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Abstract— Most simultaneous localization and mapping
(SLAM) approaches focus on purely metrical approaches to
map-building. We present a method for computing the global
metrical map that builds on the structure provided by a
topological map. This allows us to factor the uncertainty in
the map into local metrical uncertainty (which is handled well
by existing SLAM methods), global topological uncertainty
(which is handled well by recently developed topological map-
learning methods), and global metrical uncertainty (which can
be handled effectively once the other types of uncertainty
are factored out). We believe that this method for building
the global metrical map will be scalable to very large
environments.

I. INTRODUCTION

Many simultaneous localization and mapping (SLAM)
methods have the goal of building a global metrical map of
the environment within a single frame of reference [1]–[4].
Although these methods have improved dramatically over
the past few years, they are still afflicted with the problem
of cumulative distortions in the map and robot position,
along with the related problem of data association and
the closing of large loops. If a mapping algorithm uses a
single maximum-likelihood map, it can be very difficult to
recover from premature commitment to an erroneous map.
On the other hand, attempting to maintain a distribution
over the space of maps is expensive in space and time,
and is vulnerable to approximation failures such as particle
depletion [5].

A topological map abstracts the environment to a dis-
crete graph in which nodes represent places and edges
represent path segments linking the places. The topological
map representation provides a very concise representation
for individual maps, which is particularly important when
considering multiple maps and when exploration requires
discriminating among qualitatively distinct structural hy-
potheses.

A natural hybrid solution is to combine topological maps
of the global environment with metrical maps of local
spaces. Local metrical maps in separate local frames of
reference avoid most problems of global metrical maps. In
relatively simple regions such as individual place neighbor-
hoods and individual path segments, incremental localiza-
tion is highly reliable and current metrical SLAM methods
perform extremely well. Errors are restricted to the current
local map and do not accumulate over travel. In [6], we

describe our hybrid approach that is based on the Spatial
Semantic Hierarchy [7]. The Atlas and CTS frameworks
for hybrid mapping [8], [9] take a similar approach.

In this paper, we show how to use an accurate hybrid
topological map as a skeleton for building an accurate
global metrical map. Our method solves the loop-closing
problem in the topological map, where structurally dis-
tinct alternative maps can be concisely represented, and
where an efficient topological version of Markov local-
ization, along with topological axioms, can be used to
refute incorrect maps [6], [10]–[12]. Metrical uncertainty
is factored into independent components rather than being
allowed to accumulate along the robot’s travel trajectory.
This approach to managing metrical uncertainty means our
method will scale more effectively than previous methods
to very large environments.

II. OVERVIEW AND BACKGROUND

The major innovation in this paper is the ability to factor
the uncertainty in the map into local metrical uncertainty
(which is handled well by existing SLAM methods), global
topological uncertainty (which is handled well by existing
topological map-learning methods), and global metrical
uncertainty (which can be handled effectively once the
other types of uncertainty are factored out).

Our approach builds on many existing methods.
To represent metrical maps, we use occupancy grids [13]

rather than landmark-based maps [14] in order to use
all of the information in the range sensor signal, instead
of abstracting the environment to a pre-specified set of
landmark types.

To build local metrical maps online, we use existing
SLAM methods based on Markov localization and imple-
mented using particle filters [15] to represent the pose ac-
tion model distribution P (xt|ut, xt−1) (used in Figure 1).
Local metrical maps avoid difficult localization problems
such as closing large loops, so we can use efficient methods
that maintain a single maximum likelihood map hypothesis.
We apply this local metrical mapping technique to maintain
a “scrolling map” around the robot as it explores. The
scrolling map can be used as an observer providing more
accurate local state estimates for local control laws and for
analyzing the local topology of place neighborhoods.



To identify and characterize place neighborhoods, we
build Voronoi graph descriptions [16] of the scrolling map,
looking for nodes in the Voronoi graph whose edges lead
off the scrolling map. This trims small terminal edges from
the Voronoi graph, and allows us to describe the “local
topology” (e.g., L, T, +, etc.) of each place neighbor-
hood [6].

To build the large-scale topological map, we use “local
topologies” to build a tree of all possible topological
maps consistent with exploration experience [6], pruning
the tree when the maps are inconsistent with topological
axioms [10], [11]. The axioms are expressed in a non-
monotonic logic, so prioritized circumscription provides a
simplicity-based preference ordering over remaining con-
sistent maps [10]. In future work, we plan to incorporate
weak metrical constraints to define a probability ordering
over consistent maps. Path planning can either use the
most preferred consistent map or, if the goal is differential
diagnosis of the set of map hypotheses, all the consistent
maps at the leaves of the tree of maps.

To solve the loop closing problem for global metrical
maps we factor the problem into (a) the selection of the
correct topological map, and (b) the construction of the
global metrical map given the correct topological map.
If each place has a reliably perceived label, even with
substantial ambiguity (i.e., perceptual aliasing), continued
exploration can reliably determine the correct topological
map [17]–[19], except in pathologically symmetrical envi-
ronments. This can be expressed as a topological version
of Markov localization [12]. In realistic environments,
with rich sensors, the label set is larger, and localization
becomes faster and more reliable, making it possible to
learn accurate place recognition from sensory images [12].

Given the correct topological map, we segment explo-
ration experience at points selected each time the robot’s
trajectory passes through an individual place neighborhood.
Each segment of experience then describes motion from
one place neighborhood to another along a particular path
segment. Existing state-of-the-art SLAM methods applied
to the scrolling map can build a local metrical map of that
path segment, and the trajectory through it, in the frame of
reference of the initial place neighborhood.

Given exploration along individual path segments, the
global metrical map can be found by 1) estimating dis-
placements between pairs of connected places, 2) finding
a global layout of places from the local displacements, 3)
calculating the global trajectories along each path segment
anchored by the global place locations, 4) using the new
global trajectory as a highly accurate proposal distribution
for the posterior probability distribution over poses and
maps.

The remainder of the paper is organized as follows.
Section III describes the theory behind the Bayesian net-
work leading up to the proposal distribution. Section IV
describes several alternative implementation strategies. We
then lay out the preliminary strategy we used to produce
the results in Section V. Section VI discusses related work,
and finally we present some concluding remarks.

III. A THEORY FOR BUILDING THE GLOBAL METRICAL
MAP FROM AN ANNOTATED TOPOLOGICAL MAP

A. Metrical Mapping in a Single Frame of Reference

The task of building metrical maps is often described as
finding the posterior (or maximum likelihood) over m and
x in P (x, m|z, u) with the following symbol definitions.

t: Where 0 ≤ t ≤ N represents the timesteps of
the robot’s experience.

x = x0:N : The sequence of robot poses xt at
each timestep t.

m: The set of map elements, which may be
landmarks or occupancy grid cells.

z = z0:N : The sequence of observations zt.
u = u1:N : The sequence of robot actions ut

between timesteps.
Figure 1 shows the standard graphical dynamic Bayesian

network (DBN) model for Markov localization.
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Fig. 1. Markov localization within a single frame of reference:
P (xt|ut, xt−1) and P (zt|xt, m). Simultaneous localization and map-
ping (SLAM) combines localization with one of a number of mapping
methods, for computing P (m|x, z, u).

B. Global Topological Map and Local Metrical Maps

The topological map abstracts the environment by iden-
tifying a discrete set of places. We can define a local frame
of reference at each place and build local metrical maps
that model the place neighborhood. We divide the robot’s
experience into disjoint segments of travel from one place
to another, by breaking the experience at distinguished
time-points when the robot is in the neighborhood of a
particular place.

Let τ represent the topological description of the envi-
ronment created from observations. This description con-
sists of the following entities.

P = {p0, . . . , pl}: A set of symbols denoting
places.

ti: Where 0 = t0 < t1 < · · · < tn = N is a
subsequence of distinguished times when the
robot is at a place. It is convenient to relabel
the robot’s state variables x, z, and u defining
xi,j ≡ xti+j .

place(ti) = pj : At time ti the robot is at place
pj .

m̃i: The scrolling map that models the robot’s
surroundings between ti and ti+1. The map’s



origin is defined at the robot’s pose at time
ti.

R(p): A frame of reference for place p.
Op: The pose corresponding to (0,0,0) in R(p).
[y]p: The coordinates of the pose y in R(p).
Li: The robot’s pose at time ti in the coordinate

frame R(place(ti)).

Many of these concepts can be simply understood by
examining Figure 2.
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Fig. 2. The robot creates the local scrolling map m̃i when traveling
between places. Each place has its own frame of reference.

Along with these observed quantities that comprise τ ,
we define some non-local metrical quantities that will be
estimated.

λi: The location of Oplace(ti) in the reference
frame R(place(ti−1)) using the experience
from ti−1 to ti.

χp ≡ [Op]m: The pose of Op in the global
reference frame.

C. Building the Global Metrical Map

Our theory is based on the graphical model in Figure 3.
Note that it contains instances of the simple graphical
model (Figure 1) for the local metrical map associated with
each travel between two adjacent places (at the top of the
figure), plus one more for the global metrical map (at the
bottom).

The joint probability of the pose history x and the map
m can be decomposed as

P (x, m|z, u) = P (m|x, z, u) · P (x|z, u) (1)

which is just an application of the chain rule for probabil-
ities. This decomposition is valuable since P (m|x, z, u)
(map-building given accurate localization) can be com-
puted analytically and incrementally for popular map
types [20]. This means that only P (x|z, u) (localization)
must be handled carefully.

We wish to find a proposal distribution over x which
matches the posterior distribution well. First, to include
the effect of possible environmental topologies on pose
estimation, we integrate over the space of topologies
(marginalization).

P (x|z, u) =
∫

P (x|τ̄ , z, u) · P (τ̄ |z, u) dτ̄ (2)

Since the correct topology τ has been identified and is
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Fig. 3. Graphical model for building the global metrical map m using the
topological map as a skeleton. This model contains instances of the model
in Figure 1 for the local maps m̃i that scroll along path segments (top)
and for the global map m (bottom). Each local metrical map m̃i is built
from a segment of experience (zi,0, zi,1, . . . , zi+1,0, ui,1, . . . , ui+1,0)
that gives the probability distribution of the local displacements λi+1

along the corresponding path segments. The set λ of path-segment
displacements is used to estimate the place layout χ in the global reference
frame. This provides a highly accurate proposal distribution for the final
SLAM process that estimates the poses x0:N and the metrical map m in
the global frame of reference.

given, only one topology τ has nonzero probability.1

P (x|z, u) = P (x|z, u, τ) (3)

Now we can marginalize over the poses of places χ and
their estimated displacements λ.

P (x|z, u, τ) =
∫∫

P (x|χ, λ, z, u, τ)P (χ|λ, z, u, τ)·

P (λ|z, u, τ) dλdχ

(4)

We can simplify the first term of the integral by noting
λ = λ(z, u).

P (x|χ, λ, z, u, τ) = P (x|χ, z, u, τ) (5)

1This paper assumes that a unique topological map has been found
before global metrical mapping begins. However, the two processes could
be interleaved. During exploration, the number of plausible topologies
would be finite (and probably quite small). Thus, the integral in equation
(2) becomes a summation that could be feasible to evaluate even without
a unique topological map.



Similarly in the second term, we can drop the depen-
dence on z, u as these are incorporated in λ.

P (χ|λ, z, u, τ) = P (χ|λ, τ) (6)

This means Equation 4 can now be rewritten as

P (x|z, u, τ) =
∫

P (x|χ, z, u, τ)
∫

P (χ|λ, τ)P (λ|z, u, τ)dλdχ

(7)
We divide equation (7) into simpler components repre-

sented by the following probability functions.

F (λ) = P (λ|z, u, τ) (8)

G(χ) =
∫

P (χ|λ, τ)F (λ)dλ (9)

H(x) =
∫

P (x|χ, z, u, τ)G(χ)dχ (10)

Thus, we use the topological map τ to factor the
localization term P (x|z, u) = H(x) into three separate
components: the displacements between places (F (λ)); the
metrical layout of places in the global topological map
(G(χ)); and finally, the global metrical layout of the robot’s
pose trajectory (H(x)).

IV. CREATING A USABLE MAPPING ALGORITHM

The decomposition above describes how topological
information can be incorporated into the probability dis-
tribution for the global metrical map. We now discuss a
variety of methods for implementing a practical algorithm,
including our current implementation.

A. Building local metrical maps

Initially, our robot builds local metrical maps using
incremental maximum likelihood occupancy grids [13],
[15]. In contrast to the global maps that are commonly
constructed using SLAM, we constrain the map size to
prevent any problems with closing large loops. This does
not constrain the robot’s movement as the map scrolls with
the robot in the center of the grid. Additionally, the local
occupancy grid allows efficient local path planning to move
around obstacles while traveling between places.

B. Computing τ

The local scrolling metrical map is used by the robot
to determine when it is in a place. One requirement we
impose on places is that the environment possesses suffi-
cient structure to permit precise unambiguous localization
in the local reference frame. Currently, we use Voronoi
meet points to meet this criterion. The local map is also
used to extract local topologies of the place neighborhood.
This structure is used to build a unique, correct, global
topological map [6].

In addition to the symbolic place associations in τ , there
are reference frames for each place and pose estimates
Li. These are generated by saving images of m̃i−1 at
ti, choosing an origin for the frame of reference, and
relocalizing in the saved map on subsequent visits to the
same place.

C. Estimating F (λ)
Given the topology τ , we can compute F (λ). Note

that each λi corresponds to a single experience of a
path segment. Since closing large loops is not an issue
when considering a single path segment, traditional SLAM
methods may be employed to estimate F (λ) by decoupling
it into a set of independent probabilities.

F (λ) =
n∏

i=1

Fi(λi) (11)

where Fi(λi) = P (λi|Di−1, Li−1, Li) (12)
where Di = zi,0, . . . , zi,ni

, ui,1, . . . , ui+1,0 (13)

The distribution of λi is computed by composing three
uncertain vectors: from Oplace(ti−1) to xi−1,0; from xi−1,0

to xi,0; and finally from xi,0 to Oplace(ti).
2

Fi(λi) = P (λi = (Li−1 ⊕ [xi,0]m̃i−1 ⊕ (	Li))) (14)

A Rao-Blackwellized particle filter (RBPF) is an effec-
tive method for estimating [xi,0]m̃i−1 , the final robot pose
at the end of an individual path segment, since particle
depletion is not a major hazard along a single path segment.

Faster and simpler methods to estimate this distribution
are to use just the action model (at the cost of larger
variance) or incremental maximum likelihood mapping
methods (higher bias) to estimate the final robot pose. All
three methods result in a sample-based approximation of
λi. For our current implementation, we use an incremental
maximum likelihood method, and we model each Fi as a
Gaussian.

D. Estimating G(χ)
When F (λ) is represented as a Gaussian, an Extended

Kalman Filter is a simple way to approximate G(χ). The
idea is to consider the χp as landmarks which are observed
one at a time, by a robot taking actions λi between
observing the landmarks pi−1 and pi. This is essentially
the classic approach of Smith, Self, and Cheeseman [21].

We can also evaluate G(χ) for an arbitrary distribution
of F (λ). Note that for a particular value of χ, P (χ|λ, τ)
will only be non-zero for a single value of λ, namely when
each λi = (	χplace(ti−1)) ⊕ χplace(ti). Hence, P (χ|λ, τ)
is a Dirac delta function, and we get a simple expression
for G(χ).

G(χ) =
n∏

i=1

Fi((	χplace(ti−1))⊕ χplace(ti)) (15)

In our implementation, a greedy hill-climbing search
quickly converges to a local maximum of G(χ). In practice,
it appears that this local maximum is at or near the global
maximum χ because the starting poses are provided by
corrected odometry, given by the maximum likelihood
scrolling map.

2We use the notation of the compounding operator [21]. Given two
poses a and b, we write [b]a for the coordinates of b in the frame where
a defines the origin. Then, [c]a = [b]a ⊕ [c]b. We also define an inverse
operator, [b]a = 	[a]b.



In a more complicated environment, a sound estimation
technique such as Metropolis-Hastings sampling [22] could
be employed. Alternative Gaussian estimation techniques
exist that make different tradeoffs among efficiency and
soundness guarantees (CPE [23],SEIF [24], TJTF [25], and
CTS [9]).

E. Estimating H(x)

Given G(χ), we can estimate H(x) using an EKF. While
this approach is sound, it requires more computation than
necessary to produce a functional estimate of H(x).

Given χ, we first estimate xt, the robot’s pose at each
timestep. Each path experience Di is handled indepen-
dently. The robot’s pose estimates xt are generated in the
following way:

1) Fix xi−1,0 = χplace(i−1) ⊕ Li−1

and xi,0 = χplace(i) ⊕ Li.
2) Find the rigid transformations from [xi−1,0]m̃i−1 to

xi−1,0 and from [xi,0]m̃i−1 to xi,0

3) Interpolate between these endpoints in each dimen-
sion. This interpolation should be weighted by each
pose’s contribution to the total motion between the
places.

This produces a new set of points xi−1,k along the path.
To create a distribution, we attach some uncertainty to

each pose xt. This is accomplished by an ad-hoc action
model that creates an uncertainty that grows along a path
segment starting at xt−1,0 and then collapses at the next
place xt,0. The action model could be applied in both
directions and combined in order to obtain maximum
uncertainty midway through the path segment and less
uncertainty at the endpoints.

F. Creating a map m

Given H(x), we can create a detailed global metrical
map m using the mode of H(x). A common approach
is to use a local optimization technique to align the pose
positions with map estimates to converge upon a locally
optimal map [26], [27].

A more principled approach is to run a Rao-
Blackwellized particle-filtering algorithm, using H(x) as
the proposal: p(x, m|z, u) = p(m|x, z, u) ·H(x). However,
in Section V, we show that in practice the exact xt

values derived from the above interpolation adequately
approximates the mode of the posterior.

V. EXPERIMENT

We tested our preliminary implementations of F (λ),
G(χ), and H(x) in an office environment approximately
40 meters across (Figure 4). The environment contains 9
places and 6 paths (12 path segments) with 4 distinct local
topologies. Considering the 14 travel actions that linked
the 15 possible places, we actually close 4 loops of various
sizes. The data for this experiment is available online [28].

The robot used in this experiment was an iRobot Mag-
ellan Pro with a SICK PLS laser range finder used for
perception. Figure 5(a) shows the occupancy grid created

Fig. 4. CAD drawing of the test environment with multiple large-scale
loops. The numbers represent the sequence of the robot’s travel among the
9 places. This travel experience closes four large loops. Note that cubicles
are not actually arranged exactly as shown here, and the hallways have
glass walls into many offices.

when raw odometry is used. Along path segments, odome-
try is reasonably accurate, but larger errors occur on turns.
The corrected odometry, derived from the scrolling map,
can be viewed in a single global frame of reference in
Figure 5(b). Because the robot is localizing in a local
reference frame, it requires limited computation. The figure
shows how maximum likelihood methods correct odometry
locally but still have global error. Existing techniques that
close loops based on odometry can correct global errors
of this size; however, in larger environments the increased
error makes odometry based loop-closures impractical.

Local maps are saved on each occasion the robot enters
a place, making for a total of 15 local maps shown in
Figure 5(c). The topological mapper [6] uses the local
topology at places to enumerate possible maps. After the
14 travel actions, the topological mapper finds 46 possi-
ble configurations of the environment that are consistent
with the observed local topologies and the topological
axioms [10], [11]. The circumscription policy finds a single
minimal model, which is the correct topological map of the
environment, shown in Figure 5(d). Our implementation
can build the tree of models and determine the unique min-
imal map of this environment in ∼200 ms on the robot’s
Pentium III 450MHz processor. The topological mapper
processes data incrementally so it can run concurrently
with the exploration.

We use the corrected odometry from the scrolling map
to determine F (λ), which in turn leads to G(χ). Figure 6
shows the layout of the χ found by hill-climbing.

Using the χ we find through hill-climbing, we can
generate a set of xt that represent the robot’s poses in
the global frame of reference. Building a map using laser
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Fig. 5. (a) Occupancy grid created using the raw odometry sensor
measurements to specify xt. (b) Map built by the online, incremental
maximum-likelihood method used by the scrolling map to resolve un-
certainty locally. It is unable to resolve global uncertainty. (c) Local
metrical maps are built of each place during exploration. (d) A search
through topological maps consistent with the exploration finds the correct
structure.

readings, zt, at each xt (from H(x)), we get Figure 7.
Clearly, using this as a proposal distribution for any state-
of-the-art SLAM algorithm will yield better results than
when using raw odometry or “corrected” odometry from
maximum likelihood maps.

VI. RELATED WORK

Most related work has been discussed previously, espe-
cially in Section II.

Atlas [8] and CTS [9] are the current mapping systems
that are most similar to our work. They create local
landmark-based maps with different local frames of refer-
ence and overlapping sets of landmarks. The topological
map is implicit in the overlap between adjacent local
maps. They essentially maintain a single topological map
hypothesis, with a bias against false-positive place matches
(and hence toward non-closing loops). By contrast, we
exploit the conciseness of the topological map represen-
tation to maintain all possible topological map hypotheses,
evaluating them for simplicity and (in future work) global
metrical plausibility. The CTS algorithm for inferring the
global relations among the local maps [9] is an option for
computing the global place layout G(χ) in our framework.

Konolige [23] takes a hierarchical approach where only
loop closures are considered to be places. This approach
generates a map by maintaining Gaussian constraints be-
tween poses. Since constraints exist only between nearby
poses, the graph of constraints is sparse. This sparsity is
leveraged by collapsing sequences of constraints between
places, estimating the place layout, and then stretching
the intermediate poses between the places. This mirrors
the construction of our functions F , G, and H quite

Fig. 6. Global layout χ of the topological map. Built after hill-climbing
to find a good sample in G(χ). The local maps are the maps m̃i at
topological places. Small orientation errors at the places are smoothed as
shown in Figure 7 after the poses xt are interpolated along each path
segment between the place poses.

closely. His work gains significant computational efficiency
by restricting the error model to a Gaussian. The main
limitation is that loop closures are made greedily and thus
can fail.

Thrun, et al. [27] also take a hierarchical approach to
building a global metrical map. They define a small set of
indistinguishable “significant places” (by having a human
operator press a button). Odometry and sensor data is first
used to obtain an approximate layout of the coarse-grained
map of “significant places” (essentially G(χ)). This in-
cludes estimating the relative likelihood of different place-
match hypotheses. After this, a fine-grained map is created
using this skeleton as a starting point. However, their
method implicitly computes a maximum-likelihood loop-
closure hypothesis simultaneously with estimating G(χ),
making the map vulnerable to the failure of that hypothesis.
By contrast, we explicitly compute all possible topological
maps, to be able to evaluate them for consistency with
topological axioms before ordering the survivors according
to preference criteria of simplicity and probability.

VII. CONCLUSIONS

Accurate global metrical maps can be created in a
scalable way by factoring the robot’s uncertainty into local
metrical uncertainty (which can be handled by existing
SLAM methods), global topological uncertainty (which
can be handled by recently developed topological mapping
methods), and global metrical uncertainty. Global metrical
pose uncertainty can then be handled in three stages, first
by using local metrical models to estimate the displace-
ment between topological places, second by estimating the
global layout of the places, and third by interpolating the
poses along each path segment. This defines a very accurate
proposal distribution H(x) on the trajectories. Figure 7



Fig. 7. Map built after hill-climbing to find a good sample in G(χ), then
scaling corrected odometry (from Figure 5(b)) along each path segment.
The estimated positions of the robot are shown as well.

shows that a map built on a trajectory drawn from this
distribution is highly accurate.

While there are certainly many improvements to be
made in the component metrical mapping technologies, we
believe that the greatest research gains are to be found from
improvements in topological mapping methods, including
(a) better constraints and preference criteria for searching
the space of all topological maps, and (b) the development
of topological mapping methods appropriate to different
types of environments.

ACKNOWLEDGEMENTS

This work has taken place in the Intelligent Robotics Lab at
the Artificial Intelligence Laboratory, The University of Texas
at Austin. Research of the Intelligent Robotics Lab is supported
in part by the Texas Higher Education Coordinating Board,
Advanced Technology Program (Grant 003658-0656-2001), and
by an IBM Faculty Research Award.

REFERENCES

[1] J.-S. Gutmann and K. Konolige, “Incremental mapping of large
cyclic environments,” in International Symposium on Computational
Intelligence in Robotics and Automation (CIRA’99), 1999, pp. 318–
325.

[2] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM
2.0: an improved particle filtering algorithm for simultaneous lo-
calization and mapping that provably converges,” in Proc. 18th
Int. Joint Conf. on Artificial Intelligence (IJCAI-03). Morgan-
Kaufmann Publishers, 2003, pp. 1151–1156.

[3] A. Eliazar and R. Parr, “DP-SLAM: Fast, robust simultaneous
localization and mapping without predetermined landmarks,” in
Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03).
Morgan Kaufmann, 2003, pp. 1135–1142.

[4] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “An efficient
FastSLAM algorithm for generating maps of large-scale cyclic en-
vironments from raw laser range measurements,” in Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS-03), 2003.

[5] R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan, “The
unscented particle filter,” Cambridge University Engineering Depart-
ment, Tech. Rep. CUED/F-INFENG/TR 380, 2000.

[6] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli,
“Local metrical and global topological maps in the hybrid spatial
semantic hierarchy,” in IEEE Int. Conf. on Robotics & Automation
(ICRA-04), 2004, pp. 4845–4851.

[7] B. J. Kuipers, “The Spatial Semantic Hierarchy,” Artificial Intelli-
gence, vol. 119, pp. 191–233, 2000.

[8] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and
S. Teller, “An Atlas framework for scalable mapping,” in IEEE
International Conference on Robotics and Automation, 2003.

[9] J. Leonard and P. Newman, “Consistent, convergent, and constant-
time SLAM,” in Proc. 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI-03). Morgan Kaufmann, 2003, pp. 1143–1150.

[10] E. Remolina and B. Kuipers, “Towards a general theory of topolog-
ical maps,” Artificial Intelligence, vol. 152, pp. 47–104, 2004.

[11] F. Savelli and B. Kuipers, “Loop-closing and planarity in topological
map-buiding,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2004.

[12] B. Kuipers and P. Beeson, “Bootstrap learning for place recogni-
tion,” in Proc. 18th National Conf. on Artificial Intelligence (AAAI-
2002). AAAI/MIT Press, 2002, pp. 174–180.

[13] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,”
AI Magazine, pp. 61–74, Summer 1988.

[14] J. J. Leonard and H. F. Durrant-Whyte, Directed Sonar Sensing for
Mobile Robot Navigation. Boston: Kluwer Academic Publishers,
1992.

[15] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping,” in
IEEE International Conference on Robotics and Automation. San
Francisco, CA: IEEE, 2000.

[16] H. Choset and K. Nagatani, “Topological simultaneous localization
and mapping (SLAM): toward exact localization without explicit
localization,” IEEE Trans. on Robotics and Automation, vol. 17,
no. 2, pp. 125–137, April 2001.

[17] B. J. Kuipers and Y.-T. Byun, “A robot exploration and mapping
strategy based on a semantic hierarchy of spatial representations,”
Journal of Robotics and Autonomous Systems, vol. 8, pp. 47–63,
1991.

[18] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic ex-
ploration as graph construction,” IEEE Trans. on Robotics and
Automation, vol. 7, no. 6, pp. 859–865, 1991.

[19] G. Dudek, P. Freedman, and S. Hadjres, “Using local information in
a non-local way for mapping graph-like worlds,” in Proc. 13th Int.
Joint Conf. on Artificial Intelligence (IJCAI-93), 1993, pp. 1639–
1645.

[20] K. Murphy, “Bayesian map learning in dynamic environments,” in
Neural Information Processing Systems (NIPS-99), 1999.

[21] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous robot vehicles, I. J. Cox
and G. T. Wilfong, Eds. New York: Kluwer Academic Publishers,
1990, pp. 167–193.

[22] D. J. C. MacKay, Learning in graphical models. MIT Press, 1998,
ch. Introduction to Monte Carlo methods, pp. 175–204.

[23] K. Konolige, “Large-scale map-making,” in Proc. 19th National
Conf. on Artificial Intelligence (AAAI-2004), 2004.

[24] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse ex-
tended information filters,” April 2003, submitted for journal pub-
lication.

[25] M. A. Paskin, “Thin junction tree filters for simultaneous local-
ization and mapping,” in Proc. 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI-03). Morgan Kaufmann, 2003, pp. 1157–1164.

[26] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, vol. 4, pp. 333–349,
1997.

[27] S. Thrun, S. Gutmann, D. Fox, W. Burgard, and B. J. Kuipers, “In-
tegrating topological and metric maps for mobile robot navigation:
A statistical approach,” in Proc. 15th National Conf. on Artificial
Intelligence (AAAI-98). AAAI/MIT Press, 1998, pp. 989–995.

[28] A. Howard and N. Roy, “The robotics data set repository (Radish),”
2003. [Online]. Available: http://radish.sourceforge.net/


