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Abstract

In this paper, we present a novel approach to recog-
nizing human actions from different views by view knowl-
edge transfer. An action is originally modelled as a bag of
visual-words (BoVW), which is sensitive to view changes.
We argue that, as opposed to visual words, there exist some
higher level features which can be shared across views and
enable the connection of action models for different views.
To discover these features, we use a bipartite graph to
model two view-dependent vocabularies, then apply bipar-
tite graph partitioning to co-cluster two vocabularies into
visual-word clusters called bilingual-words (i.e., high-level
features), which can bridge the semantic gap across view-
dependent vocabularies. Consequently, we can transfer a
BoVW action model into a bag-of-bilingual-words (BoBW)
model, which is more discriminative in the presence of view
changes. We tested our approach on the IXMAS data set
and obtained very promising results. Moreover, to fur-
ther fuse view knowledge from multiple views, we apply a
Locally Weighted Ensemble scheme to dynamically weight
transferred models based on the local distribution structure
around each test example. This process can further improve
the average recognition rate by about 7%.

1. Introduction
Recognizing human actions from videos has received

considerable attention in computer vision during the past
few years. The ever growing interest in characterizing hu-
man actions is in part due to the increasing number of real-
world applications such as action centric video indexing and
retrieval, human-computer interaction, activity monitoring
in surveillance scenarios, and so on. However, it remains
challenging to recognize actions from different views.

In general, human actions can cause spatiotemporal pat-
terns of appearance or motion that can be in turn used for ac-
tion recognition in videos. Based on this observation, many
visual representations have been developed for recognizing
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Figure 1. Exemplar frames from IXMAS multi-view data set. Each row
shows one action viewed from different angles.

actions. Some leading representations include space-time
pattern templates [3, 27], shape features [36, 24, 7, 19], in-
terest point based representations [15, 26, 29, 20], learned
geometrical models of the human body parts [12], and mo-
tion/optical flow patterns [1, 25, 36]. Although most of fea-
tures can be quite powerful in recognizing actions from sim-
ilar views, their performance tend to dramatically decrease
as the viewpoint changes. One reason for this is that the
same action may look very different when observed from
different angles (as shown in Fig. 1) and consequently the
action models learned using low-level features become less
discriminative. One possible solution is to maintain a sep-
arate classifier for each viewpoint. However, this may be
impractical as it is difficult to acquire sufficient labeled ex-
amples for each view and it becomes infeasible as the num-
ber of action categories increases. Instead, we argue that it
is more flexible to transfer action knowledge across views
by exploring the connections between view-dependent fea-
tures. In this work, we present a novel approach to discover-
ing these connections for transferring action models across
two views. This process is illustrated in Fig. 2.

Our approach starts with two sets of unlabelled videos
{v1i }Ni=1 and {v2i }Ni=1, where each set is taken from a dif-
ferent view. We construct individual visual vocabularies for
both views and model an action video as a Bag of Visual
Words (BoVW). We consider two action models built using
two different vocabularies to be just like two articles writ-
ten in two different languages. In order to tell whether these
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two articles belong to a same category, we must either trans-
late one of them to the other language or translate both of
them into an interlingua, as is used in machine translation
[14]. Similarly, before comparing two heterogenous action
models we need to transfer (“translate”) them into a com-
mon “language”, say an action view “interlingua”. Hence,
generating such a view “interlingua” from two views (vo-
cabularies) becomes critical. On the other hand, we no-
tice that even if two vocabularies are mutually independent,
they eventually describe the same set of action concepts
(by “concept” we mean action category or sub-category).
Therefore, we conjecture that there exist high-level seman-
tic features that can bridge the semantic gap between two
vocabularies, as well as between low-level features and ac-
tion concepts. Our conjecture is consistent with the idea
of constructing semantic vocabularies for action recognition
[20][26] by modelling human actions in a hierarchical man-
ner. Since high-level features are shared across two vocabu-
laries, we call them bilingual-words, which form our action
view “interlingua”.

In order to abstract bilingual-words, we choose to model
the relationship between two vocabularies as a weighted bi-
partite graph, where two disjoint vertex sets correspond to
two vocabularies and edges connect visual-words from dif-
ferent vocabularies. Unlike [13] and [17], where a bipar-
tite graph is used to model the document-to-word relation-
ship, we employ a bipartite graph to model the visual-word
to visual-word relationship. We compute the edge weight
connecting two visual-words as their semantic similarity,
which can be estimated from the training data matrix M
(as shown in Fig. 2). Next, we apply a bipartite graph parti-
tioning technique to establish a many-to-many mapping be-
tween the two vocabularies. Many algorithms have been
proposed to partition bipartite graph [17][13]. We adapt
the spectral graph co-clustering technique [17] to cluster
both vocabularies simultaneously because their clusterings
induce each other. The resulting visual-word clusters are
bilingual-words. After clustering, we transfer the actions
in different views from BoVW representation to a Bag-of-
Bilingual-Words (BoBW) representation, such that new ac-
tion representations are view invariant.

Afterwards, suppose we have labelled training examples
for action classes Z = {zi}Li in view 1 (source view,Vs),
then with the help of BoBW we can directly apply the clas-
sifiers learned for L classes in the source view to recognize
novel actions in view 2, say target view Vt. Note that the
unlabelled videos used for discovering bilingual-words are
NOT from action classes Z . This guarantees that actions of
classes Z in the target view are unknown to the classifica-
tion models learned in the source view. In other words, we
do NOT use actions from Z to discover bilingual-words.

Suppose we have n-1 source views {Vs
i }

n−1
1 , how can

we fuse the knowledge transferred from varied source views
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Figure 2. The process of discovering bilingual-words. Two vocabular-
ies V1 and V2 are created from two views independently. Then action
videos from different views are represented by varied BoVW models. By
constructing a training data matrix M, whose rows correspond to action
examples associated with two corresponding instances from two views and
columns denoting visual-words, we employ a bipartite graph to model the
relationship between two vocabularies, and conduct graph partitioning to
obtain the shared bilingual-words. As a result, the heterogenous BoVW
models are transferred into BoBW models, which are discriminative under
view changes.

to the target view? Which mechanism can we use to com-
bine varied predictions provided by different transferred
classification models? One solution would be to linearly
combine them with fixed weights. However, we know that
different test samples may favor predictions from different
models Mi, because a good Mi with low test error implies
that the training and testing data share similar data distri-
butions. Thus, we employ the Locally Weighted Ensemble
(LWE) scheme [18] to dynamically estimate combination
weights for every test example by checking the consistency
of data structures between the model predictions (near the
test example) and the real data distribution (near the test
example). Here, we assume that the testing examples are
available.

1.1. Related Work
Several geometry-based approaches have been proposed

for multi-view action recognition. For example, [3] em-
ployed epipolar geometry to perform view-invariant action
recognition. The fundamental matrix constraints are applied
on trajectories of an action captured from varied viewpoints.
Parameswaran et al. [34] extracted view-invariant features
by checking the planarity of the body joints. Rao et al. [4]
presented an action representation to capture the dramatic
changes of actions using spatiotemporal curvature of 2-D
trajectories. These methods require reliable body joints de-
tection and tracking, which are still challenging problems,
thereby limiting their applications. Instead of using the geo-
metric measurement of body joints, [6] and [30] performed
3D reconstruction for multi-view action recognition. How-
ever, 3D reconstruction requires strict alignment between
views and is computationally expensive. Lv et al. [7] pro-
posed a graphical model named Action Net connecting 2D
key poses to represent 3D shapes for action recognition.
Another group of approaches [32][5] tried to directly es-
timate 3D shapes and poses from multi-view inputs for ac-
tion recognition. Weinland et al. [35] proposed to use the
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hierarchical classifiers on local 3D HOG descriptors to ob-
tain global classification decision, which handles viewpoint
changes by learning a classifier on training examples taken
from various views.

Rather than using geometry constraints, Junejo et al.
[16][22] presented a very simple and interesting action
representation called Self-Similarity Matrix, which is con-
structed by computing the pairwise similarity between any
pair of figure-centric frames. However, experiments show
that this approach performs poorly on the top views (very
different from other views) of the IXMAS data set. An-
other very recent work [8] proposed to train a discriminative
aspect model to handle the view invariance but it requires
good parameter initialization.

Moreover, Farhadi et al.[2] employed Maximum Mar-
gin Clustering to generate split-based features in the source
view, then a classifier (predictor) is trained to predict split-
based features in the target view. Consequently, the split-
based features are transferable across views. This approach
is close to our work, but there are several significant dif-
ferences. First, their work requires feature-to-feature cor-
respondence at the frame-level to train a predictor, while
we only need video-to-video correspondence (no cuboid-
to-cuboid and word-to-word correspondence is required).
Second, in their work the mapping is provided by a trained
predictor, while our mapping between visual-words and
bilingual-words is straightforward and efficient. No clas-
sifier is needed. Third, their approach does not have mutual
communication between two views in the process of map-
ping construction, while our approach simultaneously co-
cluster two vocabularies, which allows the vocabularies to
exchange information during the construction of mapping.

Our work is also relevant to transfer learning, which has
been explored in machine learning to transfer knowledge
across different domains or tasks. Please refer to [23] for
a review. Moreover, some works [31, 9, 10, 11] have used
concepts from transfer learning for addressing object and
image classification problems.

1.2. Our Contributions
In summary, we seek to solve the cross-view action

recognition problem from a different perspective by trans-
ferring action models across views. In contrast to the afore-
mentioned approaches for multi-view action recognition,
our approach has the following advantages: i) It is more
flexible. Unlike earlier view-invariant action recognition,
our method does not require geometry constraints, human
body joint detection and tracking, 3D reconstruction, and so
on. ii) We do not require strict temporal alignment. Unlike
[2], which require frame-level alignment, we only need to
relate action videos performed by an actor under different
views for discovering bilingual-words. iii) Our approach
can simultaneously co-cluster visual-words of two views
into bilingual-words by modeling two vocabularies as a bi-

partite graph. This co-clustering can make full use of the
fact that the visual-words clustering of two views induce
each other. iv) Our method is unsupervised when discover-
ing bilingual-words. It only requires video-level correspon-
dence across two views for the training data set without cat-
egory labels. vi) To fuse knowledge transferred from varied
views, we apply the Locally Weighted Ensemble method to
successfully combine the prediction outputs of varied trans-
ferred models. We test our approach on the IXMAS multi-
view action data set [6] and obtain very promising results.

2. Low-Level Action Representation
The primary feature used in our experiments is the spa-

tiotemporal interest point feature. To detect the interest
points, we applied a 2D Gaussian filter to a video, fol-
lowed by a 1D-Gabor, and the interest points are detected
at the local maximum response. This detector is proposed
in [29]. The parameters for the two filters are set to σ = 2
and τ = 1.5 in this paper. Then the ST volumes around
the points are extracted and gradient-based descriptors are
learned by PCA. These descriptors are further quantized to
visual words by k-means clustering. Afterwards, each ac-
tion is represented by a histogram vector h of visual-words
(i.e., BoVW model).

The 3D interest point feature is able to capture rich local
motion features, but not the global shape. So we further ex-
tract shape and flow feature, called the shape-flow descrip-
tor, as an auxiliary feature from each frame, as is proposed
in [33]. We believe it is complementary to the 3D interest
point feature. Specifically, from every frame three channels
features are extracted: horizontal optical flow, vertical opti-
cal flow, and silhouette. PCA is used to reduce the dimen-
sionality of all these features. In order to capture temporal
information, the feature information from neighbor frames
are integrated into the current frame descriptor by simply
concatenating feature vectors. See [33] for more details.
These descriptors are also quantized into visual words, and
an action video is represented by a histogram of words.

3. View Knowledge Transferring
Let Ds

Tr = {(hs
d, ld)}nd=1 be a training dataset, where

hs
d (i.e., a histogram of visual-words) is a training example

from the source view and ld ∈ Z is the class label. We
learn a classifier Mi for classes Z from training data Ds

Tr.
Our goal is to transfer view knowledge across views such
that the classifier Mi can be used to recognize novel actions
taken in the target view. In this task, Mi does not see train-
ing examples of classes Z from the target view. To achieve
this goal, we discover the bilingual −words from another
unlabelled training dataset DU

T = Id = (hs
d,ht

d)
m

d=1, where
(h)sd and ht

d are two corresponding action videos from the
source and target view respectively. Note that the action
category of any video in DU

T is not in Z , which means the
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action classes of DU
T and the classes Z are disjoint. As such,

we can guarantee that bilingual-words are not affected by
the actions of Z from the target view. The details of our ap-
proach are addressed in this section. Here, we consider pair-
wise views (vocabularies) Vs and Vt. We first build a bipar-
tite graph for two vocabularies (section 3.1), and then apply
bipartite graph partitioning to simultaneously co-cluster the
two vocabularies into bilingual-words in section 3.2.

3.1. Bipartite Graph Modelling
Let G=(V ,E,W) be a graph, where V , E and W are the

vertex set, edge set and weight matrix respectively. G is a
bipartite graph if V = X

∪
Y with X

∩
Y = ∅ and each

edge connects two vertices in X and Y . Here, X and Y
represent two vocabularies Vs and Vt for the source and tar-

get view respectively. The weight matrix W =

(
0 S
ST 0

)
,

where S is a |Vs| × |Vt| matrix representing the similarity
between any pair of visual-words from two vocabularies.

Matrix S can be constructed from the unlabelled training
data DU

T = Id = (hs
d,ht

d)
m

d=1 as follows. Each example
Id corresponds to two instances hs

d and ht
d (two histograms

over vocabulary Vs and Vt respectively).
To better capture the relationship between data d and

visual-words x, we further replace each entry of hs
d(x) and

ht
d(x) by the Pointwise Mutual Information (PMI) [20] be-

tween d and x, which is a measure of association. If his-
togram h is normalized, we approximately estimate PMI of
video d and visual-word x as follows,

pmi(d, x) ≈ log(
hdx∑

d hdx

∑
x hdx

). (1)

where we treat histogram entry hdx as an empirical joint
probability p(d, x). As a result, we obtain new action
representation ĥs

d and ĥt
d, which captures more seman-

tic correlation between actions (videos) and visual-words.
From the updated feature vectors, we then construct a m
× (|Vs|+|Vt|) matrix M, whose rows correspond to action
examples and columns to visual-words ( Column 1 to |Vs|
correspond to visual-words in vocabulary Vs, as shown in
Fig 2). As such, each visual word is embedded into the col-
umn space of M. Afterwards, an entry S(i, j) of S can
be computed as exp(d(xs

i , x
t
j)/2σ

2), where d(xs
i , x

t
j) is the

Euclidean distance between two visual words in the column
space of matrix M.

3.2. BilingualWords Discovery

With the constructed bipartite graph G on Vs and Vt, we
seek to discover the bilingual-words. This section describes
how to discover bilingual-words by graph partitioning. We
start with graph bi-partitioning.

3.2.1 Graph Bi-Partitioning.
A bi-partition of graph G(V,E,W ) (V = Vs

∪
Vt) is

defined by Π(V1, V2), where V1 = As
∪
At and V2 =

Figure 3. A demonstration of bipartite graph bi-partitioning. The first row
(yellow nodes) and second row (red nodes) correspond to two vocabularies,
respectively. The numbers attached to edges are the weights. (A) Before
the partition. (B) After the partition. The red dotted line gives the optimal
cut, resulting in two clusters (1 2 3; a b), (4 5; c d e). As a result, the
mappings {(123), (ab)} and {(45), (cde)} correspond to two bilingual
words.

Ās
∪

Āt (Ai
∪
Āi = Vi, i = s, t). For any two subsets

of vertices S ⊂ Vs and T ⊂ Vt, we define fW(S, T ) =∑
i∈S,j∈T wij , which measures the association between

sets S and T . To partition graph vertices into clusters, we
seek a partition Π(V1, V2), such that Eq 2 is minimized.

cut(V1, V2) = fW(As, Āt) + fW(Ās, At). (2)

One toy example of a bipartite graph and its bi-partition is
shown in Fig. 3. The objective function can be approxi-
mately solved by spectral clustering, which starts from con-
structing the Laplacian matrix L as follows,

L(i, j) =

 −wi,j if eij ∈ E∑
k w(i, k) if i = j

0 otherwise
(3)

From the perspective of graph embedding, bi-partitioning
a graph can be understood as projecting vertices onto two
points +1 and -1 in the discrete case. A good projection
shall minimize

∑
(i,j)∈E wij(qi − qj)

2, where qi is the pro-
jection value of vertex i. Intuitively, larger wij will result in
higher possibility of projecting vertices i and j onto a same
point. It can be shown that the following equation holds,

cut(V1, V2) =
1

4
qTLq =

1

4

∑
(i,j)∈E

wij(qi − qj)
2, (4)

where q is a vector of projected values. Obviously, one triv-
ial solution of the minimizing problem is to project all ver-
tices onto either +1 or -1. However, we look for a objective
function that can achieve not only minimized cut value but
also a balanced partition. Hence, normalized graph cuts is
proposed as [21][17],

Ncut(V1, V2) =
cut(V1, V2)

fW(As, At)
+

cut(V1, V2)

fW(Ās, Āt)
. (5)

The partition that minimizes Ncut(V1, V2) is the optimal
partition of graph G. It can be proved that the second small-
est eigenvector of the generalized eigenvalue problem Lz =
λDz ( where D(i, i) =

∑
j wij ) provides a real relaxed so-

lution.

3.2.2 Efficient Solution via SVD Decomposition
For partitioning a bipartite graph, a more computationally
efficient solution is proposed in [17] to perform SVD on a
variation of S. For a bipartite graph G, we have,
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L(i, j) =

(
D1 −S
−ST D2

)
, and D =

(
D1 0
0 D2

)
(6)

where D1(i, i) =
∑

j wij and D2(j, j) =
∑

i wij . Let

matrix Ŝ = D
−1/2
1 SD

−1/2
2 , it can be proved that the second

eigenvector of L can be expressed in terms of left and right
singular vectors of Ŝ as follows (refer to [17]),

z2 =

(
D

−1/2
1 u2

D
−1/2
2 v2

)
(7)

In fact, the left and right singular vectors u2 and v2 pro-
vide us the bipartitions of Vs and Vt respectively. Then the
k-means algorithm can be used to cluster the 1-dimensional
data of z2. In this way Vs and Vt are simultaneously clus-
tered. Since two vocabularies are correlated to each other,
the clustering on one vocabulary naturally induces the clus-
tering of the other.

3.2.3 K-way Bipartite Graph Partitioning
The two-way clustering can be extended to K-way cluster-
ing by either recursively partitioning the sub-set or apply-
ing k-means on l = ⌈logK⌉ eigenvectors. The procedure
of discovering bilingual-words is summarized in table 1.

3.2.4 Action Models Transfer
The bilingual-words Ci = (Vs

i ,Vt
i )

K
1 basically serve as

a many-to-many mapping between two set of visual-
words. The clustering can be regarded as a mapping func-
tion defined on visual-words: Cj = f(xi). As a re-
sult, we can transfer an action from a BoVW model to
a Bag of Bilingual-words (BoBW) model as h(Cj) =∑

xi:Cj=f(xi)
h(xi). With actions in both views represented

by BoBW model, we obtain a transferable classification
model Mi on Vs, and directly use it on Vs for recognition.

4. Classification Models Fusion
Suppose there are n-1 source views Vs and one target

view Vt, one problem is how to combine the transferred
knowledge from each source view to recognize novel ac-
tions in the target view. Because each source view classi-
fier/model Mi may provide partial knowledge, we employ
the Locally Weighted Ensemble (LWE) [18] to effectively
fuse all predictions when all test examples are available.

To generalize the problem, let x and y be an ac-
tion instance and its label, respectively. Given classifiers
{Mi}n−1

1 and testing data set Dt
Ts in the target view, the

recognition task is to estimate a posterior probability as fol-
lows,

p(y|x) =
n−1∑
i=1

p(y|x,Mi, D
t
Ts)p(Mi|Dt

Ts), (8)

where probability p(y|x,Mi, D
t
Ts), namely p(y|x,Mi ) due

to x ∈ Dt
Ts, is the output of Mi on x and p(Mi|Dt

Ts) is the
probability to select Mi given known testing data Dt

Ts. As

Objective: Given DU
T , an unlabelled training action data

and two corresponding vocabularies of Vs and Vt, dis-
cover K bilingual words {Ci = (Vs

i ,Vt
i )}K1 .

1. Create the training data matrix M (with the same
structure shown in Fig. 2 (b)) for the unlabelled train-
ing data set DU

T .
2. Construct the correlation S between two sets of ver-

tices of G, namely Vs and Vt. Each entry S(i, j) is
computed as exp(d(xs

i , x
t
j)/2σ

2).
3. Compute D1(i, i) =

∑
j wij , D2(j, j) =

∑
i wij ,

and matrix Ŝ = D
−1/2
1 SD

−1/2
2 .

4. Apply SVD on Ŝ, and select l = ⌈log2k⌉ number of
its left and right singular vectors: U = (u2, ..., ul+1)
and V = (v2, ..., vl+1).

5. Composite matrix Z =

(
D

−1/2
1 U

D
−1/2
2 V

)
, whose size is

(|Vs|+ |Vt|)× l.
6. Run k-means clustering on l-dimensional row data of

Z to obtain K clusters of visual-words, which are the
bilingual-words {Ci = (Vs

i ,Vt
i )}K1 .

Table 1. The procedure of discovering bilingual-words.

x ∈ Dt
Ts, p(Mi|Dt

Ts) is actually equal to p(Mi|x), which
is locally adapted for each x and represents the effective-
ness of model Mi for x in Dt

Ts. By defining the weight
wx

i = p(Mi|x), we have p(y|x) =
∑n−1

i=1 p(y|x,Mi)w
x
i .

Theoretically, the error of LWE on each test example x is
not greater than that of any single model (see [18]).

If p(y|x) is known, we may estimate the weights wx
i

by minimizing the square error between the prediction and
ground truth. However we are unable to x is in Dt

Ts, we
are unable to obtain the real value of p(y|x). Intuitively,
however, a model Mi should have higher weights for x if
x is covered by the knowledge of Mi. Nevertheless, we
still have no idea which region is covered by Mi. Based on
the clustering assumption [28] that p(y|x) is not expected
to change much in a dense area, which means the decision
boundary probably occurs at the area where p(x) is lower,
if the clustering boundary for the region where x is located
agrees with the decision boundary of Mi, we can assume
that the distribution p(y|x,Mi) is similar to the true distri-
bution p(y|x), which means we can assign higher weight to
model Mi at x. In other words, if the outputs of Mi at the
area surrounding x have higher consistency with the clus-
tering results, Mi can obtain a higher weight at x.

As a result of these observations, we employ a
clustering-based approach to estimate the weight associ-
ated with Mi for x. We first construct two graphs, GT =
(V,ET ) and GM = (V,EM ), for clustering and classifica-
tion respectively, where V = Dt

Ts. In graph GT , if two
test examples are classified into the same category, there is
an edge between them. For graph GM , the edges exist be-
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woTranwTranwoTranwTranwoTranwTranwoTranwTranwoTranwTran

Cam0 14.40 75.46 10.69 64.40 10.61 67.68 19.09 65.99

Cam1 16.12 75.72 11.11 64.23 7.41 68.10 9.22 56.02

Cam2 10.27 70.33 11.80 66.25 12.90 71.34 8.08 62.42

Cam3 11.15 73.74 8.59 65.62 9.98 71.30 9.30 58.04

Cam4 8.80 71.34 8.46 66.29 9.22 70.88 10.06 63.55

(%)

Camera 0 Camera 1 Camera 2 Camera 3 Camera 4

Figure 4. Performance comparison of action recognition with and without
model transfer. The rows and columns correspond to training and testing
view, respectively. woTran-columns and wTran-columns contain the re-
sults of recognition with and without action model transfer. The average
accuracies are 10.9% and 67.4% for woTran and wTran respectively.

tween any pair of test examples that are clustered into the
same group. If x’s neighbors on both graphs have a large
overlap, it implies higher local weight. So we can use the
percentage of overlap between examples VT (neighbors of
x in GT ) and VM (neighbors of x in GM ) to approximate
the weight: wx

k ∝ s(GM , GT , x) = |VM

∩
VT |

|VM

∪
VT | , where we

can consider s(GM , GT , x) as the degree of consistency.

5. Experimental Results and Discussion
5.1. Data Set and Experimental Setup

We test our approach on the IXMAS multi-view action
data set [6] which contains eleven daily-live actions. Each
action is performed three times by twelve actors taken from
five different views: four side views and one top view (see
Fig.1 for some examples).

We extract at most 200 cuboids from each video. Each
cuboid is represented by a 100-dimensional descriptor
learned using PCA. We subsequently apply k-means to
quantize these interest point descriptors into N=1,000 vi-
sual words. With these basic view-dependent vocabularies,
we conduct experiments on all possible pairwise view com-
binations (twenty in total for five views) to evaluate the pro-
posed transfer method. For a better comparison to [2], we
follow the same leave-one-action-class-out strategy, which
means that each time we only consider one action class for
testing in the target view (this action classes is not used to
construct bilingual words). The final results are reported
in terms of average accuracy for all action classes in each
view. The training data DU

T used for discovering bilingual-
words are randomly selected from actions excluding the or-
phan action. With learnt bilingual-words, six multi-class
classifiers are trained on the source view in a 6-fold cross-
validation manner and employed to recognize actions from
the target view. SVM with histogram intersection kernel is
chosen as our classifier.
5.2. Transferring models across pairwise views

In this section, we want to verify the performance of
transferring models across pairwise views. Initially, an ac-
tion video is represented by BoVW model. We first try to
recognize novel actions from target view by directly using
classifiers trained on source view without model transfer.
The results are shown in Fig. 4 (i.e., woTran-columns).

A B A B A B A B A B

Cam 0 68.27 70.16 60.47 68.14 64.33 65.87 30.56 50.80

Cam 1 72.87 75.88 53.36 60.65 60.27 64.53 27.57 50.42

Cam 2 57.23 65.44 31.39 63.55 73.72 70.58 50.84 64.44

Cam3 48.06 62.86 30.68 64.52 71.93 65.87 27.57 54.61

Cam 4 31.35 62.33 17.46 60.52 59.47 68.18 39.56 61.45

Camera 3 Camera 4

(%)

Camera 0 Camera 1 Camera 2

Figure 5. Performance comparison of two transfer strategies: appearance-
similarity-based (A columns) and bipartite-graph-based (B columns) strat-
egy. The average accuracies for A and B are 48.8% and 63.5% respectively.

Note that the action models from two views are heteroge-
nous, we are not surprised to see the results are not much
better than random guess. On the other hand, we transfer
all actions in both views from BoVW models to BoBW
models, followed by action classification. The number of
discovered bilingual-words is 100 for this experiment. The
results are shown in Fig. 4 (i.e., wTran-columns). The
performance is very promising considering that the classi-
fiers are trained on data taken from different views. It also
demonstrates that BoBW models are discriminative under
view changes. To further demonstrate the performance of
cross-view recognition, we applied single view classifica-
tion, which means we trained and tested the classifiers on
the same view. The average accuracies are 82.01%, 80.99%,
78.32%, 82.41% and 75.57% for views 0 to 4 respectively.
We see that the performance of cross-view recognition is
very close to single view classification for most view com-
binations.

Additionally, we want to demonstrate the performance
of appearance-based transfer. In fact, a visual-word is a
m-dimensional vector (m=100 in this paper), which is the
center of a group of cuboid descriptors in k-means cluster-
ing. Hence, it is very natural to build the mapping between
two vocabularies by comparing the distance between visual-
words in Rm space. In the second experiment we examine
the transfer based on appearance similarity. For computa-
tional simplicity, we use the vocabulary generated in the
source view to quantize the cuboid descriptors for the target
view. So there is one physical vocabulary (from the source
view) with one mirror in the target view. To compare with
our bipartite-graph-based approach, we treat one vocabu-
lary as two virtual vocabularies and perform the bipartite
graph co-clustering to generate 100 bilingual-words. The
results for both experiments are reported in Fig. 5. Columns
A show the results of appearance-similarity-based method,
while columns B for bipartite-graph-based method. We can
see that for some combinations such as (camera 1, camera
0) and (camera 2, camera 3), both methods have very com-
petitive results. We can conjecture that these pairs of views
might be very similar, which means they may share simi-
lar appearance for some actions. We check the data set and
find out some actors were oriented differently (relative to
cameras) compared to the majority of actors, which actu-
ally makes these pairs of views share similar appearance to
some extent. However, the bipartite graph co-clustering per-
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Ours A B C Ours A B C Ours A B C Ours A B C Ours A B C

C0 79.9 72 77.6 79 76.8 61 69.4 79 76.8 62 70.3 68 74.8 30 44.8 76

C1 81.2 69 77.3 72 75.8 64 73.9 74 78.0 68 67.3 70 70.4 41 43.9 66

C2 79.6 62 66.1 71 76.6 67 70.6 82 79.8 67 63.6 76 72.8 43 53.6 72

C3 73.0 63 69.4 75 74.1 72 70.0 75 74.4 68 63.0 79 66.9 44 44.2 76

C4 82.0 51 39.1 80 68.3 55 38.8 73 74.0 51 51.8 73 71.1 53 34.2 79

Ave. 79.0 61 63.0 74 74.7 67 64.3 77 75.2 61 64.5 76 76.4 63 58.9 73 71.2 40 46.6 72

(%)

Camera 0 Camera 1 Camera 2 Camera 3 Camera 4

Figure 6. Cross-view action recognition performance of different ap-
proaches on IXMAS dataset. Columns ‘Ours’, A, B and C correspond
to our approach, [2]’s approach, [16]’s approach and [8]’s approach. The
overall average accuracies are 75.3%, 58.1%, 59.4% and 74.4% for them
respectively (best viewed in PDF file).

form much better for the remaining combinations. This is
because bilingual-words produce a more meaningful map-
ping between two (virtual) vocabularies.

As was mentioned in Sec 2, a shape-flow descriptor can
capture global shape information and temporal information.
It is complementary to the 3D interest point feature. So in
this experiment, we also extract a vocabulary (size of 500)
of shape-flow descriptor for each view. Then for each view,
we have a hybrid vocabulary (size of 1,500) of 3D interest
point and shape-flow features. Then we conduct cross view
recognition for 20 view combinations. The results are listed
in Fig.6. As compared to the results in Fig.4, the perfor-
mance has been improved about 8% in average accuracy by
introducing the shape-flow descriptor. We also list three ad-
ditional sets of state-of-the-art results on cross-view action
recognition reported in [2], [16] and [8] in Fig. 6 for com-
parison. We are particularly interested in [2], since they also
transfer action models across views. We notice our perfor-
mance is better than that of [2] and [16]. It is interesting to
note that our method can perform much better (about 10%
− 40% ) than the [2] and [16] when camera 4 is involved in
either training or testing. If we look at the data set (see Fig.
1), Camera 4 was set above the actors, so it captured totally
different actions. Hence, we believe the recognition results
on Camera 4 are more important for evaluating a cross-view
action recognition approach. Our performance is competi-
tive to that of [8], even though our approach is unsupervised
whereas [8] requires supervision.

Compared with [16] and [8], one limitation of our ap-
proach is that it implicitly assumes the target view in the test
stage is known, whereas the view from which the test video
is taken is usually unknown. To cope with this problem, one
option is to estimate the view of the test video before recog-

(%) Camera 0 Camera 1 Camera 2 Camera 3 Camera 4 Average

LWE 86.6 81.1 80.1 83.6 82.8 82.8

Global 80.6 78.5 78.0 78.3 73.0 77.7

Junejo et al. 74.8 74.5 74.8 70.6 61.2 71.2

Liu et al. 76.7 73.3 72.0 73.0 N/A 73.8

Weinland et al. 86.7 89.9 86.4 87.6 66.4 83.4

Figure 7. Performance comparison of different model fusion methods,
as well as state-of-the-art approaches. Row LWE and Global shows the
recognition rates of model fusion on each testing views using LWE and
Global weighting methods respectively. And the following three rows list
performance of approaches proposed by Junejo et al. [16], Liu et al. [19]
and “Weinland et al.[35].
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Figure 8. Recognition performance of transferred model fusion on each
action category.

nition, just like Farhadi et al. in [2] which achieves high
accuracy in view estimation. Alternatively, we can also sim-
ply apply our approach by treating every view as the target
view, and then the view that gives the highest confidence on
action recognition is selected as the target view for the test
video.
5.3. Multiple transferred models fusion

In the above experiments, for each target (testing) view
there are four recognition results provided by the classifica-
tion models trained on the rest of the four views. We em-
ploy the LWE approach to combine the results. K-means
clustering is used to group the testing data into N clusters.
Fig. 7 row LWE shows the performance of model fusion
with N=5 on the output of our experiments in Fig. 6). By
comparing the results in Fig. 6 (the row of “ave”) and 7,
we see LWE obtains significant performance improvements
(about 5% to 10%) on each testing view. For comparison,
we also try a global weighting method, which assign 1 to
each model for all testing examples. The results are also
shown in Fig. 7. Obviously, LWE can perform better than
the global weighting method.

Fig. 7 lists some results of the state-of-the-art ap-
proaches on the IXMAS dataset as well. Our performance
is better than that of [19] and [16], and competitive to [35].
In fact, the other three approaches trained their classifiers
using examples from all five views, but our approach train
our classifiers on four views but not on the testing view
(target view). Specifically, the classification conducted on
the target view are accomplished by combining the models
transferred from the other four views for recognition. No
classifiers are trained on the target view. We believe this
capability is very attractive.

Moreover, it is very interesting to look at the recognition
rate of each action category in Fig. 8. We can observe that
the task of action model transfer is very hard for some ac-
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Figure 9. The confusion tables for camera 1(Left) and camera 4(Right)
(Best viewed in PDF file).
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tions and some views. For example, “scratch-head” has less
than a 5% recognition rate for camera 1. One of the rea-
sons might be that the majority of the motion is blocked
by human bodies in camera 1 and thus very slight mo-
tion can be observed in this view. This can also explain
that the actions only associated with arms (e.g., “check-
watch”, “cross-arms” etc.) have much lower recognition
rate than those actions associate with entire human body
(“sit-down”,“turn-around”,etc.). Moreover, it is surprising
that some actions such as “walk” and “turn-around” which
are supposed to share very similar motions achieve very
good performance. We further check the confusion tables
generated from the outputs of LWE method (Fig. 9 shows
two confusion tables for camera 1 and camera 4, respec-
tively.), and we notice some actions are hard to be distin-
guished when viewed from a certain viewpoint. This may
be due to that for some actions the models are difficult to
be transferred from varied views to a certain view. For in-
stance, most “scratch head” actions in the side view camera
1 are misclassified as “wave” and “cross arms”, while there
is less confusion in the top view camera 4.

6. Conclusion
In this paper, we address the problem of recognizing an

unknown action from an unseen (target) view using train-
ing data taken from other (source) views. For this purpose,
we propose a novel bipartite-graph-based approach to learn
bilingual-words from two view-dependent vocabularies in
an unsupervised manner. By means of the bilingual-words,
we are able to transfer actions from both views from BoVW
models to BoBW models, which are discriminative under
view changes. We have extensively tested our approach on
the publicly available IXMAS multi-view data set and ob-
tained very promising results. Additionally, in order to fuse
the decisions provided by different source views, we em-
ployed the Locally Weighted Ensemble method to dynami-
cally combine the predictions from varied source views for
each test example. Thus, we can further improve average
accuracy by about 7%.
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