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Abstract— We show how a robot can autonomously learn an
ontology of objects to explain aspects of its sensor input from
an unknown dynamic world. Unsupervised learning about
objects is an important conceptual step in developmental
learning, whereby the agent clusters observations across space
and time to construct stable perceptual representations of
objects. Our proposed unsupervised learning method uses the
properties of allocentric occupancy grids to classify individual
sensor readings as static or dynamic. Dynamic readings are
clustered and the clusters are tracked over time to identify
objects, separating them both from the background of the
environment and from the noise of unexplainable sensor
readings. Once trackable clusters of sensor readings (i.e.,
objects) have been identified, we build shape models where
they are stable and consistent properties of these objects.
However, the representation can tolerate, represent, and track
amorphous objects as well as those that have well-defined
shape. In the end, the learned ontology makes it possible for
the robot to describe a cluttered dynamic world with symbolic
object descriptions along with a static environment model,
both models grounded in sensory experience, and learned
without external supervision.

I. INTRODUCTION

Most work in robotics focuses on achieving competent
behavior for a predetermined set of tasks. While this
approach leads to reliable behaviors, the emphasis on
performance and accuracy for engineered tasks leads to
robots that lack any ability to learn about other aspects
of the world. This paper examines how a robot can dis-
cover unknown objects, namely how a robot can perceive,
track, model and recognize novel dynamic objects in the
environment.

The goal of this work is to mimic the developmen-
tal learning process, where a learning agent must au-
tonomously construct its own internal vocabulary to de-
scribe and interact with the world. To achieve this goal, we
can not use complex algorithms that provide competence
only for a limited set of objects and viewing circumstances.
Instead, we rely on simple heuristics that provide an
inclusive definition of objects so that the robot achieves
some level of interaction with a broad range of objects.
In future work we will examine how a robot can learn
more sophisticated skills using statistics gathered from the
perceived objects, but in this work we concentrate on
demonstrating how a basic level of competency can be
acquired.

For a robot to learn about an unknown world, it must
learn to identify the objects in it, what their properties
are, how they are classified, and how to recognize them.

The robot’s sensorimotor system provides a “pixel-level”
ontology of time-varying sensor inputs and motor outputs.
Even after a substantial learning process [1] provides the
organization on the sensors along with the ability to follow
control laws and defines distinctive states to describe the
large-scale structure of the environment, the robot’s ontol-
ogy still does not include objects. In this paper, starting
from a lower-level ontology that includes range sensors,
incremental motion, and an occupancy grid model of the
local environment, we show how an ontology of objects
can be learned without external supervision.

The occupancy grid representation for local space does
not include the concept of “object.” It assumes that the
robot’s environment is static, that it can be divided into
locations that are empty and those that are occupied, and
that the set of occupied locations has an arbitrary shape that
can be detected by range sensors. A cell of an occupancy
grid holds the probability that the corresponding region
of the environment is occupied. Simultaneous localization
and mapping (SLAM) algorithms can efficiently construct
an occupancy grid map and maintain accurate localization
of a mobile robot within it using range sensor data [2], [3],
[4].

II. LEARNING ABOUT OBJECTS

We claim that a robot can learn a working knowledge
of objects from unsupervised sensorimotor experience by
representing moveable objects in four steps: Individua-
tion, Tracking, Image Description, and Categorization. We
demonstrate this learning process using a mobile robot
equipped with a laser range sensor, experiencing an indoor
environment with significant amounts of dynamic change.

This is a kind of “bootstrap learning” [5] since we com-
bine multiple learning methods, each learning the prerequi-
sites for subsequent stages. For example, the object shapes
learned here will be used in future work to recognize the
same types of objects in more difficult contexts.

A major motivation for this work is to understand how
complex cognitive structures can autonomously develop in
a learning agent. We know that tremendous leaps in cogni-
tive complexity occur through evolution and during infant
development, using experience acquired in unconstrained
environments.

Computational learning theory tells us that learning is
exponentially hard in the dimensionality of the representa-
tion space [6]. Learning in a high dimensional represen-
tation space (such as an observation stream) should be
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(a) (b) (c)
Fig. 1. Object Individuation. (a) The occupancy grid representation of the environment generated online by a SLAM algorithm up to the current time
t. The boxed region is shown in the following plots. (b) Sensor readings at time t classified as static (+) or dynamic (2) according to the occupancy
grid cells they fall on. The robot (�) is in the upper-left portion of the plot, so nearby dynamic objects occlude parts of the static environment. (c)
Dynamic readings are clustered and hence individuated into objects. Each of the two clusters is assigned to a tracker (circles). [All of these figures are
clearer in the color PDF than in grayscale prints.]

vastly harder than learning in a low dimensional (symbolic)
representation. The premise of bootstrap learning is that an
agent can apply a variety of high bias, but unsupervised
learning algorithms to simple tasks (recognizing movable
objects) to transform a high dimensional representation
(an observation stream) into one with significantly lower
dimension (a symbolic representation).

A. Individuation

The occupancy grid representation embodies a static
world assumption. Sense data reflecting dynamic change
in the environment are treated as noise. Fortunately, occu-
pancy grid algorithms are quite robust to failures of the
static world assumption. If changes in the environment are
slow relative to repeated observation (12 Hz for the laser
range-finder), changes in occupancy are quickly washed
out by new observations, restoring the grid to a reasonably
accurate description of the current state of the environment.
We exploit this property and add a new attribute to the
occupancy grid. A grid cell is labeled transient if it has
ever been unoccupied (i.e., the probability of occupancy
falls below a threshold), and permanent if it has never been
unoccupied.1

The low-resolution occupancy grid cell labeling is used
to classify individual high-resolution range sensor readings.
Each individual range sensor reading is labeled as static
or dynamic, depending on whether the endpoint of the
reading falls in a cell labeled as permanent or transient,
respectively. Permanent grid cells and static sensor readings
represent the static background environment, and the learn-
ing algorithm restricts its attention to the dynamic range
sensor readings. Note that a non-moving object such as a
trash bin would be perceived with dynamic sensor readings
if the robot had ever observed the space the readings are
located in as unoccupied.

Next, the learning algorithm clusters the endpoints of

1To account for small localization errors, a transient cell may also
require that all of its neighbors cells are unoccupied, which leaves
permanent cells surrounded by a thin rim of unlabeled cells.

the dynamic range sensor readings.2 The coordinates of
the endpoints xi are represented in the fixed local frame
of reference of the occupancy grid. Two endpoints are
considered close if their distance is less than the threshold
value δI :

close(xi, xj) ≡ ‖xi − xj‖ < δI .

The individual clusters are the connected components of
the close relation: i.e., the equivalence classes of its tran-
sitive closure. Within a single observation frame at time t,
these clusters {Si,t} are called object snapshots. They are
the initial representation for individual objects. The process
of individuation is shown in Figure 1.

B. Tracking

An object snapshot Si,t at time t has a spatial location
and extent <µi, ri>: its center of mass µi and the distance
ri from its center of mass to its farthest reading. The
dissimilarity between two snapshots Si and Sj is

dS(Si, Sj) = ‖µi − µj‖+ |ri − rj |.

This function is robust to random noise and incorporates
both the observed center and radius since the snapshots of
a moving, dynamic object (such as a person) will vary in
both dimensions. Where the successor to time t is t′, we
say that object snapshot St has unique clear successor S′

t′

if
dS(St, S

′
t′) < δT

∀S′′
t′ 6= S′

t′ dS(St, S
′′
t′) > dS(St, S

′
t′) + δR, and

∀S′′
t 6= St dS(S′′

t , S′
t′) > dS(St, S

′
t′) + δR.

An object tracker is a function Tk(t) whose value is
an object snapshot Si,t at time t, such that for successive
time-points t and t′, Tk(t′) is the unique clear successor
of Tk(t). An object tracker Tk thus defines a collection of
corresponding object snapshots extending from frame to

2Recall that the endpoints of range sensor readings, like the localization
of the robot, are not limited to the resolution of the occupancy grid, but
have real-valued coordinates, albeit with limited precision and accuracy.



Fig. 2. Object Tracking. The shape of an object can vary greatly during tracking whether it has a rigid body or not. This figure shows a sequence of
time steps prior to the scene in Figure 1. The actual trackers use data at much finer temporal granularity than the time-points (columns) shown. Note
that the robot is moving while tracking. Top: The tracked dynamic objects, superimposed for reference on a low-intensity display of the permanent
cells in the occupancy grid. Middle: A tracked pedestrian object, showing its irregular shape over time. Bottom: Tracked snapshots of a non-moving
object (an ATRV-Jr).

frame in the observation stream, with at most one snapshot
in each frame. The process of object tracking is depicted
in Figure 2.

The domain of a particular object tracker ends at the
time-points where the unique clear successor relation
cannot be extended. “Object permanence”, the ability of
an object tracker to tolerate breaks in the sequence of
frames, is clearly a learned ability in young children [7].
Our current implementation includes the ability to tolerate
two missing frames in a sequence. Three missing frames
terminates a tracker. New trackers are generated for large
unexplained snapshots. Small snapshots without trackers
are treated as noise and ignored.

Dynamic objects being tracked will converge and di-
verge, for example pedestrians in a crowded hallway.
Object trackers will successfully track individuals over
segments of their behavior, losing them when they get
too close together and their readings are merged into a
single snapshot. When they separate again, new trackers
will be created to track the different individuals. More
sophisticated methods for “object permanence” will be
required to infer the identity of object trackers across
such merges and splits. Following our bootstrap learning
approach, we learn properties of objects during the periods
of time when tracking is unambiguous and learning is easy.
We expect those properties will make it possible to track
objects under more difficult circumstances.

We define these trackable clusters of dynamic sensor

readings to be objects. Each tracker represents a distinct
symbolic identity which is assumed to be the cause of the
readings associated with it. At this point, objects have only
two properties: spatial location and temporal extent. These
properties are sufficient for the trackers to guide the robot’s
actions to acquire additional information about the object.
For example, control laws for following, circling and
avoidance are easily specified using trackers to specify the
desired goals. The next step will be to acquire properties
of the object instances that are stable across changes in
space and time. This makes it possible to categorize them
into object classes.

C. Image Description

We have defined the object snapshot to be the set of
sensor readings associated with an object at a particular
time. The shape model for an object is a subset of the
object snapshots collected over the time that the object is
tracked.

The problem is how (and whether) the snapshots can
be aggregated into a consistent, object-centered frame of
reference. We consider it important to describe both objects
with stable shapes that can be learned, and objects that
are amorphous in the sense that they can be individuated
and tracked, but their shape is beyond the capacity of
the agent to describe and predict. For our robot learning
agent, at its current level of sophistication, pedestrians are
good examples of amorphous objects. At a later stage, the



Fig. 3. Object Shape Model. This shows the incremental shape model creation for the ATRV-Jr observed in Figure 2. The range sensor endpoints in
each snapshot are shown with different symbols. Selected snapshots combine to form a shape model.

learning agent may be able to model a pedestrian as two
alternately-moving legs (observed as 2D blob shapes), but
for now, object snapshots of pedestrians change too much
to form stable shape models.

Consider a temporarily non-moving object such as an
ATRV-Jr (a mobile robot). To be individuated and tracked
as an object, it must be located at a position that was
unoccupied at some time, so its sensor readings are con-
sidered dynamic. Since the object doesn’t move in the
environment, tracking is quite simple. However, as the
robot moves around it, the object snapshot still changes
slowly (Figure 2).

The agent creates a shape model by accumulating dis-
tinctive snapshots while the object appears to be non-
moving (Figure 3). Both tasks, detecting the lack of object
motion and determining distinctiveness, are accomplished
by a non-symmetric dissimilarity function dD that com-
pares sets of points (snapshots).

dD(Snew, Sold) =
1

|Snew|
∑

s∈Snew

min(1,
1
ε

min
t∈Sold

‖s− t‖)

When successive snapshots differ by a large amount, δM ,
the agent assumes the object has moved, and discards the
current shape model. Otherwise, if the current snapshot
is sufficiently distinct, δN , from the points currently in
the shape model, the new snapshot is added to the shape
model. Finally, snapshots in the shape model are discarded
if they are incompatible with the full set of current sensor
readings.

The shape model also records the directions from which
the snapshots have been observed, and is considered com-
plete when the full 360◦ surround has been sufficiently
densely sampled.3

While the shape model is incomplete, it is considered
“amorphous”. When the shape model is complete, the agent
creates a standard shape image for the object by placing
the snapshots of the shape model into a canonical frame
of reference. The snapshots are first rotated so that the
primary axis of the readings is aligned with the y-axis. This
is accomplished by rotating the shape model to minimize
the entropy of the projection onto the x-axis. Next, the
shape model is translated to minimize the distance of the
farthest points from the origin. (See Figure 4.)

3In the current implementation, this means at least one snapshot exists
in each of six 60◦ pose buckets around the object.

D. Categorization
Once an individual object has a standard shape image,

the agent must categorize it. Note that the learning agent is
responsible for building its own classes. Moreover, since
the object observations come in incrementally, the agent
must add new classes incrementally. The task of adding
new classes incrementally is known as online clustering,
and several algorithms exist [8]. For simplicity however,
we solve this clustering task with a distance function.

We define the asymmetric dissimilarity function between
two aligned shape images V and W by comparing their
component snapshots

d′(V,W ) =
1
|V |

∑
v∈V

min
w∈W

dD(v, w).

We use this to define the symmetric distance measure

dC(V,W ) = max(d′(V,W ), d′(W,V )).

If the image of an instance is less than a threshold dis-
tance, δC , from multiple known types, then its classification
is uncertain. If there is only one known type within δC ,
then it is classified as that type. If it is more than δC

from any known type, then a new category is formed. For
example, when the shape model in Figure 3 is converted
into a standard shape image and compared to the known
categories in Figure 4, it is recognized as an instance of
the ATRV-Jr category. It is then displayed as a known type
in Figure 5(d).

The robot does not learn a shape model by observing a
continuously moving object, but it can learn a shape model
if the object stops for a short period. Once an object has
been classified, the tracker retains this classification and the
corresponding shape model even when perception is diffi-
cult. Furthermore, the robot can obtain individual snapshots
of a moving object, and we predict that those snapshots will
be useful as evidence toward the classification of a moving
object within an existing class hierarchy.

Even without a complete shape model, the robot can still
generate a standard shape image for an object. For an in-
complete image, the dissimilarity function is useful because
it has the property that if V ⊂ W , then d′(V,W ) = 0.
This makes it suitable for comparing an incomplete model
of an instance V with complete models that are already
known. Also, this can be used to guide active perception
by defining the observations that are most informative for
classification.



(a) (b) (c) (d)
Fig. 4. Categorization entails both clustering and classification. Standard shape images and photographs for four learned object classes: (a) recycling
bin, (b) chair, (c) robot wheelchair, and (d) an ATRV-Jr robot.

III. EXPERIMENTAL RESULTS

The above system was implemented on an iRobot
Magellan Pro robot equipped with a SICK PLS laser
rangefinder. The parameters mentioned in the paper had the
following values: δI = 0.5m, δT = 1.0m, δR = 0.01m,
δM = 0.5, δN = 0.1, and δC = 0.33. The results of this
experiment are not very sensitive to the selected parameter
values and similar results arise when the parameters are
varied by twenty percent.

The implementation was tested by running the robot in
the lab. An occupancy grid representation of the environ-
ment (shown in Figure 1(a)) is generated online in the
presence of object motions. The process of individuation
is displayed in the subsequent two images, first showing
the classification of laser scans as static or dynamic, and
then clustering the dynamic readings to form snapshots.
The snapshots are associated with trackers in Figure 2,
providing temporal extent to the object representation. The
ATRV-Jr robot is not moving during this time, so an
image description is incrementally accumulated, as shown
in Figure 3. When the description is sufficiently complete,
the agent compares it to the objects learned earlier in the
run, shown in Figure 4. The agent discovers that the image
description best matches that of the ATRV-Jr robot.

The agent’s world description is graphically represented
in Figure 5 along with a photo of the same scene. The
result is a discretization of a natural environment into
several entities which are useful for later reasoning: a
coarsely represented fixed environment (walls+furniture),
a localized agent (the Magellan Pro robot), an amorphous
moving object (a pedestrian), and a classified known object
(the ATRV-Jr). This experiment demonstrates that object
perception (individuation, tracking, description, and cate-
gorization) in cluttered environments is feasible even when
using limited prior knowledge and simple representations.
Moreover, since the agent can autonomously generate new
categories online, its ability to succinctly and accurately

describe nearby objects should improve with experience.

IV. RELATED WORK

Other researchers have examined how object categories
can be learned. Work on learning object classes in vi-
sion [9] demonstrates how a new category can be learned
from a few examples. However, this work requires signifi-
cant background knowledge of both generative models and
priors on parameters. This background knowledge must be
acquired from a more intensive learning process. In contrast
to their work, we are concerned with how this complex
background knowledge can be obtained autonomously by
the robot. In future work, we intend to examine how
the objects found by our work can provide background
knowledge to bootstrap a system similar to theirs.

There is a large body of literature on individuation
in both psychology and computer vision. Work in de-
velopmental psychology [7] suggests that infants learn
Gestalt principles of perception. Work in perceptual psy-
chology [10] demonstrates that the natural statistics of the
environment can provide sufficient training data for acquir-
ing grouping mechanisms. Individuation in vision has been
achieved by a variety of criteria using the normalized cut
algorithm [11].

Recent work on the Navlab project [12] has demon-
strated the feasibility and value of tracking unknown ob-
jects in the environment. This work describes how a truck
equipped with multiple range sensors is able to detect and
track moving objects while driving down a road. The ability
to track unknown moving objects is required for their goal
of safe autonomous control at high speeds on urban streets.
They are also able to recognize a couple of object classes.
A significant difference from the work in this paper is their
inability to generate new object types.

The construction of shape models of non-rigid objects
has been explored in [13]. Using a variant of the iterative
closest point algorithm, they are able to merge dense
three-dimensional range scans into a single coherent shape



Fig. 5. Multiple representations of the scene in Figure 1. The robot observer is the small round robot in the foreground. The larger ATRV-Jr is used
as a non-moving object. (a): A photograph of the scene. (b): A range scan representation of the scene. (c): An occupancy grid representation of the
scene. (d): An iconic representation of the scene. This is a symbolic description of the robot’s environment enabled by the learned object ontology. The
location of the observing robot is indicated by a small triangle (�). A moving object (pedestrian) of amorphous shape is shown with its trajectory. A
non-moving object (ATRV-Jr) has been classified (as an instance of Figure 4(d)), and is shown by the convex hull of its shape model. The permanent
cells in the occupancy grid are shown for reference, representing the static environment.

model even when the object undergoes small motions. This
algorithm creates a qualitatively consistent model when
an person moves their arms or head between successive
scans. Because it relies on having significant amounts of
data to align the scans, it is unclear that this method can
be extended to handle non-rigid motion as observed by a
two-dimensional range scanner.

In work by Biswas and colleagues [14], they create shape
models from occupancy grids to generate new object types.
They assume that the world is static during observation,
which permits the use of a standard SLAM algorithm to
capture the shape of the objects in a grid representation.
The assumption that the entire environment stays static is
fairly restrictive, since in many environments the objects of
interest move regularly. Moreover, their algorithm uses an
offline learning process. This makes the online incremental
acquisition of new object types difficult.

V. CONCLUSIONS AND FUTURE WORK

We have described and implemented a method for an
agent to autonomously learn properties of novel dynamic
objects in a natural environment without complex prior
knowledge. This paper demonstrates how a learning agent
can efficiently build an ontology of objects as part of
a bootstrap learning process. Using this autonomously
acquired ontology, a robot can categorize the dynamic
objects it encounters in the world.

This work may be incrementally improved in multiple
ways. Small errors in localization cause the shape models
to become noisy, a problem that may be alleviated by better
snapshot alignment. Also, the method is specified for a
range sensor, so testing it with stereo vision is desirable.

An important part of bootstrap learning has not yet
been explored here, namely utilizing acquired knowledge to
construct informed priors to improve competence in harder
tasks. This leads to several directions for future work: ex-
amining how class knowledge can aid in image description
(by selecting discriminating observation angles), examining
how image description can aid in tracking (by providing
feedback on the plausible motion of the object), and using
tracking to aid in individuation (by providing feedback for
separating objects). Finally, we would like to examine how
the learned object ontology can be used to speed up further
learning tasks.
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