, l<i<n;

M, SO k (not p) if and only if it is not the case that M, se + p;

(S3) M, SO /= (possibly p> if and only if there is a fullpath y in M starting at SO,
such that M, y /= p;

M, SO k (necessarily p) if and only if for every fullpath y in M starting at

so, M,Y FpP;

(B 1) M, x /= p where p is a state formula if and only if M, SO k p;

052) M,xi= (andpI.. .pn> ifandonlyifM,xkpiforalli,l<i<n;
M, x b (or pr . . .p,,> if and only if M, x b pi for some i, 1 < i < n;

M, x k (not p) if and only if it is not the case that M, x k p;

(B3) M, x k (until p q) if and only if there is a nonnegative integer i < n(x),

such that M, xi + q and for every nonnegative integer j < i, M, xj + p;

M, x k (releases p q) if and only if for every nonnegative integer i < n(x),

M, xi k q or there is a nonnegative integer i < A(x) such that M, xi + p and
for every j < i, M, xj k q;

M, x k (next p> if and only if A(x) = 1 or M, x1 k p;

M, x k (strong-next p) if and only if A(x) > 1 and M,x’ /== p.

B. Shults, B.J. Kuipers/Artijicial Intelligence 92 (1997) 91-129 97

2.4. Basic results

The proofs of our main theorems will use the fact that any formula can be written in
the following form.

Definition 3 (Positive normal form). A CTL* formula is in positive normal form if
until, releases, next and strong-next are the only temporal operators in the

formula and for every not in the formula, its scope is an atomic proposition.

Here we require that implies first be rewritten in terms of not and and or or. Every

CTL* formula is equivalent to a formula in positive normal form because all temporal
operators can be written in terms of those mentioned above and nots can be propagated
inward to propositions [31.

Definition 4 (Universal formula). A CTL* expression @ is said to be universal if,
when the formula is written in positive normal form, there are no occurrences of the
path quantifier possibly.

We call a path formula a pelfect path formula if it contains no path quantifiers. These

are exactly the formulas which correspond to formulas in propositional linear time logic

(PLTL) . If 0 is a formula in CTL*, then Cp’ denotes the perfect path formula obtained
from @ by deleting all occurrences of the path quantifiers. For example, if p and 9 are

propositions and

@ = (necessarily (until p (necessarily s> >>,

then

@’ = (until p q) .

We call @J’ the pellfection of @.
The following lemma is needed in the proof of Lemma 6 which is used in the proof

of one of the main theorems.

Lemma 5. If @ is a universal formula and x is a fullpath in M such that M, x t== @,
then M, x k Sp’.

The proof of this is complex and not enlightening. Therefore, it has been put in
Appendix C .

Lemma 6. For every universal CTL* state formula @, and every temporal structure M
and state s in M, if M, s k @ then for every fullpath x in M starting at s, M, x k @I.

Proof. The proof follows easily by induction on the length of @ by using Lemma 5. 0

3. QSIM

In Section 3.1 we briefly describe the QSIM framework. We refer the reader to
Kuipers’ full description of the QSIM framework [141 and to Appendix B for details

98 B. Shults, B.J. Kuipers/Artijicial Intelligence 92 (1997) 91-129

on the new definition of a reasonable function. Other reformalizations of concepts related
to the Guaranteed Coverage Theorem are described in the present section.

The QSIM algorithm takes as input the user’s qualitative or semi-quantitative descrip-

tion of a physical system. This input is called a qualitative differential equation (QDE) .

This description is formally related to some class of ODES as we explain below. The

output from the QSIM algorithm is a tree whose nodes are states describing the values
of the variables in the input QDE.

The main theorem of this section (the Guaranteed Coverage Theorem) stated infor-

mally says that every solution to any ODE related to the QDE is represented in the tree
output by QSIM. We give the formal statement of the Guaranteed Coverage Theorem
below.

Sections 3.1 and 3.2 explain some of the basic terminology used in the statement of
the Guaranteed Coverage Theorem. These sections also explain why the hypotheses of

the theorem are necessary. Those sections are designed so that the basic ideas are easy
to find. A casual reader should be able to understand the statement of the Guaranteed

Coverage Theorem without reading all of the details in Sections 3.1 and 3.2.
Section 3.1 among other things, formalizes the relationship between QDEs and ODES

and the relationship between the finite output of QSIM and the generally infinite structure
which it represents. Section 3.2 formalizes the relationship between fullpaths in QSIM

structures and continuous functions.
Now we give the formal statement of the Guaranteed Coverage Theorem. All unfa-

miliar terms used in this statement (e.g., specification, splitting, closed, abstraction) are
defined in Sections 3.1 and 3.2.

Suppose M is a closed tree generated from the QDE and initial state (C, I). Suppose
the ODE, F, abstracts to C and that the structural abstraction, F’, of F has solution set
U. The QSIM algorithm is carefully crafted to guarantee that the quagtative structure of

U is described by some rooted fullpath in the represented structure M:

Theorem 7, (Guaranteed coverage). Under the conditions above, there is a rooted full-
path x in A4 and a speci$cation (x, c) of x such that (x, c) qualitatively describes some
splitting ({ ti}, U) Of U.

The proof is given by Kuipers [13,141. Because most of the QSIM framework-the
algorithm itself, for example-is beyond the scope of this paper, we will not detail the
proof here.

3.1. The QSIM framework

A qualitative d@erential equation consists of a finite set of variables (each of which
is associated with a quantity space which is a totally ordered set of landmarks), and a
set of constraints on the values of the variables. A QDE is a structural abstraction of a

class of ordinary differential equations. The QDE codifies the QSIM user’s incomplete
knowledge of a physical system.

Starting with a QDE, C, and an initial state, I, qualitative simulation with QSIM
produces a finite tree, M = (S, R, B), of qualitative states, linked by the QSIM successor

B. Shults, B.J. Kuipers/Art@ial Intelligence 92 (1997) 91-129 99

relation, R. The finite tree which it produces is called a QSIM behavior tree in the
literature. We let M = (S, R, B) represent the behavior tree where S is the set of states,

R is the successor relation and B is the set of fullpaths starting at the initial state. Each
behavior is represented as a finite, totally ordered set beginning at the initial state and

terminating at a state with no R-successor. The set B is completely determined by the
relation R and the initial state I. Because of the significance of the initial state, we call
fullpaths whose first state is I rootedfullpaths.

We will say that this QSIM behavior tree was generated by the pair (C, I) of the QDE
and the initial state. A QSZM behavior is a path in the behavior tree, starting at the root

and terminating at a leaf of the tree, i.e., B is the set of QSIM behaviors in M. Each

state describes the qualitative value of each variable appearing in the QDE model. Each
variable will represent a function of time. The qualitative value of a variable u over a
state s is of the form (qmag, qdir), where qmag describes the magnitude of u as equal
to a landmark or in an open interval defined by two landmarks, and qdir is the sign of
the derivative of u. By considering the qualitative values of the variables at a state, and

the constraints in the QDE, QSIM is able to derive a number of properties of the states

and behaviors, including quiescence, stability and cycles.
A QSIM state is called a transition state if it has no R-successors due to the fact

that the value of one of its variables crosses a boundary of the QDE description. QSIM

allows the user to produce transition relations between a transition state in one tree and
the root of a tree generated by another QDE. This allows the user to produce a tree
which has different models for its behavior in different ranges. The theorems here could
be extended to take transition relations into account, however, the extension is tedious

and unenlightening so, in the theorems in this paper, we assume that transition states

have no successors.

Structural abstraction

The class of ODES related to a given QDE is that class of ODES which structurally
abstract to the QDE. The concept of structural abstraction is best understood by example.

Example 8. Given an ODE, F, there is associated with it a set, F’, of simultaneous
equations which is derived from F. We will call F’ the structural abstraction of F. For

example, consider an equation for simple harmonic motion:

d*X

dt = --x,

We structurally abstract this equation in several steps. First we introduce a variable
u so that v = dx/dt and again we let a = dv/dt. Finally, we write a = --x so that F’

is a set of three equations in three variables (not including time). At each step, the
equation is broken down into its components until each equation is simple enough to

be abstracted to a QSIM constraint. This set of three equations is called the structural
abstraction of the original equation for harmonic motion and is denoted F’. From
the structural abstraction, it is easy to create a QDE. See Section 3.3.1 of Kuipers’
book Qualitative Reasoning [141 for more details on the structural abstraction of an
ODE.

100 B. Shults, B.J. Kuipers/Artijcial Intelligence 92 (1997) 91-129

The structural abstraction, F’, is useful because it can easily be abstracted into a
QDE. Following our example, we obtain the following QDE from F’.

(d/dt X V>

(d/dt V A)

(M- a X)

From this QDE, QSIM will produce a temporal structure. Since the equation de-
scribing simple harmonic motion abstracts to this QDE, we would like to know that the

solutions to this ODE are described by some fullpath in the temporal structure generated
by QSIM. The Guaranteed Coverage Theorem says just that.

A solution, U, of F’ is a set of functions of time which simultaneously make each
of the equations in F’ true. Since U is a set of functions we need a way of relating
the functions in U to the variables in F’ for which they are supposed to be substituted.

We will use the symbol $ to represent this bijection from the set of functions in U to

the set of variables in F’. Similarly, if M is a QSIM tree produced by the QDE, C,
abstracted from F’ and U is a solution to F’, we let +“,M be the bijection from U to
the set of variables in C. The bijection is simply the relationship between the names of

the variables in F’ and the names of the variables in C.
It should be clear that a solution, (I, to F’ can be converted into a solution to F

by going through this transformation in the other direction. For example, since U =

{sin, cos, - sin} is a solution to F’, where @(sin) = x,$(cos) = o and $(-sin) = a,
we can conclude that the sine function is a solution to the original equation for simple

harmonic motion.

The represented QSIM structure

Here we make the important estinction betwezn the finite QSIM tree, M, and the

corresponding infinite structure M. Essentially, M is obtained from M by following
cycle states through the states which they match. However, we have to be careful to do

this in a sensible way when the strong match criterion is used.
QSIM may use various matching criteria when it detects cycles. The strong mutch

criterion requires that the value of each variable in the states to be matched is a landmark
(rather than an interval) and that those landmarks match the values of the variables in
the previously existing state (the qualitative derivatives have to match regardless of the
match criterion). The weak match criterion allows a match when the values are either

intervals or landmarks, The QSIM user may also dictate whether cycles are detected
across QSIM behaviors (cross-edge cycles) or only on the same QSIM behavior.

The type of cycle detection chosen makes a difference in the interpretation of the
tree. If strong matching is used, then a match represents a real cycle in the system. That
is, the system has returned to a previous state and therefore, by the uniqueness theorem
for differential equations, it must continue from that point exactly as it did before.
Therefore, such a cycle behavior represents a singlefullpath in the infinite structure. If
weak matching is used, then a match does not necessarily represent precisely the same
state and hence, the system may continue from the cycle along a different path than the
one it has already followed.

B. Shults, B.J. Kuipers/Arrijicial Intelligence 92 (1997) 91-129 101

In the former case, there will be-a one-to-one correspondence between the behaviors
in M and the rooted fullp_aths in M. In the latter case, we may end up with infinitely
many rooted fullpaths in M.

We want to do temporal reasoning about paths which pass th?ugh these cycle states.
Therefore we will define what we call the QSIM structure, M = (S, X), represented
by M = (S, R, B). Here X is the set of fullpaths represented in the behavior tree M.
To construct X, we first define the set X, of rooted fullpaths. A rooted fullpath in 16?
is a path starting at the root of the QSIM tree and continuing through cycle states

in a semantically sensible way. That is to say, we only add fullpaths which satisfy
the restrictions mentioned above related to the type of cycle matching used. If the

strong match criterion was used with no cross-edge cycles allowed, then for each cycle
behavior, we add a single infinite fullpath which follows that behavior then passes
through the same cycle infinitely many times. If another kind of matchinkwas used,
then we simply add the cycle pairs to the relation R to obtain the relation R and X, is
the set of rooted fullpaths generated by E. Finally, we define X to be the suffix closure

of x,. *

In the case of strong matching with no cross-edge cycles, it will be useful to go into
more detail. Since, in this case, each behavior becomes associated with a single rooted

fullpath we can define the natural bijection, zo, from the set of rooted fullpaths, X,, to

the set of behaviors, B. Since, in this case, any fullpath in X is a suffix of a unique
rooted fullpath, we can extend the bijection zo to a function z : X + B so that for any
x E X, z (x) = zo(x,) where x, is the rooted fullpath of which x is a suffix. (Thus,
z is not generally a bijection.) We think of z as mapping a fullpath to its associated
QSIM behavior. This assignment will be useful when we prove properties of systems
about which we have some quantitative information.

Closed trees
Ideally, given a QDE, the QSIM algorithm will terminate, not because it runs out of

memory or other resources, but because it has finished simulating all possible behaviors.
When the QSIM algorithm terminates in this “natural” way, we call the tree it produces

closed. In this case, every behavior in the behavior tree returned by QSIM terminates
with a state which is a transition state, a cycle state or a quiescent state. There are cases,
however, in which QSIM does not return a closed tree regardless of how long it is

allowed to run. In cases where QSIM returns a tree which is not closed, the hypotheses
of the Guaranteed Coverage Theorem do not hold. If the behavior tree M is not closed
then it is possible that an actual beha$or of the system is not represented by any rooted
fullpath in the represented structure M.

The normal QSIM simulation style creates new landmarks for critical values, applies
a strong cycle match criterion (all variables must have identical landmark values), and

does not allow cross-edge cycles (i.e., considers cycle matches only within the same
QSIM behavior). Under this simulation style, certain systems such as the damped spring

2 Notice that, in the former case, X is not necessarily fusion closed and hence not R-generable. A set X is

fusion closed if, whenever xls~q, x2sy2 E X, then x~s.vz E X for any states XI, .q and path s, !q, !Q. A set
X is R-generable if it is naturally generated by some relation [8 1,

102 B. Shults, B.J. Kuipers/Artijicial Intelligence 92 (1997) 91-129

never close. However, by applying the envisionment simulation style (no new landmarks,
weak cycle match criterion, and cycle matches anywhere in the behavior tree), every

qualitative model has a finite closed behavior tree. (See Chapter 5 of Kuipers’ Qualitative

Reasoning [141.)

Quantitative information

When strong cycle matching is used and cross-edge cycles are not allowed, then
the QDE and the initial state may be augmented with quantitative information such

as numerical interval bounds on the real values denoted by landmarks and other
symbolic terms in the behavior prediction [2,12,14,16]. In this case, QSIM prop-
agates this quantitative information and uses it to prune branches of the tree which

are inconsistent with the information. The most important quantitative information for
the purposes of this paper is the information which QSIM derives about the land-

marks.
A landmark in a quantity space of a QSIM variable is intended to name some real

number. The quantitative extensions to QSIM are able to restrict the possible values
of a landmark to some closed, extended-real interval. This quantitative information
may be different on each QSIM behavior. Thus, the user cannot simply ask for the
range of the possible values of a landmark. The user must ask for the range of the

possible values of a landmark in a given behavior. So in this case, we will use the
function z to determine which behavior a given fullpath is related to. If weak cycle

matching is used or cross-edge cycles are detected, then the numeric information loses

its sense.

Example 9. In order to illustrate the fact that quantitative information is stored on

QSIM behaviors rather than on states, we will construct a simple example with numeric

information. Three billiard balls [20] start to move with constant velocities and initial

positions shown in Fig. 1 (a). The QSIM QDE model for this scenario provides quantity
spaces for position, velocity, and acceleration in the x and y directions, and constraints

for constant velocity motion. Collisions are detected when the differences in x and y
positions of two balls are simultaneously zero.

When there is partial quantitative information about the speeds of the balls-A and B
have velocity -2 units/second, and the velocity, Cxp, of C is some constant within the
interval [-3.5, -1.51 in units/second-QSIM predicts three possible behaviors, corre-

sponding to C passing ahead of B, passing behind B, and colliding with B (Fig. 1 (b)) .
In case C collides with B, the collision takes place at t = 0.5 seconds. There is no

possibility of C colliding with A.
We chose to deal with this amount of information because it illustrated our point

without much complexity. Naturally, if the user had more or less knowledge about the
conditions on the system, another QDE and initial state could be constructed.

Now, consider the value of horizontal velocity, Cxp, of C in the first state. We know
that it is a real number between -3.5 and -1.5 and that it is constant. In the third state
of the third behavior, we know that Cxp is equal to -2. In the third state of the second
behavior, we know that Cxp is greater than -2. In the third state of the first behavior, we
know that Cxp is less than -2. But since Cxp is a constant, its value over each behavior

B. Shults, B.J. Kuipers/Artijicial Intelligence 92 (1997) 91-129 103

2 A

1

t
f

B

I c
-

0 1 2

I - INF

1..
‘. .,..... J I.

-D-8 L1 11

t

. .
‘.., 0 (0 01

.i J,.... b & 1,.

".tMINF

DYBC

DYBC

(b)

Fig. I. Predicting behaviors of a real-time system. (a) Three balls on a billiard table, with initial positions

and velocities. (b) Given incomplete knowledge of the speed of ball C, QSIM predicts that C may pass ahead

of B, behind B, or collide with B at t = 0.5.

does not vary, therefore, its value at the first state (which all three behaviors share)
depends on which behavior we are in. QSIM must store the quantitative information

about the values of landmarks not at each state but at each behavior.
We shall return to this example in Section 6.1.

104 B. Shults, B.J. Kuipers/Artijicial Intelligence 92 (1997) 91-129

3.2. Qualitative description

In this section, we give a formal meaning to the following informal phrase: “the
QSIM fullpath x describes the set of real-valued functions U”. This is what we want to

say when U is the solution to an ODE which abstracts to the QDE used to generate the

behavior x.
In order to do this, we will first partition the domain of the functions in U in such a

way that the partition corresponds to the value of the time variable in the states in X.
That will be called a spktting of U. Second, we will assign specific real numbers to the
landmarks of the variables in x. This will be called a specification of x. From there, it
will be relatively easy to define what it means for the fullpath x to describe the set of

functions U. At the end of this section, we give a detailed example showing how the
function sine is described by the rooted fullpath generated by QSIM, given the simple

harmonic motion QDE.

Splittings
We are given a set of reasonable functions U = {ui: 1 < i 6 n} taking values in

the extended reals. Since we are thinking of U as a solution to a set of simultaneous

equations which was derived from an ODE, we will assume that each of the functions
in U shares the domain, A, some interval (of time) in the extended reals. In order to
say that U is described by a QSIM fullpath, we need a way of partitioning the domain
of the functions in U that will be consistent with the values of the time variable in the
fullpath.

We define a splitting of U as follows. Let {ti} be a strictly increasing sequence of
points (indexed from 0) in A satisfying the following conditions:

(1) if t is a critical point of some nk, then t E {ti},
(2) {ti} has no finite limit point, and

(3) {ti} converges to M only if co $ A.
According to the definition of a reasonable function (Appendix B), such a set exists,

and may be infinite only if co is the supremum of A and A is open on the right. We will

call the pair ({ ti}, U) a splitting of U. Since the critical points of the functions all must
be in { ti} (condition (1) above), one splitting is distinguished from another splitting
by the choice of noncritical points in { ti}. If the set { ti} is finite, then we will let tJ be
the greatest element of {ti}. Consequently, J + 1 is the cardinality of {ti}.

Associated with any splitting ({ ti}, U) there is a natural partition {Dk} of the interval

A. Each Dk is either a singleton containing one of the points in {ti} or an open interval
whose endpoints are two consecutive points in {ti}. The indexes on the sets in the

partition follow the order of the indexes in {ti}. That is, if A is closed on the left
then DO = {to}, D1 = (to, tl), and so on. If A is open on the left then Do = (a, to),
D1 = {to}, D2 = (to, tl), and so on, where a is the infimum of A. If A is closed on the

right then D~J = {tJ} (or DzJ+, = { tJ} if A is open on the left). To avoid the problem
of going to this much trouble to figure out which ti is the left endpoint of Dk, we will
let dk denote the index such that r& is the left endpoint of Dk. If A is open on the right,
then as we have said, there may be infinitely many sets in {Dk}.

When dealing with a splitting, ({ti}, U), of U, we will use the following abbreviations:

B. Shults. B.J. Kuipers/Artijicial Intelligence 92 (1997) 91-129 IOS

That is to say that U/l is the set of functions in U each restricted to the domain DI and
Ull+ is the set of functions in U each restricted to the domain UIGk{Dk}.

Specification of a fullpath

In order to define the notion of a splitting being described by a fullpath, we will

need to relate the landmarks in the fullpath to specific extended real numbers. We call
a mapping of landmarks to extended real numbers satisfying certain sensible conditions,

a speci$cation of the landmarks. We want the specification to preserve order. Also if
quantitative information is assigned on a fullpath, we want the mapping to be consistent

with that information.
Suppose c is a function with domain, some partially ordered set V of landmarks, and

range, the set R” of extended real numbers. The function c is called a speci$cation of
V if c preserves the partial order and c(minf) = -co, c(inf) = cc and c(0) = 0. The
reason the order on V is only partial is that the landmarks come from different variables.
The landmarks of any single variable are totally ordered in V.

Given a fullpath x and a specification, c, of the landmarks of the variables in x under

the partial order determined by the quantity spaces of the variables in x, we call the pair
(x, c) a specijication of x if c is also consistent with any numeric information which
might be associated with z (x). (Recall, z (x) is the QSIM behavior associated with
x when such can be determined uniquely.) In particular, if, on the behavior z(x), the
qualitative landmark, Xl, has been determined, by a quantitative extension to QSIM, to

refer to a number in the numeric range [nt,nz], then c(Xi) E [nt,n2].

Definition of qualitatively describes
Now we can state the phrase “the QSIM fullpath x describes the set of real-valued

functions U” formally. Given a specification (x, c) of a fullpath x = (so, ~1,. . .) in a
QSIM directed graph M and a splitting ({ ti}, U) of the set of reasonable functions
U = {Us: 1 < i < n} taking values in the extended reals, with common domain, A, we

say that (x, c) qualitatively describes the splitting if the specification corresponds to the
splitting as described in detail in the remainder of this subsection.

The intention is that the partition, {Dk}, of the domain, A, determined by the splitting
will correspond to the range of the time variable in the fullpath x in such a way that

each element, Dk, of the partition will correspond to the value of the time variable in
the state Sk and thus the values of the functions in u]k will correspond to the values of
the QSIM variables in the state Sk.

The function &J,,M referred to below is the bijection described in Section 3.1 which
relates the variables in M with the variables in U.

The cardinality of {ti} must equal the number of time point states in x. Therefore,
since the states in x alternate between time point states and time interval states, (x, c)
qualitatively describes ({ ti}, U) if and only if there is a correspondence between x and
U in which Sk corresponds to u/k as follows.

106 B. Shults, B.J. Kuipers/Artijicial intelligence 92 (1997) 91-129

Given any landmark Xl of a QSIM variable X = $~J,M(ui) and any nonnegative
integer k, the qualitative value of X at the state Sk is Xl if and only if uij~n = c(X1).
ui/nk > 0 if and only if the qualitative derivative of the variable $“,,M(Ui) in Sk is

inc.
u[[D~ = 0 if and only if the qualitative derivative of the variable q”,~(ui) in Sk is

std.
u~/D,, < 0 if and only if the qualitative derivative of the variable @u,M(Ui) in Sk is

dec.
If the fullpath x is finite and QSIM has labeled the last state in x with t=inf then

tJ=m.

If the fullpath x is finite and QSIM has labeled the last state in x with tcinf then

tJ jm.

Lemma 10. The specijication (x, c) of x qualitatively describes ({ti}, U) if and only

if (xh, C) qualitatively describes ({ ti: dh < i}, U/h+) for every nonnegative integer

h < A(x).

Proof. The proof comes straight from the definition of what it means for a specification
of a fullpath to describe qualitatively a splitting of a set of functions. This definition
involves a correspondence between sh with D/, for every nonnegative integer h <

A(x). 0

It follows from this definition and the definition of the QSIM algorithm that if (x, c)

qualitatively describes a splitting ({ti}, U) of a set of reasonable, extended-real-valued
functions, then given any pair of landmarks, X0 and Xl, of a QSIM variable X= I,!$JM (ui)

and any nonnegative integer k, if the qualitative value of X at the state Sk is the interval

(X0 Xl> then Ui(Dk) C (c(XO), c(X1)). It also follows that the state Sk has been
determined by QSIM to be quiescent if and only if u~/D~ = 0 for each 1 6 i 6 n.

Example 11. Let us consider our simple example again. We will show how the Guar-
anteed Coverage Theorem is satisfied in this example. Recall that we have the solution
U = {sin, cos, - sin} to the structural abstraction of the equation

d2X

dt = -x

where @(sin) = x, $(cos) = u and @(-sin) = a. We will show that some rooted
fullpath in the structure represented by the output of the QSIM algorithm describes this
set of functions.

We translated the structural abstraction into the following QDE.

(d/dt X V)

(d/dt V A)

(M- A X>

If A4 is the tree produced by QSIM from this input, then $u,M(sin) = X, &J,M (cos) = V
and $u,M(- sin) = A.

B. Shults, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129 107

.fi + f(x) = 0

where f E W(x).

(define-QDE Spring-for-TL

(quantity-spaces

(X (minf 0 X* inf) “Position”)

(V (minf 0 inf > “Velocity”)

(A (minf 0 inf) “Acceleration”))
(constraints

((d/dt X V))

((Udt V A))
((M- A X) (0 0) (minf inf) (inf minf))))

(defun spring-envisionment (>
(setq SS (make-new-state :from-qde Spring-for-TL

:sim (make-sim :no-new-landmarks ‘(X V A)
:cycle-detection :weak)

:assert-values ‘((X (0 nil))

(V ((0 inf) nil)))))
(qsim SS)
(qsim-display SS))

I
Position

~i’:I~~~ ,.....,.....,.... o p,... 9

Velocity Acceleration

Each path in the behavior tree ends in a cycle state. Each cycle state matches the initial
state. The three behaviors are distinguished by their amplitude. The second behavior is
shown.

Fig. 2. QSIM input and output for undamped spring.

Given the abstraction of the simple harmonic motion ODE, we complete the input to
QSIM by describing the initial state, and giving instructions to QSIM such as “do not

create new landmarks”. (See Fig. 2.) In order to make the output more interesting, we
add a single additional landmark X* to the quantity space of the position variable. From
this, QSIM generates the tree, M, shown in Fig. 2.

108 B. Slzults, B.J. Kuipers/Art$cial Intelligence 92 (1997) 91-129

_It is a consequence of the Guaranteed Coverage Theorem that some rooted fullpath in
M has a specification which qualitatively describes some splitting of the sine function.

Since we used weak matching, M has infinitely many rooted fullpaths and not all of

those have specifications which qualitatively describe a splitting of the sine function. If
we had used strong matching, then k would have exactly three rooted fullpaths, all of
which are infinite and have specifications that qualitatively describe a splitting of the
sine function.

To demonstrate the G_uaranteed Coverage Theorem in this example, let’s consider the
rooted fullpath in x E M which cycles through the second behavior (illustrated in Fig.
2) infinitely many times. We must find a specification of x and a splitting of the sine

function so that the two match as described in the definition of qualitative description.

For the specification of x, we only need to find a function c which maps X* to some
number between 0 and 1. Let’s say, c(X*> = l/2.

Let us now select a splitting of the sine function. We describe the set {ti} as the

union of the following sets ordered by <:

f + 2kr: k is a positive integer ,
>

kr
2: k is a positive integer ,

1
1171.
6 + 2kn-: k is a positive integer

>
.

Since lim,,, sinx does not exist in R*, the domain of our sine function is open on the

right and so we are allowed to have an infinite set {ti} as a splitting.

Now it is easy to show that (x, c) qualitatively describes ({ ti}, U). The partition {Dk}

of the domain of sine determined by {ti} corresponds nicely with the domain of the
time variable in x. Consider the landmark X* of X = $“,~(sin). In the third state of x, X

has the value X*. Notice that Dz = {n-/6} and sin(rr/6) = l/2 = c(X*) as required by
the definition of qualitatively describes. It is easy to check that the other requirements

are also satisfied.

4. QSIM and the logic

The main theorem of this paper can be stated informally as follows. Suppose % is
a QSIM structure generated from the QDE C. If k is a model for a CTL* formula,

then the CTL* formula describes every solution to every ODE which abstracts to C. In
order to state and prove this formally, we need two things. First, we need to explain
what it means for a CTL* formula to describe a real-valued function. Second, we need
to explain how temporal logic propositions are checked in QSIM structures. We do this
in reverse order since the latter is helpful in understanding the former.

In Section 4.1, we give the details of how model checking is applied to QSIM
structures. In Section 4.2, we formalize the relationship between CTL* formulas and
continuous functions and give an example.

B. Shults, B.J. KuiperdArtificial Intelligence 92 (1997) 91-129 109

(qval u (qmag q&r) >. Suppose u is a variable of the state s, qmag is a landmark
or open interval defined by a pair of landmarks in the quantity space associated with

u, and q&r is one of {inc, std, dec}. This proposition is true when the qualitative
derivative of u in s is qdir and the qualitative magnitude of u in s is equal to or a
subset of qmag.
(status quiescent) is true exactly when the qualitative derivative of each variable
in the state is std.
t=inf is true at a state if QSIM was able to determine that the time variable in this

state must be infinite.
tcinf is true at a state if QSIM was able to determine that the time variable in this
state must be finite.

(in-range u (nr nz> >. Suppose u is a variable in the state s and nr and n2 are
extended real numbers. If the value of uar in s is a landmark then this proposition is

true if and only if the number represented by that landmark in s is known to lie in

an interval which is a subset of [111, n2]. If the value of u~lr in s is an interval (Xl
X2), then this proposition is true if and only if the interval [ni , n2] contains both of
the intervals in which QSIM has determined the numbers named by Xl and X2 to lie.

Fig. 3. The propositional level of the language.

4.1. QSIM structures for CTL”

Given the structure k, the only thing needed to have a temporal structure as defined

in Section 2.1 is an interpretation of propositions.
The temporal structure 2, = (S, X, L), represented by a QSIM behavior tree M =

(S, R, B), is obtained from i@ = (S, X) by the interpretation L of the propositions given in
Fig. 3 in which s represents Ahe state over which the propositions are being interpreted.

This temporal structure MTL is the structure over which we will interpret CTL*
formulas.

Our implementation, TL, of a model checking algorithm over QSIM structures, in-
cludes propositions in the language which are not mentioned in Fig. 3 but are useful
in practice. Since they add clutter to the statements of definitions and theorems in
this paper, we will describe some of these operators in Appendix A and explain what
adjustments need to be made to definitions and proofs in order to retain our theo-
rems.

The propositions t=inf and tcinf allow the user to express the difference between,

for example, “eventually in a possibly asymptotic sense” and “eventually in finite time”.
Alone, eventually really means “eventually in a possibly asymptotic sense”. In order to
express “eventually in finite time”, use the propositions t=inf and t<inf. For example,
we may say (eventually (and p t<inf >> to mean that p becomes true in finite
time.

The proposition in-range is sensible only in the states of behavior trees generated
from a QDE containing some quantitative information. Simulation with quantitative
information is handled by extensions to QSIM such as Q2 [161, Q3 [2] and NSIM

I10 B. Shults, B.J. Kuipers/Art@cial Intelligence 92 (1997) 91-129

[121. The numbers referred to in these expressions are extended real numbers: they
may be -inf or +inf as well as real values. The use of the numeric propositions and
quantitative information derived by QSIM from the numeric information given in the

QDE, allows TL to prove time-related properties of physical systems.

The expressiveness of the application of CTL* to QSIM can easily be increased
without adding to the complexity of model checking by augmenting the propositional
part of the language. See Appendix A for some of such extensions.

4.2. Temporal description

Here we define what it means for a CTL* perfect path formula @ to describe a set of

functions and we give an example of a simple CTL* formula and show that it describes
the sine function.

If c is a specification of the landmarks mentioned in a perfect path formula @ then we
will call (@, c) a speci$cation of @. Let ({ti}, U) b e a splitting of a set of reasonable,

extended-real-valued functions U = {ui: 1 < i < n} on a common domain A. Let {Dk}
denote the partition of A associated with {ti}. Let Cc, be a bijection from some subset T
of U to the set of variables mentioned in the formula Cp. We recursively define what it
means to say that (@, c) temporally describes the splitting ({ti}, U) via t+h. We assume

that @ is in positive normal form and so we make the definition according to the form
of @ as follows.

l If @ is a proposition, then it must correspond to the splitting according to the
following cases:

- Q, = (qval $(ui) (qmag qdir) > if and only if:
if qmag is the landmark value X0 of $(ui) then uil~~ = c(X0);

if qmag is an interval (Xl X2) in the quantity space of $(ui) whose endpoints
are landmark values of +(Ui) then Ui(Da) C (c(Xl),c(X2));
qdir = inc if and only if uiIcO > 0;
qdir = std if and only if u~/D,, = 0;
qdir = dec if and only if u~[D,, < 0;

_ 0 = (status quiescent) if and only if u~ID” = 0 for each 1 < i < n;
- @ = t=inf if and only if DO = {CO};
- @ = tcinf if and only if every element of DO is a real number;
- @= (in-range @(Ui) (nt n2)1 if and only if ui(Do) c [nl,nz].

. @= (andpI.. p,,) if and only if (pk, c) temporally describes ({ti}, U) via $ for
each 1 < k < m.

l @ = (or p1 . . . p,> if and only if (pk, c) temporally describes ({ti}, U) via Ic, for

some 1 < k < m.
l @ = (not p> if and only if (p, c) does not temporally describe ({ti}, U) via ti.
l 0 = (until p q) if and only if for some nonnegative integer h, (q, c) temporally

describes ({ti: dh < i}, Ulh+) via fl and for every nonnegative integer 1 < h, (p, c)
temporally describes ({ti: dl < i}, UIl+) via #.

l @ = (releases p q) if and only if for every nonnegative integer h such that (q, c)
does not temporally describe ({ ti: dl, < i}, U/h+) via $, there is a nonnegative
integer 1 < h such that (p, c) temporally describes ({ti: dr < i}, UIl+) via +.

B. Shults, B.J. Kuipers/Art@cial Intelligence 92 (1997) 91-129 Ill

l @ = (next p) if and only if A = DO or (p, c) temporally describes ({t;: di < i},

U/I+) via G+
l @ = (strong-next p> if and only if A $ DO and (p, c) temporally describes

({ti: dt < i},UIt+) via fi.

Example 12. As an example, let us convince ourselves that the formula

(infinitely-often

(before (qval X (0 dec))

(qval X (0 inc>>>>

temporally describes the sine function restricted to [0,~). Let us call the formula

under consideration @. We let the set U contain only the restricted sine function. The
specification of @, in this case, is trivial: c(0) = 0. We will use the bijection $:
sin(t) H X. The splitting for sine will be {ti} = { iz-: where i is a nonnegative integer}.

Let {Dk} denote the partition of [0, oo) associated with {tl}. We want to convince
ourselves that (@, c) temporally describes ({ti}, U) via $.

This amounts to proving that there are infinitely many nonnegative integers k satisfying

the following conditions: (1) sin ID,, = 0, (2) cos (n,, < 0 and (3) there is some 1 > k
such that sin In, = 0 and cos ID, > 0. Every positive odd integer satisfies these conditions
so we are done.

5. The main results

The main theorem of this paper, which we can now almost state formally, says the
following. Supp_ose M is a closed QSIM tree generated from the qualitative differential

equation C. If MrL is a model for a universal CTL* formula (necessarily @>, then for

every solution, U, to every ODE which abstracts to C, there is some splitting ({ti}, I/) of
U and some specification (@‘, c) of the perfection, @‘, of @ such that (@‘, c) temporally

describes ({ ti} 3 U) via @u,M. Therefore, TL is sound. In this section, we prove this
theorem, discuss some corollaries and also prove a more limited completeness result.

There is one more hypothesis which needs to be present in the main theorem. This

hypothesis is usually satisfied by QSIM structures but still must be mentioned. It is
possible, for some propositions, that QSIM may not determine all of the information

needed to use that proposition with confidence. Section 5.1 explains this notion and
contains a theorem that relates the qualitative and temporal descriptions of a set of
functions as defined in Sections 3.2 and 4.2, respectively. The remainder of this section
contains the theorems which are the most important for applications.

5. I. Determined QSIM trees

Suppose that x is a fullpath in a closed QSIM structure $ and further that I@~L, x + @
where @ is a perfect path formula. Suppose that (x, c) is a specification of x which
qualitatively describes ({ti}, U). In this section, we will prove that (@,c) temporally
describes ({ ti}, U) via @v,M.

112 B. Shults, B.J. Kuipers/Art$cial Intelligence 92 (1997) 91-129

In order to prove this, we need to be certain that QSIM determines the information
in propositions completely and correctly. Otherwise, the induction step in the proof of
Theorem 14 does not work. Formally, we need to know that if s is a state in a QSIM tree

M and fire., s b 4 where CJ~ is an atomic proposition then for every fullpath, y, starting

at s, (y, c) qualitatively describes ({ti}, I/) if and only if (I$, c) temporally describes

({ti}, U) via &J,M. This is the conclusion of Lemma 13. In an arbitrary QSIM tree, this
may not be true, although exceptions are not common. The only case that arises in the
language of the body of this paper occurs in a transition state at which it is impossible
to determine whether t=inf or t<inf. For example, consider the QDE x’ = f(x),

where f E Mz (that is, f is a monotonically increasing function with f(0) = 0).
With an initial state x(to) > 0 the behavior diverges, terminating at a qualitative state

where qmag(x) is (inf , inc), which is a transition state. However, some choices of f

(e.g., f(x) = x2) imply that x(t) becomes infinite at finite time, while others (e.g.,
f(x) = X) imply that x(t) becomes infinite only at infinite time, so the time label for

the transition state is undetermined.
Therefore, we define a QSIM state to be determined with respect to the propositions

t=inf and t<inf if QSIM has determined one of t=inf or t<inf. With respect to
the other propositions we have defined, all QSIM trees are determined. However, when
we define new propositions, this issue needs to be addressed. That is to say, when one
defines a new proposition, one needs to define what it means to be determined with
respect to that proposition in such a way that the proof of Lemma 13 goes through as

well as the induction step in Theorem 14. This can be a subtle point as you can see in

Appendix A.
The TL program can warn the user about any state which is not determined with re-

spect to an atomic proposition being queried on that state. When a state is not determined,

the TL program still operates but the hypotheses of the theorems relating the operation
of TL with the reasonable, extended-real-valued functions are no longer satisfied.

Lemma 13. Zf s is a state in a QSZM tree M which is determined with respect to

the proposition C$ and GTL, s b 4, then for every fullpath, x, starting at s, if (x, c)

is a specification of x, then (x, c) qualitatively describes ({ ti}, U) if and only if (4, c)
temporally describes ((t;}, U) via +“%M.

Proof. The result follows directly from the definition of the semantics of the proposition
(given in Fig. 3)) the definition of the meaning of a specification of a formula temporally

describing a splitting of a set of functions, and the definition of the meaning of a
specification of a fullpath qualitatively describing a splitting of a set of functions.

Notice that the determinedness hypothesis is needed in the part of the proof involving
the propositions t=inf and tcinf because if QSIM does not determine this information,
the proof fails. 0

We say that a QSIM structure G is determined with respect to a proposition if every
state in G is determined with respect to the proposition.

Theorem 14 relates the two ways of describing a set of reasonable, extended-real-
valued functions and will be used in the proofs of the main theorems of this paper.

B. Shults, B.J. KuipersIArtijicial Intelligence 92 (1997) 91-129 113

Theorem 14. Suppose x is a fullpath in a QSIM structure 2 which is determined
with respect to all of the propositions in Cp, a pelfect path formula, and kr~,x + @.

If the specification (x, c) of x qualitatively describes ({ti}, U) then (@‘, c) temporally

describes ({ ti} 3 U) via $n,~.

The proof is complex and not enlightening. Therefore, it has been put into Appendix C.
There are two reasons we did not simply make this theorem the definition of a

temporal description. First, when we say that a formula describes a function, we want

to be talking about a formula and a function without an intervening QSIM structure.
Second, the subtleties involved in the definition of determined which are brought to light

when one tries to prove Lemma 13 and Theorem 14 might be missed if the definition of

temporally describes were given at such a high level. See Appendix A for an example
of this.

5.2. Main theorems for universal formulas

This section contains the main results of this paper. As a consequence of the main
theorems, the user of the TL and QSIM systems may prove temporal statements about
dynamical systems as follows. First, the user constructs a QDE, C, and uses QSIM to
generate a closed tr_ee, M. Then the user may use TL to check if a universal formula,

@, is modeled by MTL. If it is, then the user has proved that the perfection, @‘, of @
describes the solution to any differential equation which abstracts to C.

Theorem 15. Let U be a solution to the structural abstraction of any ODE which

abstracts to the QDE, C. Suppose QSIM_generates the closed tree M from (C, I). Let

@ be a universal formula in CTL*. Zf MEL, I k (necessarily @>, then there is a

speci$cation c of the landmarks mentioned in @’ such that (@‘, c) temporally describes

some splitting ({ti}, U) of U via *n,~.

Proof. Let @ be a universal path formula and M a closed QSIM behavior tree which is
determined with respect to the propositions in @. Suppose MEL, I k (necessarily @>.

Let U be as in the hypotheses._By the Guaranteed Coverage Theorem, we know that

there is a rooted fullpath yu in MTL and a specification, (ye, c), of 2~ such that (yU, c)
qualitatively describes some splitting ({ti}, U) of U. By Lemma 6,, MEL, yu + a’. Since
M is determined with respect to the propositions in @, and Mr~,yu + a’, we use

Theorem 14 to conclude that (@‘, c) temporally describes ({ti}, U) via r,+“,M. 0

The following corollary follows from the proof of Theorem 15.

Corollary 16. Let U be a solution to the structural abstraction of any ODE which

abstracts to the QDE, C. Suppose QSIM_generates the closed tree M from (C, I). Let
@ be a universal formula in CTL*. If M r~, I k (necessarily @>, then there is a
rooted fullpath x E X, and a specijcation, (x, c), of x consistent with the information

derived by QSIM on the fullpath x, such that (@, c) temporally describes some splitting

({ri>t f-4 of U via &J,M.

114 B. Shcdts, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129

We include this corollary in the discussion because it provides more information
about the specification c of the landmarks mentioned in the formula. This tells us that

the specification must be the specification of some fullpath in G which qualitatively
describes the splitting of U.

The conclusion of the theorem states that the perfect path formula related to the

universal formula describes the solutions to the equations. Quantifier nesting is irrelevant,
as far as the conclusions of this theorem are concerned. While there are situations in
which nested quantifiers are useful, such as gaining insight into some detail of the

QSIM structure (see Section 6.2), these applications do not rely on the main point
of our theorems, i.e., the relation between the QSIM prediction and the underlying

dynamical system.
Therefore, if the user is using TL only for the purpose of proving that a formula

temporally describes the solutions to an ODE, then he or she may as well enter a
formula of the form (necessarily @) where @ is a perfect path formula.

5.3. Numeric queries

The previous discussion is particularly relevant to queries involving numeric infor-

mation. It has been mentioned that the numeric information which QSIM derives about
landmarks may vary across behaviors. QSIM keeps track of numeric information with
respect to QSIM behaviors, not with respect to states. This fact makes a more specific

form of Theorem 15 desirable.
To check a proposition involving numeric information (such as in-range) we must

know which fullpath the state being checked is in. Furthermore, that fullpath must be
associated with a particular QSIM behavior in M so that numeric information can be

retrieved with respect to that QSIM behavior. This problem is solved by using the
function z defined in Section 3.1.

The following corollary is simply a special case of Corollary 16 in which we can
also specify that the specification is consistent with the numeric information on some

behavior of the QSIM tree.

Corollary 17. Let U be a solution to the structural abstraction of any ODE which

abstracts to the QDE, C. Suppose Q.SIM generates the closed tree M from (C, I) using

s:rong match and no cross-edge cycle detection. Let @ be a universal formula in CTL*. If
MEL, Z k (necessarily @> , then there is a rootedfullpath x E Xr and a speci$ication,

(x, c) , of x consistent with the information derived by QSZM on the behavior z (x) , such

that (@, C) temporally describes some splitting ({ ti}, I/) of U via flo,~,

The proof of this corollary is exactly the same as the proof of Theorem 15. The

difference is that since we specified the type of cycle detection, we know that the
function z is defined and can use it to obtain numeric information.

5.4. Completeness results

Suppose the user has generated a QSIM tree, M, fro_” (C,I) and has an interest-
ing CTL* perfect path formula @. We know that if MTL, I b (necessarily a>,

B. Shults, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129 115

then the solution to any ODE which abstracts to C is described by @. But sup-
pose M~L,Z k (necessarily @> is false but the user wants to know if there is
some solution, U, to some ODE which abstracts to C, such that @ describes U. The
user might test the formula (possibly @>. If this formula is modeled by the QSIM
temporal structure then the user still cannot, in general, conclude that there is a so-
lution, U, to an ODE which abstracts to C, such that @ describes (1. This is so
because the QSIM temporal structure may have a rooted fullpath which is “spuri-

ous”, i.e., a fullpath which does not describe any solution to any ODE which abstracts

to c.

In this section, we provide some circumstances under which the user may draw

positive conclusions from a formula of the form (possibly @p> where @ is a perfect

path formula.
Suppose @ is a closed QSIM structure generated from a QDE and initial state (C, I).

We sometimes would like to know whether there is any ODE, F, which abstracts to C

whose solution is described by some given perfect path formula. In order to do this, the
QSIM tree must be closed, determined with respect to the propositions in @ and satisfy
the following completeness condition.

Definition 18. We call a closed QSIM behavior tree, M, complete if for every rooted
fullpath x in fi there is an ODE with structural abstraction, F’, which abstracts to the

input QDE and a splitting of the solution to F’ which is qualitatively described by some

specification of x.

In other words, a closed tree is complete if every rooted fullpath in k describes some
solution to an ODE which abstracts to C.

One way to check for the completeness of a tree is to prove, either mathemati-
cally or by numeric simulation, that there is a reasonable, extended-real-valued solution
corresponding to each fullpath in the structure represented by the tree.

Under these conditions, the user is able to draw sound conclusions about the solution
so some (but not every) ODE which abstracts to the QDE as in the scenario described
above. Theorem 19 details this result.

Theorem 19. Suppose @ is a perfect path formula in CTL*. Suppose M is a closed,

complete QSIM behavior tree generated from the QDE and initial state (C, I) and

determined with respect to the propositions in @. If MTL,S + (possibly @>, then

there is an ODE, F, whose structural abstraction, F’, has solution U and abstracts to

C and there is a specijcation of @ which temporally describes some splitting of U via

*lL.M.

Proof. Let @ be a perfect path formula in CTL*, M a closed, complete QSIM behavior
tree generated by the QDE and initial state (C, I). Suppose that M is determined with

respect to the propositions in @ and firs, s k (possibly @>.
We want to show that there is an ODE, F, whose structural abstraction, F’, has

solution U and abstracts to C and there is a specification (@, c) which temporally
describes a splitting of U via $u,,M.

116 B. Shults, B.J. KuiperdArtificial Intelligence 92 (1997) 91-129

We know from the semantics of CTL* that there is a fullpath x in 6, such that
GTL, x + @. Because M is complete, we know that there is a set of reasonable, extended-
real-valued functions U = {ui: 1 < i 6) n such that fJ is a solution to the structural
abstraction of some ODE which abstracts to C and (x, c) qualitatively describes a
splitting of U for some specification (x, c) of x.

Therefore, (@,c) temporally describes this fixed splitting of U via eU,~ by Theo-
rem 14. q

6. Applications of CTL* and QSIM

TL is the name of a CTL* model checker customized for use with QSIM. The current

implementation replaces the experimental versions described and used in previous pub-
lications [15,171. The underlying model checking algorithm is that of Bhat, Cleaveland

and Grumberg [31. Bhat, Cleaveland and Grumberg prove that this algorithm has the
same complexity as the best known global algorithms for both CTL* and CTL. Their
algorithm has the added advantage of being “on-the-fly” rather than “global”; i.e., it is

possible for the algorithm to halt with the correct answer without constructing the entire
exponentially large structure required to check some formulas in CTL*.

Temporal reasoning may be useful any time QSIM is used. QSIM has been used
to simulate controllers, human organs and disease, abstract and real physical systems,

electrical circuits, population dynamics, chemical reactions, etc. [141.
TL can be used to prove that a QSIM tree is closed with the following query:

(TL R (necessarily
(eventually (or (status quiescent)

(status cycle)

(status transition>>>>>

where R is the root of the tree. (See Appendix A for an explanation of arguments to

the status proposition other than quiescent.)

TL automatically reports when an atomic proposition is checked on a state in which
that proposition is not determined.

6. I. Examples

First, we demonstrate the use of TL to ask and answer questions about some simple
models: the undamped oscillator, whose behavior tree (Fig. 2) is rooted in the initial
state SS; and the damped oscillator, whose behavior tree (Fig. 4) is rooted in the state

DS.

Example 20 (Undamped oscillator). The simple spring conserves energy, so all behav-

iors end in cycles, as shown by the behavior tree in Fig. 2. Therefore, the closedness
query would return T. The three behaviors differ according to whether the amplitude of

the oscillation passes a predefined landmark value, X*. The queries shown demonstrate
that the solution to any ODE consistent with the QDE in Fig. 2 never becomes quiescent,

B. Shults, B.J. Kuipers/Arti$cial intelligence 92 (1997) 91-129 I17

always reaches a cycle state, and necessarily has an infinite sequence of events crossing
x = 0 in opposite directions. (Since the variable X can have only one qualitative value
in a state, the last two formulas below are equivalent.)

(TL SS (necessarily
(always (not (status quiescent)))))

=> T

(TL SS (necessarily (eventually (status cycle))))
=> T

(TL SS (necessarily (and (infinitely-often (qval X (0 inc)))
(infinitely-often (qval X (0 dec))))))

=> T

(TL SS (necessarily
(infinitely-often

(before (qval X (0 dec))

(qval X (0 inc))))))
=> T

Since the simple spring tree is closed and determined, we have shown that every

reasonable solution to an ODE which abstracts to the QDE in Fig. 2 has a splitting
which is temporally described by a specification of the perfect path formula associated
with each of the formulas above.

The predicted tree is not complete, since behaviors that cycle through different
branches are not possible. We could rewrite the QDE in various ways to make the
tree complete. Simply removing the extraneous landmark in X would suffice. This would
produce a single behavior. Using the strong match cycle criterion would also produce a

complete tree in this case. The next example produces a complete tree.

Example 21 (Damped oscillator). The damped spring loses energy. The first behavior
in the behavior tree in Fig. 4 ends in a cycle representing a decreasing oscillation. The

second two are partial cycles followed by “nodal” (i.e., over- or critically-damped)
convergence to a quiescent state at the origin. These qualitative behaviors have specifi-
cations which qualitatively describe real trajectories of nonlinear instances of the QDE.
Since weak match cycles were detected, this finite behavior tree represents a structure
with infinitely many rooted fullpaths, oscillating a finite number of half-cycles around
the origin before “nodal” convergence and a single rooted fullpath which never be-
comes quiescent. TL determines that each of the universal questions asked about the
simple spring behavior tree above is false of the damped spring, but the corresponding
existential statements are true.

(TL DS (possibly (always (not (status quiescent)))))
=> T

(TL DS (possibly (eventually (status cycle))))
=> T

118 B. Shults, B.J. Kuipers/Arrificiul Intelligence 92 (1997) 91-129

i + g(i) + f(x) = 0

where f and g are in M+ (x1

(define-QDE DSpring-for-TL

(quantity-spaces

(x (minf 0 inf) "Position")

(v (minf 0 inf) "Velocity")

(a (minf 0 inf) "Acceleration")

(ff (minf 0 inf) "Fluid friction")

(fs (minf 0 inf) "Spring force"))

(constraints

((d/dt x v))

((d/dt v a))

((m- X fs) (0 0) (minf inf) (inf minf))

(Cm- v ff) (0 0) (minf inf) (inf minf))

((add fs ff a))))

(defun dspring-envisionment ()

(setq DS (make-new-state

:from-qde DSpring-for-TL

:sim (make-sim :no-new-landmarks ‘(x v a ff fs)
:ignore-qdirs ‘(a>

:cycle-detection :veak

:state-limit 200)

:assert-values '((x (0 nil)) (v ((0 inf) nil)))))

(qsim DS)

(qsim-display DS))

Position Accellsration

The first behavior in the tree ends in a cycle state which matches the root. The difference
between the second two states is the direction from which they approach quiescence.

The second behavior is shown.

Fig. 4. QSIM input and output for damped spring.

B. Shults, B.J. Kuipers/Artifcial Intelligence 92 (1997) 91-129

(TL DS (possibly (eventually (status quiescent))))
=> T

119

(TL DS (possibly (and (infinitely-often (qval x (0 inc)))
(infinitely-often (qval x (0 dec))))))

=> T

(TL DS (possibly
(infinitely-often

(before (qval x (0 dec))
(qval x (0 inc))))))

=> T

(TL DS (necessarily
(always (possibly (eventually (status quiescent))))))

=> T

(TL DS (necessarily
(always (implies (not (status quiescent))

(possibly (always (not (status quiescent))))))))
=> T

The damped spring structure is complete, since there are nonlinear choices for the
two monotonic functions in the model that give “spiral in” behavior away from the
origin, followed by “nodal” behavior close to the origin. If both monotonic functions
are linear, of course, the only possibilities are pure “nodal” and pure “spiral in” behavior.
Therefore, we have proved that for each of the first five formulas above, there is a set
of functions which is a solution to an ODE which abstracts to the QDE given in Fig. 4

and is temporally described via $v,,M by a specification of the perfect path formula
corresponding to the CTL* formula.

The last two formulas say that, no matter how many oscillations you’ve seen so far,
it is always possible that (a) the behavior could terminate with nodal convergence to
a quiescent state, and (b) the behavior could go on oscillating forever. Since the last
two formulas are not universal, Theorem 15 gives no information. These two formulas
are used for the purpose of discovering features of the QSIM structure, M, and not for
proving properties of dynamical systems.

Example 22 (A quantitative example). Now we reconsider the billiards example in or-
der to show the use of quantitative information in QSIM QDEs and the resulting proofs

that TL provides for time-critical systems. Refer to Fig. 1 and the description of the
system given in Section 3.1.

With only qualitative information about the balls’ positions and speeds, QSIM gives a
closed tree with 55 different behaviors, representing the different orders in which balls

can collide, pass each other’s positions, or reach infinity. With complete quantitative
information, specifying identical speeds of 2 position units per second (in the indicated
directions), QSIM predicts a single behavior in which balls B and C collide at t = 0.5
seconds. With the information provided, QSIM produces a tree with three behaviors.

120 B. Shults, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129

The queries given below were checked on the tree with the information described
in Section 5.3-A and B have velocity -2 units/second, and the velocity, Cxp, of C is

some constant within the interval [-3.5, - 1.51 in units/second.
Because the predicted tree of behaviors is complete, we can draw conclusions from

the answers to each of the following queries.

(TL SS (necessarily

(always (implies (and (in-range dxBC (0 0))
(in-range dyBC (0 0)))

(in-range time (.5 .5))))))
=> T

(TL SS (possibly

(eventually (and (in-range dxBC (0 0))
(in-range dyBC (0 0))

=> T
(in-range time (.5 .5))))))

(TL SS (necessarily

(always (not (and (in-range dxAC (0 0))

(in-range dyAC (0 0)))))))
=> T

The first TL query proves that in the solution to any ODE which abstracts to the QDE

if B and C collide then it happens at time 0.5. The second query proves (by Theorem
19) that there is a solution to an ODE consistent with the given QDE in which B and C
do collide at time 0.5. The third query shows that A and C cannot collide in any ODE

consistent with the given QDE. This is so because B blocks C in the behavior in which

C might hit A.

6.2. TL as a debugging tool for QSIM models

Because QSIM is not complete in general, a QSIM behavior tree may contain paths
which do not correspond to real behaviors. Therefore, the truth of certain CTL* state-
ments (e.g. those beginning with the quantifier possibly), do not imply the truth of
the corresponding statement in an actual behavior. This provides an opportunity for a
tool such as TL to be used to find such paths. If the QSIM user knows that a certain

sequence of events cannot occur in a real behavior, he can use TL to find out if that
sequence of events occurs in any of the paths in the QSIM behavior tree. The user can
have TL print information which will isolate the path on which the spurious behavior

occurs. Also, as in the damped spring example, nested quantifiers can be used to gain
insight into some interesting structures of the represented QSIM structure.

The program can be and has been used on terminals which do not support the graphical
display of QSIM behavior trees. In these circumstances, the user can learn everything
he or she may need to know about a QSIM behavior tree by evaluating a few carefully
chosen CTL* statements.

B. Shults, B.J. Kuipers/Ar@cial Intelligence 92 (1997) 91-129 121

6.3. Proving properties of controllers

Kuipers and Astriim [151 have used TL and QSIM to prove properties of heteroge-
neous control laws. A heterogeneous controller is a nonlinear controller created by the

composition of local control laws appropriate to different, possibly overlapping, operat-
ing regions. Such a controller can be created in the presence of incomplete knowledge of
the structure of the system, the boundaries of the operating regions, or even the control
action to take. A heterogeneous control law can be analyzed, even in the presence of
incomplete knowledge, by representing it as a qualitative differential equation and using
qualitative simulation to predict the set of possible behaviors of the system. By express-

ing the desired guarantee as a statement in CTL *, the validity of the guarantee can be

automatically checked against the set of possible behaviors. Kuipers and AstrGm [151

demonstrate the design of heterogeneous controllers, and prove certain useful properties,
first for a simple level controller for a water tank, and second for a highly nonlinear

chemical reactor.
Gazi and Ungar also use TL to prove properties of models of chemical reaction

controllers [9, lo].
There are three programs-Q2 [161, 43 [21 and NSIM [121 -which extend QSIM

to take advantage of numeric information, to prune spurious behaviors and to derive
numeric bounds on landmark values and time points. The program TL is easily ap-
plied to the behavior trees output by these QSIM extensions which use quantitative
bounding information and produce quantitative bounds on the predictions. For these

applications we use the propositional part of the language with the numeric propositions
to include numerical information in the state propositions. These propositions allow TL
to prove time-critical properties of models of a system, even in the face of incomplete
knowledge.

6.4. TeQSIM: temporal constraints on simulation

In this paper, we use temporal logic formulas to check the output of QSIM. Bra-
jnik and Clancy [4-61 extend the interaction between qualitative simulation and model
checking to treat temporal logic statements as an input. TeQSIM (pronounced tek’sim)
interleaves model checking with QSIM’s simulation agenda, allowing simulation only

of branches that can satisfy the given temporal logic formula. This makes it pos-
sible to focus simulation on a particular portion of the state space, which is use-

ful for large, complex models that might not otherwise be tractable. It also allows
the user to specify exogenous inputs, discontinuous changes, the results of obser-
vations, and various other types of boundary conditions. One can use temporally
guided simulation to explore critical portions of a large state space to discover, for
example, constraints on an exogenous variable required for a plan to succeed, fol-

lowed by unguided simulation of a model incorporating the new constraints to de-
rive a performance guarantee. Brajnik and Clancy [5,6] demonstrate TeQSIM on
a realistic control and planning problem from the domain of water supply manage-
ment.

122 B. Shutts, B.J. Kuipers/Artijicial Intelligence 92 (1997) 91-129

7. Relation to other work

The results described in this paper are related to other work done in the fields of
temporal logic model checking and simulation and control.

Probably the most work in temporal logic model checking has been done in appli-
cations of CTL and CTL* to computer processes such as parallel computing [8,181.
More closely related work has been done by Moon et al. [191 who checked statements

in CTL against state transition graphs in discrete-time systems generated from pro-
grammable logic controller ladder diagrams. Their specific application was to chemical

process control. TL makes it possible to apply a more complex temporal logic (CTL*)

to continuous-time control systems, and indeed to dynamical systems in general.

Alur and Henzinger [11 use a logic called metric temporal logic (MTL) to check
properties of discrete-event systems. Metric temporal logic is, strictly speaking, not as
expressive as CTL*. However, it integrates time information at a higher level of the
language, therefore it is easy to express some statements in MTL which are difficult to

express in CTL*.
Jahanian [II] modeled real-time systems in the Modechart language. Statements

in Real Time Logic were checked against a Modechart model. Real Time Logic is
undecidable in general but certain classes of statements are shown to be decidable.
Model checking CTL* is decidable [8]. However, Real Time Logic is especially suited

for expressing statements which are useful in time-critical systems, whereas some such

statements are more difficult to make in CTL*.
Other systems exist which allow temporal logic sentences to be checked against a

structure representing discrete event systems. TL makes a formal connection between
continuous dynamical systems and time-critical temporal logic model checking.

8. Conclusion

TL implements a method for using modal and temporal logic formulas to prove
properties of the behavior of a continuous physical system even with an incomplete,
qualitative or semi-quantitative description. If the user can describe a physical system in

terms of a set of qualitative constraints, then by using QSIM and TL, he or she can prove
theorems about the behavior of any reasonable, extended-real-valued function consistent
with those constraints. This applies even to systems with time-critical requirements. This

provides a meaningful and sound interpretation for the phrase, “proof by simulation”.
This link between logic-based and simulation-based inference methods will support a

variety of hybrid reasoning techniques that could be of substantial value for the design
and validation of continuous and piecewise-continuous systems.

Appendix A. Extensions to the propositional language

The implementation, TL, of the language includes other propositions, some of which
we describe in this appendix. In most cases, the added propositions are useful only to

B. Shulrs. B.J. Kuipers/Art@cial Intelligence 92 (1997) 91-129 123

describe the predicted QSIM structure, and not to prove theorems about the underlying
dynamical systems. Some of them can be included in the proof of the theorems but this
inclusion would require distracting special treatment. This appendix discusses issues
involved in adding new propositions to the language.

First we mention the “proposition” of the form (funcall f> where f is a lisp
function. This returns the value returned by the lisp function called with the state as its
single argument. This is used mainly for side effects such as printing information about

a state. Note that the proposition funcall cannot be considered as part of the logic

when we talk about complexity, soundness or the main theorems. It is added for user
extensions and convenience and should be used with care.

The next proposition we mention illustrates the major issues involved in adding a

proposition to the language. The syntax is:

(contains-range u (ni n2) >

where u is a variable name in the state s and nt and n2 are extended real numbers. This
proposition is true when the numeric range, in which the number named by u in the
current behavior has been determined to lie, contains the interval [n1, n2] as a subset.

If the theorems in the paper are going to be applied to a new proposition, then we

must be able to include it in the proof of Lemma 13 in such a way that the induction
step in the proof of Theorem 14 can be performed. Therefore, we must define what it

means for a specification of this proposition to describe temporally a splitting of a set
of reasonable, extended-real-valued functions and determine what is required for a state
to be determined with respect to the proposition. Once Lemma 13 and Theorem 14 are

proved for the proposition, the rest of the theorems will follow.

We say that a specification of the proposition

(contains-range fi(ui) (nl n2>>

temporally describes ({ ti}, {ui: 1 < i < n}) via 1+9 if and only if [nl,n2] c ui(&)

where {Dk} is the partition of the domain corresponding to the splitting.

The reader might want to try to prove Lemma 13 and Theorem 14 at this point in

order to see the problem which now arises. Without a strict definition of what it means
for a state to be determined with respect to this new proposition, the proof does not
go through. In fact, Theorem 14 is false without such a definition. Since the set U of
functions is fixed, we cannot prove that the subrange [nl , n2] specified in the proposition
contains the value of the specific function Ui. I.e., it is possible that a fullpath x describes

a set of functions and a path formula containing the contains-range proposition be

modeled by x but the path formula may not describe the set of functions.
Consider the following as a counterexample. Suppose that the variable V in the QDE

has real-valued function solutions U(X) = rx2 for r E [l/2,2] due to the constraints
and numeric information provided by the user. Further, suppose that V has the quantity
space (minf 0 a b inf > where the real value named by the landmark a is known to
fall within the interval [l/2,2] and the real value named by the landmark b is known

to fall in the interval [2,8] on the behavior in Fig. A.l. Suppose that, in a certain
path (Fig. A.1)) at time t = 0 we have (qval V (0 std) 1, for time t E (0,l) we

124 B. Shults, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129

- inf

T -b 12.81

T -a [l/2,21

0 -0 10.01

0 1 2 - minf
I I I

Fig. A. I. Qualitative behavior with quantitative landmark bounds

have (qval V ((0 a) inc)), at time t = 1 we have (qval V (a inc)), for time
t E (I, 2) we have (qval V ((a b) inc)) and at t = 2 we have (qval V (b inc)) ,

The following formulas will be true on this fullpath yet they describe functions which
are not real solutions to the QDE:

(eventually

(and (contains-range V (l/2 i/2))

(strong-next (strong-next (contains-range V (8 8))))))

(eventually

(and (contains-range V (2 2))
(strong-next (strong-next (contains-range V (2 2))))))

These path formulas describe real-valued functions which cut across the ranges in a way
an actual solution to the QDE could not do. In this case, the use of nontrivial range

information and the contains-range proposition, can combine to describe a function
which is spurious.

In order for Lemma 13 and Theorem 14 to hold in general, for a QSIM state to be

determined with respect to (contains-range u (nt n2)), the numeric range associated
with a landmark of the variable u in the state must be trivial (i.e., contain a single point).

Other propositions such as intersects-range might be useful to the TL user.
However, because of the strict condition required for determinedness, such propositions
are intended to be used more for gaining information about the QSIM prediction than
proving theorems about continuous systems. The exception, of course, is in the case

that there is such complete information that programs such as Q2 are able to narrow
the possible values associated with a landmark to a single real number. In this case,
contains-range and other similar propositions may be used to prove theorems about
continuous systems but they become equivalent to the in-range proposition.

Finally, we mention that the status proposition can take any of the arguments
{quiescent, stable, unstable, transition, cycle}. The proposition will be true

when QSIM has determined the state to have the named property. A state has the
stable property if it is quiescent and in stable equilibrium. A transition state is a

terminal state in a path in which the value of one of the variables crosses a boundary
of its range. A cycle state is a state which matches a previously generated state and

B. Shults, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129 125

whose successors are already represented in the tree. Other than quiescent, stable
and unstable these properties have more to do with the QSIM interface than with the

underlying functions being described. That is the reason we did not include a discussion
of these properties in the discussion of the logic.

We define a QSIM state to be determined with respect to the propositions (status
stable) and (status unstable) if it is not quiescent or if it has been determined to
be stable. This is because QSIM may be incorrect when it determines a quiescent state

to be unstable.
Additional propositional operators can also be added to allow the user to gain other

information about QSIM states. For example, the newest release of QSIM produces
“chatter-sink” states in order to express more succinctly the fact that certain variables

may chatter indefinitely or, at some point, stop chattering. So, we could add the propo-
sition chatter-sink-p to the language such that it is true of a state if and only if the
state is a chatter-sink state. In this case, the proposition has no real meaning when trans-

lated to the domain of real-valued functions. Therefore, once again, it is used mainly to

draw information about QSIM’s output.

Appendix B. Refined definition of a reasonable function

In this appendix, we use R to denote the reals and R* to denote the extended reals.

The traditional definition of a reasonable function [141 is too restrictive for our current
purposes. Giving a satisfactory definition of reasonable is not simple. We would like to

let functions such as sine on [a, co) and tangent on [--r/2, r/2] to be reasonable. On
the other hand, we do not want to allow functions to be reasonable which cannot be
simulated by QSIM. Finding a balance between including functions which QSIM does

simulate and excluding functions which make simulation impossible is an area open to
further investigation. The definition must be such that the QSIM algorithm simulates
every reasonable solution to any ODE which abstracts to the input. However, we want
it to be inclusive enough to cover interesting functions.

The following questions come up in this context. Should we allow infinite derivatives
at points in IX? Should we allow the limits of f’ not to exist at *co? Should we allow

infinitely many critical points in R? Is there a concise way of expressing the definition
which gives us the best of both worlds?

The definition we offer here is adequate for the purposes of this paper. This defini-

tion is more inclusive than the traditional one [141, but more inclusive definitions are

possible.

Definition 23. Suppose A is an interval in R* with supremum b and infimum a. f :

A -+ JR* is a reasonable function over A if
(i) f is continuous on A,

(ii) f is continuously differentiable on (a, b) with derivative f’,
(iii) f has only finitely many critical points in any bounded interval of Iw n A and
(iv) if a E R then lim,,,+ f’(t) exists in lR* and if b E R then lim,,b- f’(t) exists

in I%*.

126 B. Shults, B.J. Kuipen/Art@ial InteNigence 92 (1997) 91-129

According to this definition, sine is reasonable on any interval [a, 00) for a E IR,
but not over [a, 001. Tangent is reasonable over [--r/2, +7~/2], but sin(l/x) and
x sin(1,‘~) are not reasonable over (0, a) for 0 < a < 00.

Appendix C. Proofs

Proof of Lemma 5. We want to show that if @ is a universal formula and x is a fullpath
in M such that M, x b @, then M, x k @‘.

Without loss of generality, we assume that @ is in positive normal form. The proof
of the lemma is by induction on the length of @.

Since atomic propositions are perfect, Q, = CD’ and hence M,x k @ if and only if
M, x b @‘. This justifies the base case.

Suppose that every universal formula of length less than k makes the theorem true
and that CD has length k.

If @ = (necessarily p), then for every fullpath y starting at the first state in X,
M, y + p. Therefore, by induction, for every fullpath y starting at the first state in X,

M, y k p’. In particular, M, x /= p’ and hence M, x + @‘.
If@ = (and pl'. .p,,>, then M, x k pi for each i, 1 < i < n. We need to show that

M, x b pi for each i. This follows by induction, Thus, M, x k Cp’.
If @ = (or pi . p,,), then M, s + pi for some i, 1 < i 6 n. We need to show that

M, x + p(for some i. This follows by induction. Therefore, M, x k @‘.
If @ = (not p), then Sp is an atomic proposition since @ is in positive normal form

and so p = p’.

If @ = (until p q), then there is a nonnegative integer i < A(x) (we choose the
smallest) such that M,x’ b q and for every nonnegative integer j < i, M,xj k p.
Therefore, M, xi /= q’ and for every nonnegative integer j < i, M, xi k p’ by induction.
Therefore, M, x + (until p’ 4’).

If @ = (releases p q), then for every nonnegative integer i < A(x) such that

M, xi p q there is a nonnegative integer j < i such that M, xi b p.
First suppose that for every nonnegative integer i < A(X) , M, xi k q. Then M, xi k q’

for every nonnegative integer i < A(x) by induction. Therefore, M, n b @‘.
Now suppose that there is a nonnegative integer i < A(x) such that M, x p q. We

select i to be the smallest such nonnegative integer. Thus, there is a nonnegative integer
j < i such that M,d k p. For all such j we also have M,xi + p’ by induction.
For every nonnegative integer k < i, we have M, xk j= q by the choice of i and so
M, xk + q’ by induction. Therefore, we get that for every nonnegative integer 1 < A(x)
such that M, xl k q’ there is a nonnegative integer j < I such that M, xj k p’. That is

to say, M, x /= (releases p’ q’).
If Q, = (next p), then if A(x) > 1 then M, x’ b p and we are done by induction. If

A(x) = 1 then M, x b (next p’) as well.

If di = (strong-next p>, then A(x) > 1 and M,x’ /= p so we are done by
induction. Cl

B. Shults, B.J. Kuipers/ArtiJiicial Intelligence 92 (1997) 91-129 127

Proof of Theorem 14. Suppose x is a fullpath in a QSIM structure 6 which is de-
termined with respect to all of the propositions in @J, a perfect path formula, and

~TL, x b @. If the specification (x, c) of x qualitatively describes ({ti}, U) then we
show that (46, c) temporally describes ({ti}, U) via &JM.

Without loss of generality, we assume that @ is in positive normal form. Suppose that
x is a fullpath in a QSIM structure M which is determined with respect to all of the
propositions in @, a perfect path formula in positive normal form, and %r~, x /= @. We

will apply induction on the length, k, of @J. In the base case, @ is an atomic proposition.

This case follows from Lemma 13.

Our induction hypothesis says that for any fullpath y in a QSIM structure such that

firs, y /= W where W is a perfect path formula in positive normal form of length less

than k and M is determined with respect to every proposition in q, if (y, c) qualitatively
describes a splitting ({Yi}, V) then (P,c) temporally describes ({ri}, V) via $“,M.

If @ = (and pt . .p,,), then we must sho_w that if (pi, c) temporally describes

(Iti)> V ti , f vta UM or each j, 1 < j < m, then Mr~,x b p,i for each j, 1 < j < m. This

follows by the induction hypothesis.
If CD = (or pt . .p,,,), then we must SLOW that if (pj, c) temporally describes ({ti}, U)

via r+4~,~ for some j, 1 < j 6 m, then A4 r~, x /= pi for some j, 1 < j 6 m. Again, this

follows by induction.
If @ = (not p>, the? we must show that if (p, c) does not temporally describe

({ti}, U) via &J,M then MEL, x k p. Since, by the definition of positive normal form, p

must be an atomic proposition, this follows from the induction hypothesis and Lemma 13.
If @ = (until p q) , then we must show that if (x, c) qualitatively describes ({ti}, U),

then (@J, c) temporally describes ({t;}, U) via @“,,M. By the semantics of until we

know that there is a nonnegative integer h < A(x) such that iii,, xh b q and for every

nonnegative integer I < h, Mr~,.x’ k p. Since (x, c) qualitatively describes ({ti}, U),
(x”, c) q ua I a ive y I’t t’ 1 d escribes ({ti: d,, < i}, UI,,+) by Lemma 10. Thus (q, c) temporally

describes ({ti: dh < i}, UI,,+) via $“,M by induction. For every nonnegative integer

1 < h, (x”,c) qualitatively describes ({ti: dl 6 i}, UIl+) by Lemma 10. Thus (p,c)

temporally describes ({ti: dl < i}, LIIl+) via @“,M by induction. So (@,c) temporally

describes ({ ti} 9 U) via $u,M.
If @ = (releases p q), then we must show that if (x,c) qualitatively describes

({ti}, C/) then (@, c) temporally describes ({ti}, U) via $U,,M. Smce %r~, x b @ we
know that for every nonnegative integer_h < cl(x) such that MEL, xh k q there is
a nonnegative integer 1 < h such that M r~, x1 + p. First suppose that MTL, xh b 4

for every nonnegative integer h < A(x). We know that (x”, c) qualitatively describes

({t;: 41 ,< 97 U/1+) f or every nonnegative integer h < n(x) by Lemma 10. Therefore,

(q, c) temporally describes ({ti: dh < i}, UI,,+) via @II,,+, for every nonnegative integer
h < ii(x) by induction and so (x, c) qualitatively describes ({ti}, U).

Now suppose that there is a nonnegative integer h < n(x) such that kr~,x” p q

and it is the smallest such h. There is a nonnegative integer 1 < h such that GijTL, x1 /=

p. For every nonnegative integer j < h, G r~, xi /= q and since (.I$, c) qualitatively

describes ({ti: d,i 6 i}, U/j+), (4, c)_temporally describes ({ri: d,i < i}, Ul,i+) via &J,M
by induction. For one of these j, MEL, xi /= p and hence (p, c) temporally describes

({ti: d,i 6 i}$ u(,+) via $U,M by induction. So we have that if there is a nonnegative

128 B. Shults, B.J. Kuipers/Artificial Intelligence 92 (1997) 91-129

integer h < A(x) such that % rL, xh F 4, there is a nonnegative integer j < h such

that (p, c) temporally describes ({ti: dj < i}, Uj,i+) via #,&M and for every nonnegative

integer 1 < j, (4, c) temporally describes ({ti: dr < i), UI(l+) via +U,M. Therefore, (a, c)

temporally describes ({ ti}, U) via &J,,M.
If @ = (next p) , then we must show that if 0 = 25 or (p, c) temporally describes

({ti: di < i},UIi+) via $/(I# then A(x) = 1 or (x1, c) qualitatively describes ({ti:
dl 6 i}, UI ,+). This follows by induction and the use of Lemma 10.

If @ = (strong-next p) , then we must show that if 0 < 23 and (p, c) temporally

describes ({ti: dl < i}, U\ I+) via +U,M then A(x) > 1 and (xl, c) qualitatively de-
scribes ({ti: dl < i}, UI(I+). Once again, this follows from the induction hypothesis and

Lemma 10. 0

Acknowledgements

QSIM and TL are available for anonymous f tp at f tp. cs . utexas . edu in the di-

rectory /pub/qsim. These and other results of the Qualitative Reasoning Group are
accessible by World-Wide Web via http : //www . cs . utexas . edu/users/qr.

This report was prepared by the University of Texas at Austin as an account of work
sponsored in part by the National Science Foundation (grant IRI-9216584) and by
the Electric Power Research Institute, Inc. (EPRI) (grant RP8030-21). Neither EPRI,

members of EPRI, the University of Texas at Austin, nor any person acting on their
behalf: (a) makes any warranty, express or implied, with respect to the use of any
information, apparatus, method, or process disclosed in this report or that such use may

not infringe privately owned rights; or (b) assumes any liabilities with respect to the
use of, or for damages resulting from the use of, any information, apparatus, method,

or process disclosed in this report.
We are grateful to Bhat, Grumberg and Cleaveland for their excellent article [31 and

to Rance Cleaveland for answering our questions about their algorithm. A difficult task
in writing a paper which is intended for audiences in two somewhat disjoint disciplines,

such as qualitative reasoning and temporal logic, is to use language which is comfortable
to readers in both fields. We are grateful for helpful comments and suggestions from
Markus Kaltenbach, Richard Trefler, Dan Clancy, Bert Kay, Giorgio Brajnik, Michael
Hofbaur, and two anonymous reviewers.

References

[I] R. Alur and T. Henzinger, Real-time logics: complexity and expressiveness, Inform. Comput. 104 (1993)

35-71.

121 D. Berleant and B.J. Kuipers, Combined qualitative and numerical simulation with 43, in: 9. Faltings
and J? Struss, eds., Recenr Advances in Qualitafive Physics (MIT Press, Cambridge, MA, 1992).

[31 G. Bhat, R. Cleaveland and 0. Grumberg, Efficient on-the-fly model checking for CTL’ , in: Proceedings

Conference on Logic in Computer Science (WCS-95) (1995)
[41 G. Bmjnik and D.J. Clancy, Guiding and refining simulation using temponl logic, in: Proceedings Third

International Workshop on Temporal Representation and Reasoning (1996).

B. Shults. B.J. Kuipers/Ariificial Intelligence 92 (1997) 91-129 129

15 1 G. Brajnik and D.J. Clancy, Temporal constraints on trajectories in qualitative simulation, in: Proceedings
Tenth International Workshop on Qualitative Reasoning About Physical Systems, Fallen Leaf Lake, CA

(1996).
16 1 G. Brajnik and D.J. Clancy, Temporal constraints on trajectories in qualitative simulation, in: Proceedings

AAAI-96, Portland, OR (1996).

17 I E.M. Clarke, E.A. Emerson and AI? Sistla, Automatic verification of finite-state concurrent systems

using temporal logic specifications, ACM Trans. Program. Lang. Syst. 8 (1986) 244-263.
[8] E.A. Emerson, Temporal and modal logic, in: J. van Leeuwen, ed., Handbook of Theoretical Computer

Science (North-Holland, Amsterdam, 1990) 995-1072.

[9 I E. Gazi, L.H. Ungar and B.J. Kuipers, Temporal logic for summarizing Monte-Carlo simulation: an

application to controller verification, in: R. Shoureshi, ed., Intelligent Control (IEEE Press, New York,

1996).

1 10 I E. Gazi, L.H. Ungar, W.D. Seider and B.J. Kuipers, Automatic analysis of Monte-Carlo simulations of

dynamic chemical plants, in: Proceedings European Symposium on Computer Aided Process Engineering
(ESCAPE-6) (Pergamon, Oxford, 1996).

1 I1 1 E Jahanian and D.A. Stewart, A method for verifying properties of Modechart specifications, in:

Proceedings Real-time Systems Symposium, Huntsville, AL (1988).

[12 1 H. Kay and B.J. Kuipers, Numerical behavior envelopes for qualitative models, in: Proceedings AAAI-93,
Washington, DC (1993) 606-613.

[131 B.J. Kuipers, Qualitative simulation, Artif: Intell. 29 (1986) 289-338.
[14 I B.J. Kuipers, Qualitative Reasoning: Modeling and Simulafion with Incomplete Knowledge (MIT Press,

Cambridge, MA, 1994).

1 I5] B.J. Kuipers and K. Astrom, The composition and validation of heterogeneous control laws, Automatica
30 (1994) 233-249.

1 161 B.J. Kuipers and D. Berleant, Using incomplete quantitative knowledge in qualitative reasoning, in:

Proceedings AAAI-88, St. Paul, MN (1988).

I 17 I B.J. Kuipers and B. Shults, Reasoning in logic about continuous systems, in: J. Doyle, E. Sandewall and

P. Torasso, eds., Proceedings Fourth International Conference on Principles of Knowledge Representation
and Reasoning, Bonn (1994)

[18 1 0. Lichtenstein and A. Pnueli, Checking that finite state concurrent programs satisfy there linear

specifications, in: Proceedings Twelfth Annual ACM Symposium on Principles of Programming
Lungunges(1984)97-107.

I 191 1. Moon, G.J. Powers, J.R. Burch and E.M. Clarke, Automatic verification of sequential control systems

using temporal logic, AIChE J. 38 (1992) 67-75.
I20 I M. Rayner, On the applicability of nonmonotonic logic to formal reasoning in continuous time, Artif

Intell. 49 (199 1) 345-360.

