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Abstract

We describe how a physical robot can learn about objects
from its own autonomous experience in the continuous world.
The robot identifies statistical regularities that allow it to rep-
resent a physical object with a cluster of sensations that vi-
olate a static world model, track that cluster over time, ex-
tract percepts from that cluster, form concepts from similar
percepts, and learn reliable actions that can be applied to ob-
jects. We present a formalism for representing the ontology
for objects and actions, a learning algorithm, and the results
of an evaluation with a physical robot.

Introduction
We describe how a physical robot can learn about ob-
jects from its own autonomous experience in the continuous
world. The robot develops an integrated system for tracking,
perceiving, categorizing, and acting on objects. This is a key
step in the larger agenda of developmental robotics, which
aims to show how a robot can start with the “blooming,
buzzing confusion” of low-level sensorimotor interaction,
and can learn higher-level symbolic structures of common-
sense knowledge. We assume here that the robot has already
learned the basic structure of its sensorimotor system (Pierce
& Kuipers 1997) and the ability to construct and use lo-
cal maps of the static environment (Thrun, Burgard, & Fox
2005).

A learning robot developing knowledge about objects lies
at the intersection of several research areas in AI, includ-
ing autonomous robotics, machine learning, and knowledge
representation. This work [5 is answering part of the fun-
damental question of how human-level intelligence might
arise in an autonomous learning robot exploring a com-
plex continuous world. Starting with uninterpreted, contin-
uous, high-dimensional sensorimotor experience, the learn-
ing robot generates knowledge representations that support
symbolic inference and goal-driven behaviors. The learning
process is made more challenging by the requirement that
the robot must operate in real-time with limited resources
(power, computation, and training data).

Learning about objects supports multiple research direc-
tions and is not merely an extension to robot map-building.
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Knowledge about objects has been used in several studies
as the foundation for learning to communicate with lan-
guage (Bloom 2001; Steedman 2002; Steels & Kaplan 2001;
Yu, Ballard, & Aslin 2003; Roy & Pentland 2002). Object
representations have also been used to apply symbolic in-
ference and planning to physical robots (Hart, Grupen, &
Jensen 2005). Algorithms that allow a robot to reason and
interact with objects as readily as robots can represent and
move through space will open up new domains for intelli-
gent robots.

Objects and the actions they afford are intimately related,
so in many ways their symbolic descriptions must be learned
together. Objects are first separated from the background by
identifying, grouping, and tracking elements of the sensory
stream that are not adequately explained by the static back-
ground model. In many cases, these tracked objects have
consistent shapes, which can be learned from the regulari-
ties in experience. A set of similar shapes forms a shape
concept, and a learned concept can be used to generalize
from past experience. Actions apply to objects, depend on
context, and have reliable effects. The robot learns actions
by using “motor babbling” to explore the space of contexts,
motor signals, and effects, searching for extended control
laws with relatively reliable effects. This learning process
creates perceptual, structural, and functional representations
of the objects. In experiments with a physical mobile robot,
we demonstrate and evaluate this learning process.

In the following sections, we describe the formalism for
representing the ontology for objects and actions, the algo-
rithm for learning the ontology from experience, the evalua-
tion with a physical robot, and related work.

Components of the Object Ontology
The ontology of objects is an abstraction of the low level
continuous experience of the robot.

Continuous System
From an experimenter’s perspective, a robot and its environ-
ment can be modeled as a dynamical system:

xt+1 = F (xt, ut)
zt = G(xt)
ut = Hi(z0, . . . , zt)

(1)

where xt represents the robot’s state vector at time t, zt is the
raw sense vector, and ut is the motor vector. The functions
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F and G represent relationships among the environment, the
robot’s physical state, and the information returned by its
sensors, but these functions are not known to the robot itself.

The robot acts by selecting a control law Hi such that
the dynamical system (Equation 1) moves the robot’s state x
closer to its goal, in the context of the current local environ-
ment. When this control law terminates, the robot selects a
new control law Hj and continues onward.

The raw sensorimotor trace is a sequence of sense and
motor vectors.

〈z0, u0〉, 〈z1, u1〉, · · · 〈zt, ut〉, · · · (2)

Symbolic Abstraction
We describe our object ontology by a tuple,

〈Tra, Per, Con,Act〉 (3)

consisting of trackers (Tra), perceptual functions (Per),
concepts (Con), and actions (Act).

An object, considered as part of the agent’s knowledge
representation, is a hypothesized entity that accounts for
a spatio-temporally coherent cluster of sensory experience.
Note that the word “object”, when used in this sense, does
not refer to a thing in the external world, but to something
within the agent’s knowledge representation that helps it
make sense of its experiences.

A tracker τ ∈ Tra names two corresponding things:
1. the active process that tracks a cluster of sensory experi-

ence as it evolves over time, and
2. the symbol in the agent’s knowledge representation that

represents the object (i.e., the hypothesized entity that ac-
counts for the tracked cluster).
A perceptual function f is used to generate the percept

ft(τ) which represents a property of τ at time t. The per-
cept is formed from the sensory experience by the tracker
τ . Examples of simple percepts include the distance, loca-
tion, and color of a particular object at a particular time. A
more complex percept is the shape of an object, which can
be assembled from multiple observations over time.

For a particular perceptual function f ∈ Per, a concept
σf ∈ Con is an implicitly defined set of percepts similar to
a prototype percept q′ = f ′t(τ

′),

σf [q′] = {q | d(q, q′) ≈ 0}, (4)

where d is a distance function (an example is given in Equa-
tion 13). For example, a shape concept is a set of shape per-
cepts that are similar to a prototype shape percept. Figure 4
shows ten shape models, which are percepts obtained from
the robot’s sensory experience with the ten depicted objects.
These individual percepts belong to ten concepts, each cor-
responding to percepts obtained from the same real-world
object on different occasions.

An action α ∈ Act is specified by a description D of its
effects on the object’s percepts, the context C for the action
to be reliable, and an associated control law H .

α = 〈D,C,H〉 (5)

The next section describes how the robot can learn the
components of this ontology.

Learning Object Representations
One goal of developmental robotics is for robots to be ca-
pable of learning both incrementally and without extrin-
sic rewards. Incremental acquisition allows the robot to
learn from novel experience throughout its lifetime. The
learned representations should also be generated through an
autonomous, internal process. The following sections de-
scribe how the components of the ontology can be learned
by a robot while satisfying these constraints from develop-
mental robotics.

Formation of Trackers
Using the method from (Modayil & Kuipers 2004), a mo-
bile robot can create trackers for movable objects. The robot
senses the environment with a laser range finder. Each ob-
servation from the sensor is an array of distances to obstacles

zt : Θ → R

as shown in Figure 1(a).
The robot uses these observations to construct an occu-

pancy grid map of space as shown in Figure 1(b). The occu-
pancy grid is constructed with the assumption that the world
is static (Thrun, Burgard, & Fox 2005). In the occupancy
grid, local space is divided into grid cells, each of which has
some probability of being occupied or clear, and a SLAM
algorithm updates these probabilities using sensor observa-
tions. In addition to this standard SLAM process, the algo-
rithm marks each grid cell that is ever believed to be clear
with high confidence.

When a physical object moves into a previously clear re-
gion in the map, the sensor readings that fall on the object vi-
olate the map’s static world explanation. These readings are
clustered spatially to define snapshots. A snapshot S of an
object is a cluster of these dynamic range sensor readings in
the map. An example of a snapshot is shown in Figure 1(b).
Each snapshot is characterized by a circle that encompasses
all the sensor readings.

Finally, a tracker τ is created by forming associations
between snapshots over time. The support of a tracker,
Suppt(τ), is given by the sensor indices of the points in the
snapshots, and is represented as a subset of the sensor in-
dices Θ. The tracker associates snapshots using their bound-
ing circles. The tracker is terminated when clear successor
snapshots do not exist.

Formation of Percepts
We define a small set of perceptual functions f ∈ Per for
the ontology. Each perceptual function gives rise to the per-
cept ft(τ) for a given tracker τ at a time t. The simplest per-
cept is the object’s support (Suppt(τ)). Localization in the
occupancy grid is used to estimate the location and heading
of the robot (loct(ρ) and headt(ρ)), which are non-object
percepts.

Some percepts can be defined as functions of the object
support. For this work we consider two such functions, but
a larger set of functions could be generated autonomously
using a constructive induction process (Shen 1990).

anglet(τ) = mean{i | i ∈ Suppt(τ)} (6)
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Figure 1: (a) The sensor measures distances to obstacles,
with readings taken at every degree. (b) By projecting the
readings into an occupancy grid, the robot is able to identify
readings from dynamic obstacles. A snapshot is formed by
spatially clustering these readings, and forming a bounding
circle.

distt(τ) = min{zt(i) | i ∈ Suppt(τ)} (7)
Another percept is the object’s shape. A shape is repre-

sented with a set of situated views of the object, where each
situated view is a tuple with the robot location, the robot
heading, the object support and the sensor observation from
a set of previous time steps I .

Shapet(τ)={〈loct′(ρ), headt′(ρ), Suppt′(τ), zt′〉 | t′ ∈ I}
(8)

When a tracker’s shape matches a known shape (described
in the next section), the robot is also able to generate per-
cepts for the object’s location and heading (loct(τ) and
headt(τ)) in the map.

Formation of Concepts
Given a temporal sequence of percept values,

. . . , ft−1(τ), ft(τ), ft+1(τ), ...

with a distance function d, a percept is a candidate for defin-
ing a concept if

∀k > 0, d(ft(τ), ft+k(τ)) ≈ 0. (9)

Thus, concepts are formed by creating clusters from object
percepts that are stable in time. Concepts facilitate general-
ization from past experience.

Using a particular perceptual function f ∈ Per, a concept
σf is defined by Equation 4 to be a set of percepts that are
near the prototype percept q′ = ft′(τ ′) (within the threshold
η).

σf [q′] = {q | d(q, q′) ≤ η} (10)
The robot first checks an observed percept ft(τ) to see if it
is a member of a known concept. When the percept does not
belong to a known concept, a new concept is generated from
the percept.

We now describe how a concept is formed from a shape
percept. First, structurally consistent shapes are created by
minimizing violations of geometric constraints between the
situated views in the shape percept. Figure 3 shows how er-
ror vectors can be defined between situated views. Using

(a) (b)

Figure 2: (a) A scene with the learning robot observing a
physical object. (b) The robot builds a structured descrip-
tion of its local environment consisting of a static map, the
learning robot, and the recognized object.

three error vectors defined in the figure, we define an incon-
sistency measure for an object shape A,

µ(A) =
∑
a∈A

∑
b∈A

||eL,a,b||2 + ||eR,a,b||2 + ||eI,a,b||2. (11)

Minimizing this error generates consistent shapes, as shown
in Figure 4. The minimization is performed by numerical
optimization.

We denote the rigid transformation of a shape B (defined
as a set of tuples in Equation 8) by offset vectors for the
location and heading (λ and γ respectively) by

Tλ,γ(B) = {〈l + λ, h + γ, S, z〉 | 〈l, h, S, z〉 ∈ B}. (12)

The distance between two shapes is then defined to be the
minimum error over all rigid transformations.

d(A,B) = min
λ,γ

µ(A ∪ Tλ,γ(B)) (13)

This distance function is used by the robot to create the
shape concepts shown in Figure 3 (with η = .02 in Equa-
tion 10).

New percepts for the object location and heading are also
defined using this distance function. Given an object shape
A, the robot estimates its pose in the object frame of refer-
ence, by searching for a robot location and heading that are
consistent with the tracker τ ,

λ′, γ′ = arg min
λ,γ

d(A, {〈λ, γ, Suppt(τ), zt〉}). (14)

Once the robot knows its location and heading in both the
reference frame of the map and the reference frame of the
object, the robot can estimate the location loct(τ) and orien-
tation headt(τ) of the object in the map.

Formation of Actions
Thus far, the robot does not have mechanisms for interacting
with the object. To address this need, we now describe how
the robot learns actions that reliably change individual object
properties. Our definition of an action differs from STRIPS
actions (with complete declarative preconditions and post-
conditions), and reinforcement learning actions (with no
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Figure 3: (a) The shape percept is a set of situated views
of the physical object. A single situated view consists of
the robot’s pose, the tracker’s support and the sensory ob-
servation. (b) The object is bounded by rays on the left
and right. (c) The sensor readings from one situated view
must fall within the bounding rays from all other situated
views. (d) Exterior error vectors are defined from violations
of this geometric constraint. A left error vector (eL,a,b) is
shown here and a right error vector (eR,a,b) is defined simi-
larly (Modayil & Kuipers 2006) (e) An interior error vector
(eI,a,b) is defined from sensor readings that come from the
inside of an object. (f) A consistent shape description is cre-
ated by minimizing the lengths of these error vectors.

declarative description). Our definition of an action (Equa-
tion 5) possesses a partial description of an action’s postcon-
ditions, along with complete declarative preconditions. The
partial description of effects simplifies learning, but it can
limit the reliability of plans.

Actions facilitate planning by characterizing the behavior
of a control law. To sequence actions, the planner must know
the preconditions of a control law and its effects. We form
actions by learning control laws whose effects and precon-
ditions have simple descriptions.

The robot learns actions by observing the effects of per-
forming random motor babbling in the presence of the ob-
ject. Motor babbling is a process of repeatedly performing a
random motor command for a short duration. One strength
of the action learning approach we present here is that the
robot is able to use this goal-free experience to form actions
that can be used for goal directed planning. The robot per-
forms self-supervised learning, where the observations in
the training data are labeled using the qualitative changes
that occur to an individual percept. The learned actions
can be used to achieve goals by reducing the difference be-
tween the robot’s current perception and the desired goal, as
demonstrated in the evaluation. Thus goals are not required
while the actions are being learned but they are required for
planning and execution.
Action Definition An action is defined in Equation 5 as a
tuple with a description, a context and a control law. These
components are now formally defined.

Figure 4: A set of physical objects with their learned shapes.

Our action learning algorithm is restricted to perceptual
functions fj which are either vector-valued or not perceived.

fj,t(τ) ∈ <nj ∪ {⊥}. (15)

In particular, the robot does not learn an action to change the
shape of an object, as a shape percept represented by a set.
The change in this perceptual function is denoted by δ,

δj,t = fj,t+1 − fj,t. (16)

The description of an action,

D = 〈j, b, qb〉,

consists of the name j of the perceptual function to be con-
trolled, the qualitative behavior b,

b ∈ {up, down} ∪ {dir[fk] | fk ∈ Per}, (17)

and the quantitative effect qb. Two qualitative behaviors are
defined for a scalar perceptual function: going up and going
down. The qualitative behavior dir[fk] for a vector func-
tion fj means that fj changes in the direction of fk. The
quantitative effect for scalars is bounded by ε,

qup(δt) ≡ δt > ε, qdown(δt) ≡ −δt > ε.

The quantitative effect for vectors is bounded by ε and ε′,

qdir[fk](δt) ≡ ||δt|| > ε ∧ 〈δt, fk,t〉
||δt|| · ||fk,t||

> 1− ε′.

The context of an action is represented as a conjunction
of inequality constraints on scalar perceptual functions:

(xRc) where x ∈ {fk}, R ∈ {≤,≥}, c ∈ <. (18)

Finally, the control law of an action is a function H from
a percept to a motor output. In this work we restrict our
attention to constant functions.



Learning Algorithm Learning an action that satisfies a
qualitative description amounts to defining the components
of the action as defined in Equation 5. First, to complete the
description, a threshold ε is selected from the observed val-
ues of δ. Next, the quantitative effect is used to search for
constraints on the perceptual context and motor output that
reliably induce the desired behavior. Finally, the constraints
are used to define a perceptual context and a control law.

For each perceptual function, a threshold ε is chosen by
running a Parzen window with a Gaussian kernel over the
observations of δ (or ||δ|| for vector percepts). The thresh-
old ε is set to the first local minimum above zero if it exists,
otherwise it is set to a value one standard deviation from the
mean. The value of ε′ for vector percepts is set by optimiza-
tion with the context in the utility defined below.

The threshold ε is used to define qb, and qb is used to
label the examples in the training data. The learning al-
gorithm uses the labeled examples to search for constraints
on the percepts and motor outputs that generate the desired
behavior. The constraints are represented by axis aligned
half-spaces, specified as inequalities over the variables of
the scalar perceptual functions (fk) and the components of
the motor vector (πk(u)).

To find the perceptual constraints C and motor constraints
M , we define a set of measures for the precision (µ0), recall
(µ1), and repeatability (µ2). The utility function U is their
geometric mean. These functions are defined using the em-
pirical probability (Pr) as measured in the training data.

µ0 = Pr(qb(δt) | zt ∈ C ∧ ut ∈ M)
µ1 = Pr(zt ∈ C ∧ ut ∈ M | qb(δt))
µ2 = Pr(zt+1 ∈ C | zt ∈ C ∧ ut ∈ M)
U = (µ0µ1µ2)

1
3

(19)

Constraints are added incrementally to greedily optimize the
utility function. The process terminates when adding a con-
straint provides no significant improvement to utility. The
newly generated action is discarded if the final utility mea-
sure is low. Otherwise, the learned context C becomes part
of the action.

A constant control law is defined from M .

H(zt) = m = arg min
u∈M

||u|| (20)

The constant control law is enhanced in two ways. The first
is to account for perceptual latencies by predicting the cur-
rent value of the percept. The second is to scale the motor
output by the minimum effect ε, when the robot wants to
change a percept to a goal value g.

s(g, τ) = min(1, ||E[fk,t(τ)]− g||/ε) (21)

H(zt) = s(g, τ) ·m (22)
Putting the learned components together creates the new

action α = 〈D,C,H〉.

Training Scenario The above algorithm was used to learn
actions. The robot first gathered observations by randomly
selecting a motor command and executing it for a fixed du-
ration. The motor commands for drive and turn (linear and
angular velocities) were selected from the following set.

{−0.2, 0.0, 0.2}m/s× {−0.4, 0.0, 0.4}rad/s

Action I Action II Action III
Description :
angle(τ )
up
δ > 12

Context:
∅

Control Law:
drive = 0.0 m/s
turn = -0.4 rad/s

Description :
dist(τ )
down
-δ > .19

Context:
dist ≥ 0.43
angle ≤ 132
angle ≥ 69
Control Law:
drive = 0.2 m/s
turn = 0.0 rad/s

Description :
loc(τ )
dir[head(ρ)]
||δ|| > .21,
ε′ = .13
Context:
dist ≤ 0.22
angle ≥ 77
angle ≤ 112
Control Law:
drive = 0.2 m/s
turn = 0.0 rad/s

Figure 5: The above actions were learned by the robot from
its observations of the effects of motor babbling. These ac-
tions cause changes in (I) the angle to the object (by turn-
ing), (II) the distance to the object (by driving), and (III) the
location of the object in the map (by pushing).

The data was gathered in different environmental configura-
tions, where the experimenter changed the environment be-
tween trials. Running the above algorithm generated several
useful actions, examples of which are shown in Figure 5.
These actions may be thought of as simple affordances of
the object, which the robot currently assumes will always
work. However, the action for pushing an object could fail
for heavy objects. In the future, the robot could potentially
create new perceptual functions to predict which objects are
not pushable.

Representing and Achieving Goals Part of the value of
the learned representations is that it provides a language for
representing goals. The high-level task given by “Place a
recycle bin in the center of the room” can be represented
as a goal state with a tracker whose shape corresponds to a
recycle bin and whose location is in the center of the room.
The robot can set goals and measure its progress towards
achieving them. The learned actions are used by a planner to
achieve goals by sequentially reducing differences between
the robot’s current percepts and the goal.

To achieve goals, the constraints provided in an action’s
context are used with backchaining to create reactive plans
to change a percept to a goal value. Attempting to satisfy
the preconditions sequentially can fail when more than one
precondition is not satisfied. In this situation, the robot sim-
ulates observations from multiple poses to find a pose from
which the perceptual preconditions are satisfied. The robot
moves to this pose and then executes the desired action.

Evaluation
We have described algorithms that generate object repre-
sentations for robots. Now we demonstrate the utility of
these representations on our mobile robot. Our experimen-
tal platform is a Magellan Pro robot with a laser rangefinder
running with Player drivers (Gerkey, Vaughan, & Howard
2003). The laser rangefinder provides a planar perspective
of the world, from approximately 30cm above the ground.
We evaluated the learned ontology on two tasks. The first
is a classification task that tests the robot’s object recogni-
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Figure 6: The graph of classification accuracy shows that
the robot’s internal object concepts correspond well with the
physical objects. The error bars show standard deviations.

Behavior Distance Accuracy Time (s)
Face 45 ◦ 7.4◦ (σ=3) 4.38 (σ= .51)
Approach 1.8 m .04 m (σ= .02) 21.1 (σ=5.7)
Move 2.0 m .09 m (σ= .04) 258 (σ=138)

Table 1: The robot used the learned actions to perform three
tasks: facing the object, approaching the object and moving
the object. The columns indicate the initial distance to the
goal, the final distance from the goal and elapsed time. Ten
runs were performed for each task, and the results are shown
with the standard deviations. All trials succeeded with the
robot accurately achieving its goals. The time to task com-
pletion has a high variance since the robot keeps trying until
it succeeds.

tion capability. The second task tests the robot’s ability to
achieve goals.

Classification
We evaluated the robot’s ability to perform an object classi-
fication task. The robot modeled the shape of each of the ten
objects in Figure 4 on five separate occasions. The classifi-
cation task is to predict the object’s true identity as provided
by the experimenter. The robot performed instance based
learning, associating a label to a concept from its defin-
ing training example. The results from a five fold stratified
cross validation experiment are shown in Figure 6. The re-
sults show that supervised learning using the autonomously
learned shape concepts is effective for this task. A perfect
learner would achieve 100 percent accuracy after ten exam-
ples (one example for each class), while random guessing
would only achieve 10 percent accuracy.

Interaction Tasks
To evaluate the learned actions, we measured the ability
of the robot to perform three tasks: facing the object, ap-
proaching the object and moving the object to a location.
These tasks were represented by setting goal values for the
angle(τ), dist(τ) and loc(τ) percepts respectively. The
starting state for the three tasks was approximately the

(a) (b)

Figure 7: (a) The robot pushes a recycling bin towards a goal
location. (b) The shaded shapes show the robot’s percepts
for itself and the object. The starting poses of the robot and
the object are shown unshaded, and the goal location for the
object is indicated by ×.

same (the object was placed at different orientations), and is
shown in Figure 7. The desired final states for the tasks were
to have the object in front of the robot (|angle−90| < 10), to
have the robot near the object (dist ≤ 1.0), and to have the
object at the goal location in the figure (||loct(τ)−(3, 2)|| <
.15 m). Ten runs were performed for each task, and the ex-
perimenter physically verified task completion for each run.
The results in Table 1 show that the robot is able to achieve
these goals reliably and accurately. Figure 7 shows an ex-
ample of the robot pushing the object to a goal.

Related Work
Work in psychology has explored the development of object
representations in children. Work by Spelke (1990) has stud-
ied how children develop from using motion as a indicator
of object unity to using other cues. Work by Mandler (2004)
has explored how concepts might form in more general con-
ditions. Work by Bloom (2001) has studied how objects and
concepts are used to quickly learn a language.

Previous work in developmental robotics (Pierce &
Kuipers 1997; Philipona, O’Regan, & Nadal 2003; Choe
& Smith 2006) has shown how the structure of an agent’s
sensory and motor systems can be learned. A key method
in this process is the projection of high-dimensional ob-
servations into a low-dimensional space. Further advances
include Isomap (Tenenbaum, de Silva, & Langford 2000)
which identifies manifolds in the data, and the use of infor-
mation distance (Olsson, Nehaniv, & Polani 2006).

There is less work studying how a robot can learn ob-
ject representations with actions. Work by Stoytchev (2005)
has a robot learning the affordances of simple tools. Other
work (Hart, Grupen, & Jensen 2005) demonstrates how a
robot can learn the preconditions for actions. Natale (2004)
has shown how motor babbling with a robot arm can be used
to learn how to move objects. The work in these papers use
stationary perception, whereas our work demonstrates the
use of mobile perception.

Related work has also explored object recognition and ac-
tion but not in conjunction. Work on object recognition has
used mapping techniques (Biswas et al. 2002), and image-
based models (Li, Fergus, & Perona 2003). Actions have



been learned in simulated symbolic domains (Benson 1995;
Zettlemoyer, Pasula, & Kaelbling 2005). These approaches
provide methods for learning actions when an object model
is already available, but do not address how continuous ac-
tions can be learned on a mobile robot.

Discussion and Future Work
The above work shows how a robot starting with an under-
standing of space can construct object representations. Mul-
tiple representations are acquired, which can be interpreted
as perceptual, structural and functional models. The object
snapshots and trackers form perceptual representations. The
shape model provides a structural representation. A func-
tional model is available through the learned action of push-
ing: this action could be used to define the pushing affor-
dance of an object. By integrating these different aspects of
objects, the learned representations support perception, geo-
metric inference, and goal-directed planning.

These representations are part of an ontology of ob-
jects grounded in the robot’s sensorimotor experience. The
learned ontology creates object trackers of individual ob-
jects, forms percepts from observations, forms concepts
to generalize from past experience, and learns actions to
change the perceptual properties of an object. Using this
ontology, the physical robot is able to recognize objects and
plan with learned actions to achieve goals. The learned on-
tology is simple and lays the foundation for learning more
complex object models. In future work, the learned object
representations may be used to extend a robot’s ability to
understand and interact with its environment.
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