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Introduction

Commonsense knowledge is knowledge about the world that “everybody
knows.” Everybody knows that water is wet, that round things roll downhill,
that to drive somewhere you have to get in the car first, that if you insult
someone he might be unhappy or angry. Everybody knows how to get home
from work, where Florida is on the map, that the French Revolution was
much longer ago than the Chicago riots, why the sea is boiling hot, and
whether pigs have wings (apologies to Lewis Carroll).

Much of this knowledge is never taught: people just seem to pick it
up without any effort. Some is learned in school, like facts about the
French Revolution, but assuming the commonsense notion of “longer ago
than ....” Commonsense knowledge is frequently wrong, but almost always
“good enough” for commonsense purposes. Some people lack common sense
for practical subjects like electricity or motors, but most people have it for
active threats like open manholes or raging fires.

How can we account for the power and usefulness of commonsense knowl-
edge? More technically, how can we represent commonsense knowledge in a
computer? In this chapter, I explore some of the characteristics of represen-
tations that make them suitable for commonsense knowledge. The chapter
arose from an attempt to capture some of the general features of repre-
sentations that I used in constructing a computer model of commonsense
knowledge of large-scale space [Kuipers, 1977, 1978]. In Sections 1 and 2,
I propose a definition for commonsense knowledge, list some of the perfor-
mance constraints it must satisfy, and discuss what it means to represent
knowledge on a computer. Section 3 presents a collection of design features
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that appear to be important for representations of commonsense knowledge.
Sections 4 and 5 discuss two representations in more detail: the partial or-
der, and a route description. They discuss the performance characteristics
of these representations and show how they tie into the larger structure of
the TOUR model of commonsense knowledge of large-scale space.

1 What Is Commonsense Knowledge?

It would be desirable to have a definition of “commonsense knowledge” that
characterized this concept precisely. This is not yet possible, and may never
be, but the following definition is an attempt to distinguish commonsense
knowledge from basic cognitive skills such as manipulation, vision, and lan-
guage on the one hand, and expert knowledge of electronics, mathematics, or
history on the other. The abundant qualifiers in the definition are necessary
because of the fuzziness of the phenomenon itself:

Commonsense knowledge is knowledge about the structure of the
external world that is acquired and applied without concentrated
effort by any normal human that allows him or her to meet the
everyday demands of the physical, spatial, temporal, and social
environment with a reasonable degree of success.

Commonsense knowledge is useful exactly because it is a description of
the environment that is maintained at very low cost. Planning and action
can then take place within a rich description of the context that need not
be constructed for the particular occasion.

The above definition is superficially quite different from McCarthy’s, “a
program has common sense if it automatically deduces for itself a sufficiently
wide class of immediate consequences of anything it is told and what it
already knows” [McCarthy, l968, p. 403]. McCarthy’s definition is much
more inclusive than mine, applying to any deductive process that does a
significant portion of its work in response to new information. In both cases,
however, the emphasis is on structuring a description of some environment
from observations. The primary goal of McCarthy’s Advice Taker research
is to show how “interesting changes in behavior can be expressed in a simple
way” [p. 404]. My observations here can be seen, in part, as an elaboration
on one of the other features he ascribes to commonsense knowledge: “the
machine must have or evolve concepts of partial success because on difficult
problems decisive successes or failures come too infrequently” [p. 405].
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The fact that commonsense knowledge is reasonably useful under real-
world performance constraints without concentrated effort suggests an op-
portunistic way of operating. A system is called opportunistic if it performs
computations only when information and processing resources are available
and inexpensive, and functions adequately the rest of the time on partially
processed information. Since commonsense knowledge is acquired and used
under relatively unfavorable conditions, generally as a background to other
more pressing activities, it seems forced to adopt an opportunistic mode of
operation. Many kinds of knowledge do not lend themselves to opportunistic
computation, and so cannot be commonsense knowledge. Vision and motor
abilities cannot be opportunistic, for example; the importance to survival
of quick recognition and physical activity is too high, implying that these
processes must be able to demand resources when necessary. To make a dif-
ferent contrast, expert problem-solving often requires concentrated effort,
and is very vulnerable to the destructive effects of interruptions.1

There are certain performance constraints (PCs) that are observably
satisfied by human commonsense knowledge.2 We must evaluate potential
representations for commonsense knowledge against such performance con-
straints.

PC1. Learning must be possible, i.e., it must be computationally feasible
to combine new information with what is already known and store the
result [Newell and Simon, 1972, p. 8].

PC2. Performance must degrade gracefully under limitations of information

1It is not always possible to use the need for concentration to distinguish expert from
commonsense knowledge. Many kinds of expertise apparently involve simply a more ap-
propriate way of describing the world, for the purpose at hand. A representation for such
expert knowledge would have exactly the same properties as a commonsense represen-
tation. Indeed, some experts consider their expertise to be simply “educated common
sense.” A doctor, for example, may make a preliminary diagnosis on the basis of evidence
that appears obvious and compelling to him even at first glance, but might be missed
entirely by the layman. On the other hand, a doctor’s expertise also includes processes for
considering and excluding possible alternative diagnoses by judging the interactions among
multiple diseases and treatments, a process that can require sustained concentration.

2“Performance constraints” as used in this chapter have little to do with Chomsky’s
[1965] distinction between competence and performance. This chapter examines the im-
plications of certain practical limitations of the real-world computing environment for the
structure of useful representations of commonsense knowledge. Aside from inspinng the
selection of constraints, the remarks here are independent of the properties of people.
A “performance theory of common sense” (in Chomsky’s sense) would be an enterprise
of almost unbounded scope, attempting to explain what makes people use knowledge in
practice the way they do.
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and processing resources, rather than failing catastrophically [Norman
and Bobrow, 1975; Marr, 1975].

PC3. The amount of working memory (short-term memory) available to
any process is limited and probably quite small [Miller, 1956].

PC4. Processing time is subject to frequent interruptions, destroying some
or all of the contents of working memory [Norman and Bobrow, 1975].

PC5. Observational input is generally local and fragmented with respect
to the scale of the overall phenomenon being described [Minsky and
Papert, 1969].

PC6. The contents of long-term memory are occasionally destroyed or lost.

There are two other constraints that seem very plausible to apply to
knowledge representations, but their implications remain quite unclear at
this time:

PC7. The same basic representational framework should accommodate the
range of individual variation that is observable among human perfor-
mances on the task [Hunt et al., 1973].

PC8. Development should be possible. There should be a sequence of rep-
resentations by which adult performance can be reached without dis-
astrous lapses of performance on the way as one representation is re-
placed by another [Howe and Young, 1976].

When discussing “graceful degradation of performance,” we must outline
the different kinds of potential disasters that we are trying to avoid. Listed
below, in decreasing order of severity, are types of disasters that can befall
a computational system as a consequence of an internal error. People and
computer programs are both subject to such disasters (Ds) but computer
programs incline toward the more severe ones, while people are able to
restrict their computational disasters to the milder end of the spectrum.

D1. The computational system attains an illegal state from which no further
action is possible, and halts or “crashes.” For example, a computer
will halt if it is instructed to examine the contents of a nonexistent
memory location.
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D2. Previously acquired and stored information is rendered worthless and
must be discarded. For example, if an interruption occurs while an
array is being shifted in place, and the working memory of the shifting
process is lost, then the entire array has become inconsistent and must
be discarded.

D3. The current action cannot be continued and must be abandoned. For
example, in evaluating an arithmetic expression, if a variable returns a
nonnumerical value, or a function cannot return a value at all, evalua-
tion halts. This is actually a version of D1, taking place within a larger
context which can continue functioning when the current activity fails.

D4. Available observations of interest cannot be represented and stored,
and so are discarded. For example, in compiling a map of important
features of an area, an observation of the heading of a remote land-
mark, without its ground position, cannot be represented and stored.
When the map is used subsequently, information about that landmark
is not represented.

D5. A question cannot be answered, perhaps delaying the reorganization
of a body of information. For example, the local coordinate frames of
two places will not be combined if the curvature of the road connecting
them is unknown.

2 What Is Representing Knowledge?

By Palmer’s [1977] definition, a representation consists of two sets of objects
and relations, and a correspondence between them. The two sets are known
as the represented domain and the representing domain. The correspondence
between them allows questions about the represented domain to be answered
by examining the representing domain.

In normal usage, the objects and relations in the representing domain are
often referred to as the “representation,” with an implicit reference to the
represented domain and the correspondence. The assumption in artificial
intelligence is that computational objects and relations make a particularly
good representing domain. In this case, the processes that examine the
representing objects and relations to answer questions are also of interest,
and so are referred to as part of the representation as well. Bobrow [1975]
discusses a number of dimensions along which computational representations
can be compared.
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Notice that there are two different kinds of enterprises involved in rep-
resenting commonsense knowledge in the computer. First, there is research
attempting to find computational representations for objects and relations
in the world that satisfy a given set of performance constraints like those in
Section I. This research takes place in the fields of mathematics, computer
science, and artificial intelligence. Second, there is empirical research in
psychology that attempts to characterize the human phenomenon of com-
monsense knowledge by formulating and testing constraints like those above.
The research presented in this chapter addresses the first of these questions.
(Naturally, the two kinds of research cannot be kept as isolated as this sim-
ple dichotomy suggests since the concepts used in each endeavor can and do
influence the investigations in the other.)

The mapping between a state of the world and its computational repre-
sentation or description can fail to be unique, in both directions. The most
commonplace version of this is the observation that there are many possi-
ble worlds that can satisfy any (consistent) description. Since a description
captures only certain facets of the world, the same description can hold of
situations that vary in the undescribed facets. Conversely, there can also be
many different descriptions of the same world, capturing different facets of
it.

It is also true, however, that a given facet of the world can have many
different descriptions, corresponding to the states of knowledge an observer
goes through while learning about its global structure from a series of local
observations. This set of states of partial knowledge can have quite different
properties from the set of states that the world itself can take on. That this
point is nontrivial can be seen through a simple example.

Let the “real world” consist of a one-dimensional space S (e.g., a street)
and a set P of points in S related by an order relation (e.g., places on the
street):

· · ·A · · ·B · · ·C · · ·D · · ·

The “real world” satisfies the condition

x, y ∈ P ⇒ (x = y or x > y or y > x).

On the other hand, commonsense knowledge of one-dimensional order
need not satisfy this condition. A state of knowledge may correspond to:

· · ·A · · · {B,C} · · ·D · · ·

with no order on {B,C}. (It is easy to duplicate this example by asking
people about the order relations of places on streets.) Thus, the relation
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in the “real world” is a total order, while the relation that makes up the
corresponding commonsense knowledge is a partial order.

This example shows that a representation for commonsense knowledge
(in this case 1-D order), if it is to support learning in a natural and efficient
way, must be capable of expressing the intermediate states of knowledge that
a person passes through as he learns the order from observations. Along with
the other performance constraints, to be discussed below, this suggests that
the properties of a representation may be quite different from the properties
of the world being described.

3 Design Features of Commonsense Representa-
tions

In this section, I shall try to draw some conclusions about properties of com-
monsense representations from the performance constraints outlined above.
Most of these conclusions are motivated by comparisons between examples
that differ in whether or not they satisfy the various constraints rather than
being deduced as logical consequences of the constraints. Ideally, the prop-
erties that are suggested by these comparisons will later be formalizable
through more careful mathematical analysis. Extracting some of the rel-
evant characteristics of the performance constraints, we shall look at the
ability of representations to function adequately in the face of:

1. Partial destruction of the represented information,

2. Premature demand for the result of an operation,

3. Resource limitations in (a) working memory, (b) computing time, (c)
additional information.

The first property we want in a representation for commonsense knowl-
edge is the ability to express intermediate states of the learning process.
This property is motivated in part by resource limitations in additional in-
formation. A good illustration is the comparison between partial and total
orders as representations for knowledge of one-dimensional order. If order
relations are observed as sequences that are subsets of the order in the envi-
ronment, then two possible representations for the description are the partial
order and the total order. Suppose, for the sake of concreteness, that the
current state of the description is (ABCD), and the observation is (AEC).
If the representation can express any partial order, then (A{BE}CD) can
be stored, perhaps with some cost in working memory and computing time;
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there is no cost in additional information. However, if only total orders can
be stored, then an additional piece of information is required before (AEC)
can be assimilated: either (BE) or (EB).

This requirement for additional information, gotten either from further
observation or retrieved from elsewhere in memory, can be seen as a cost
of the assimilation process, just like working memory or computing time.
Furthermore, if the additional information must be gotten from further ob-
servation, or is not conveniently indexed in memory, it is a cost that can
be quite hard to pay. Such a cost, and the corresponding delay in updat-
ing the long-term description of the environment, makes the system more
vulnerable to interruptions that could destroy the temporary state and lose
even the first observation. Thus, it is a valuable feature for a representa-
tion to be able to express the intermediate states of the learning process,
corresponding to an arbitrary sequence of relevant observations.

The second property we want in a representation for commonsense knowl-
edge is resilience in the face of partial destruction of the represented infor-
mation. The performance constraints that motivate this property are the
fact that commonsense operations are subject to frequent interruptions that
destroy part of the state of working memory, and that long-term memory
seems subject to some sort of destructive process. If part of the information
in a description is destroyed, we would like the representation to degrade
gracefully, suffering only from the actual information lost, rather than being
utterly destroyed by violation of some global consistency condition.

As an example of loss of working memory under an interruption, compare
three different kinds of tree search: breadth-first, depth-first, and “best-
first.” The transient state of a breadth-first search is a set of nodes that
span the width of the tree, in that every path from root to leaf must intersect
the set. Loss of a single element destroys this property and renders the rest
of the set useless. (In fact, it is possible for a separate recovery procedure to
“back up” the breadth-first search from the remaining fragments, to reach
a previous state from which the search can be restarted.) The transient
state of a depth-first search is a linked list of nodes connecting the current
node with the root of the tree. Loss of a single link can carry with it an
arbitrarily long tail of the list, depending on which link was lost, but the
initial segment of the list remains a meaningful state for a depth-first search.
Thus the depth-first search can be restarted immediately, having to repeat
some work, but neither having to start over nor having to reconstruct its
state from the remaining fragments. The transient state of a best-first search
is a set of nodes judged to have the “best chance” of dominating the desired
target. Loss of a single node from this set decreases the chance of success,



Kuipers, On Representing Commonsense Knowledge, 1979 9

but is still a meaningful state of a best-first search, and can be resumed
without recovery procedures.

A similar example can be shown in the case of long-term memory by
looking at the two familiar order representations: represent an order as a
set of ordered pairs (which could be links in a semantic net or 2-tuples in a
list). A partial order obeys only the global condition that no loops occur,
while a total order also states that any two elements of the ordered set must
be comparable. Loss of a single pair clearly leaves the condition on a partial
order unaffected, but can render the total order meaningless. Notice that in
both kinds of memory, the more resilient representations not only continue
to function adequately after partial destruction of information but need not
even explicitly detect the fact that an error has taken place. The remainder
after destruction is a meaningful state of the representation that can be
treated exactly like the complete version.

The third property we want in a representation for commonsense knowl-
edge is the ability to express a meaningful response when a process is prema-
turely asked for the result of a computation. This property is motivated by
the frequency of external interruptions, and by limitations in memory and
computing resources that may stop a process before it has run to comple-
tion. This property refers at least as much to the ability of the surrounding
context to use the response as to the ability of an interrupted process to
return one.

The simplest response to a premature request for a result is “don’t
know.” Many representations are not able to represent and store “don’t
know” as part of a description, and so a “don’t know” response triggers an
error and the system halts or the current activity is abandoned. This passes
the problem onward in the hopes of finding a supervisory process resilient
enough to treat “don’t know” as a value. A simple case of using “don’t
know” effectively is the structure of a database that responds to an unsuc-
cessful search by computing and storing the requested vaiue, ensuring that
searches appear never to be unsuccessful, and ensuring that computations
are done as seldom as possible, at the expense of a larger database.

A more complex example of resilience in the face of premature demands
for results comes from the taxonomic (or IS-A) hierarchy, used by a process
attempting to identify some specimen. A classification tree for birds or
plants is one familiar case and the human recognition system may be another
[Quillian, 1968; Anderson and Bower, 1974]. A premature request for the
identity of a specimen might produce “marsh bird” or “oak,” rather than
the actual species, but the larger category is as useful as the smaller in most
contexts. This example suggests that the taxonomic hierarchy is useful
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not just as a convenient abbreviation technique that lets shared properties
be associated with shared categories, but that it is essential to providing
commonsense resilience to interruptions in the identification process.3

It has been widely observed that severe time and working memory lim-
itations must be met by processes that make up commonsense knowledge.
The mathematical analysis of algorithms (e.g., Knuth [1968]) provides a rich
collection of techniques for analyzing representations and procedures. Cer-
tainly, many kinds of tree search make excessive resource demands of this
kind and cannot be considered serious candidates for operations on repre-
sentations for large amounts of commonsense knowledge.

There are typically trade-offs of various kinds in the design of represen-
tations and algorithms: time vs. space and storage vs. retrieval are two
prominant examples. The kinds of disasters outlined in Section I, as well as
the observations of McCarthy [1968], suggest that a commonsense knowledge
representation should optimize storage of information-the maintenance of an
adequate description of the environment-even at the expense of retrieval or
the ability to solve each particular problem successfully. Since either kind
of process will be vulnerable to interruptions, it is important that the initial
storage of observations be as efficient as possible, and that the subsequent
assimilation process be made up of small steps so as not to suffer excessively
from interruptions.

4 Partial Order

The partial order is a mathematical structure that appears frequently in
attempts to devise a computational representation for knowledge. A partial
order (S,<) is a set S and a binary relation < on the elements of S that
satisfies:

(1) for no x ∈ S, x < x,
(2) for any x, y, z ∈ S, if x < y and y < z, then x < z.

A total order is a partial order that also satisfies:

3Thus we see a taxonomic hierarchy as a set of states of partial knowledge of identity
useful in the recognition process. If this is true of people, we should find that its structure
is not determined by the number of shared characteristics among individuals (as would be
required by economy of storage) but by the shared states passed through in the process of
recognition. Thus, “whale” fits into the hierarchy under ”fish” not because our ancestors
thought whales were fishes or even because they have many common characteristics but
because the states of partial knowledge encountered in recognizing a whale have more in
common with “fish” than with “mammal.”
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(3) for any x, y ∈ S, x < y or x = y or y < x.

A partial order can arise when representing a relationship, such as con-
tainment among subsets of a set, that is inherently partially ordered in the
world. Any set with more than one element has subsets that are not related
by containment. On the other hand, a partial order can also arise when rep-
resenting states of partial knowledge about a total order, such as the order
of places on a street (as in Section ??).

A partial order can be represented in the computer either as a distributed
collection of pointers, or as a single complex data structure. The contain-
ment relation might be represented in a semantic network, for example, as a
SUBSET-OF link between the nodes representing two regions. On the other
hand, the node for a street may refer to a data structure representing, in
one place, the current state of knowledge about the order of places on that
street.

Two of the design features we want in commonsense representations
are satisfied directly, because a partial order is the transitive closure of an
arbitrary set of order relations. First, if an observation is a sequence of
elements of S, then any set of observations can be represented by some
partial order. This is clearly false of total orders, since there are some sets
of observations that do not determine a total order uniquely. Second, if
some of the order relations are lost, due to a destructive process acting on
memory, the remaining information still constitutes a partial order, which
furthermore is simply a less-specified version of the original.

Now let us examine a representation of a partial order in the computer.
Let (P,<) be a finite set with a partial order. Assume that we already have
a representation for the elements of P , so that for each x in P , f(x) is its
computer representation. Now let S be a set of sequences of elements from
f(P ). Define a new relation � on f(P ) by saying that a � b for a and b
in f(P ) if there is a sequence in S in which a precedes b, and let �∗ be the
transitive closure of �. Then (f(P ),�∗) is a partially ordered set, and S
can be chosen so that

x < y iff f(x)�∗ f(y).

Thus, for an arbitrary, finite, partially ordered set, we can represent the
order relation in the computer as a set of sequences.

Given the correspondence above, we can define access procedures that
operate on the set-of-sequences data structure to answer questions about
the represented partial order, and to change it as the partial order changes:
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ORDER(a, b, S) =


+1, if a�∗ b
−1, if b�∗ a
“don’t know” otherwise

MERGE(seq, S) = S with the side-effect that seq has been added
to the partial order S.

REORGANIZE(S) = S rearranges and combines the sequences in S to
make ORDER more efficient without chang-
ing its logical properties.

The retrieval function ORDER can in general be quite inefficient, es-
pecially for pathological, highly branching partial orders. However, since
the surrounding context must already be capable of dealing with a “don’t
know” response, an interruption or exhaustion of resources simply results in
the least painful class of disasters D5.

MERGE needs only to append its sequence to S and do no extended
computation, and so it is not very vulnerable to destructive interruptions
and unlikely to lose observations (D4). Extended processing of input is left
to REORGANIZE, which examines the set S of sequences, rearranging and
combining them to achieve the minimum of branching. However, since the
value returned by a call to ORDER is unaffected by REORGANIZE, it can
operate completely in the background, freely interruptable by more urgent
needs, but when resources are available making S suitable for more efficient
access by ORDER.

In the TOUR model of commonsense knowledge of large-scale space
[Kuipers, 1977, 1978], such a partial order data structure is part of the
description of a street, representing the current state of partial knowledge
about the order of places on the street. The observations provided are se-
quences of places observed when travelling along the street, and they are
merged into the street’s partial order. However, there is an ambiguity left in
the correspondence between an observed sequence (ABC) of places, and the
partial order data structure S associated with the street description. Does
the observation of (ABC) mean A�∗ B �∗ C or C �∗ B �∗ A?

Information must be provided by the global context to resolve this ambi-
guity. In the TOUR model, one element of the global context is the current
one-dimensional orientation of the traveller on the current street. The 1-D
orientation takes on the values +1, −1, and “don’t know,” exactly as pro-
vided by ORDER, and represents the correspondence between the dynamic
order of observations and the static order associated with a street descrip-
tion. In case the 1-D orientation is “don’t know,” (ABC) is treated as
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{(A), (B), (C)}, and the order information is lost until it is observed again.
Inference rules in the TOUR model specify how the 1-D orientation is ob-
tained and updated, and how it guides the interpretation of observations
such as these.

5 Route Description

Sequential behavior is an important part of the life of any intelligent human
or computer, and the learning of these sequences is an important aspect of
commonsense knowledge. I shall present in this section an example of a rep-
resentation for descriptions of routes through a large-scale space, intending
to show how the gradual accretion of local observations produces several
qualitatively different phases of behavior. (There are certainly attractive
parallels with other kinds of learned sequential behavior, which bear further
investigation in other contexts. However, it should also be observed that a
representation such as this one is certainly inadequate for many other kinds
of sequential behavior, such as language production.)

Let a view V be a description of an observable piece of the environment
from one position, and let an action A be some motion that can be per-
formed in the context of that piece of environment. To model the role of
the environment in travel, let us define the function RESULT (V,A) = V ′,
which is interpreted as “if performing action A in the context of the piece of
environment described by V , the result will be the observation V ′.” Notice
that RESULT does not model a mental operation; it models the physical
fact that if you see one thing (V ), then turn a corner (A), you will see
something different (V ′).

I am thinking of a view as a visual image and an action as walking a
distance or turning, although other interpretations are possible and reason-
able. The internal structure of these descriptions is assumed to be extremely
complex and data-rich, and fortunately is not of concern to us here. Assume
that your eyes are capable of delivering a view description V that can be
compared for identity with stored views V ′, V ′′, etc., and that an action A
can be recorded if performed, and performed if recalled in the appropriate
context.

With these preliminaries taken care of, we can define a route description
as a set of triples (V,A, V ′), where a triple may allow either the A or V ′

position to be unspecified. [For notation, (V,A, ?) leaves open the question
of whether V ′ was specified, and (V,A, ) states that it was not. ] As part of
a route description, (V,A, V ′) represents the imperative of doing A when in
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the context described by V , and the assertion that RESULT (V,A) = V ′.4

Three operations are permissible on a route description. If RD is a route
description:

INSERT (triple, RD) = RD and adds triple to the set RD

ASSOC(V,RD) =

{
(V, ?, ?) if such a triple is in RD
“don’t know” otherwise

A or V ′ can be added to a (V, , ) or (V,A, ) triple.
In particular, the route description itself is a set with no sequential struc-

ture. That will arise as a property of the particular set of triples.
As information is gradually added to a route description, the behavior

it supports goes through three phases:

1. Considered simply as a collection of triples, a route description RD
supports recognition of a previously observed view (V, , ), knowledge
of the action to take at that point (V,A, ), and even anticipation of the
result of the action (V,A, V ′). In the early stages of learning a route
description, the set contains only a few partially filled triples and so
it will support only occasional recognition and further acquisition of
information but not selfguided travel.

2. The first threshhold is passed when RD contains enough (V,A, ?)
triples to complete a sequence

V0, A0, V1, A1, · · ·Vn

connecting the beginning and end points of the route, satisfying

(a) ASSOC(Vi, RD) = (Vi, Ai, ?)
(b) RESULT (Vi, Ai) = Vi+1

This permits the route description to be followed as an imperative set
of instructions, but only in conjunction with physical observation of the
environment. The association between view and action is contained
in the route description, while order information is contained in the
physical structure of the environment.

4The similarity of (V,A, V ′) triples to stimulus-response associations has not gone
unnoticed but arose from the computational requirements of the problem, rather than
being a theoretical principle that I brought to this design. However, a (V,A, V ′) triple is
quite different from a stimulus-response pair in that it also acts as a symbolic assertion
that can be the input or output of deductive procedures.
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3. The second threshhold is passed when RD contains enough triples of
the form (V,A, V ′) so that the sequence:

V0, A0, V1, A1, · · ·Vn

can be constructed solely from

(c) ASSOC(Vi, RD) = (Vi, Ai, Vi+l)

In this case, the order information is now represented explicitly in the
route description, and need not be acquired through physical inter-
action with the world. This level of organization supports planning
and mental rehearsal of the route, which is valuable for constructing
descriptions of larger spatial structures, as well as physical travel over
that particular route.

This representation is interesting for a number of reasons. First, its
performance undergoes two qualitative changes over a range of very simple
information acquisition steps. Second, adding a new piece of information
consists of either inserting a new triple into the set, or of filling an empty
slot in a triple. Neither constitutes a heavy computational load or is likely to
suffer much from destructive interruptions. Third, the only search involved
is the associative retrieval from the set of triples.

This route description is also reasonably resilient in the face of various
kinds of degraded performance:

1. Extra information is no burden at all: associative retrieval simply
overlooks information that is not needed.

2. Loss of V ′ from a triple is not a barrier to physical travel (D3), but
only to mental rehearsal of the route description, and therefore to some
kinds of structure-building (D5).

3. Loss of either A from a triple, or of an entire crucial triple, is a barrier
to self-directed travel (D3), but not to recognition, and it does not
render the remaining route description worthless (D2). Later obser-
vations can still fill the gap and restore full performance without an
error ever having to be explicitly detected and recognized.

In the TOUR model, this route description bridges a gap between a
plausible level of observational experience and the sequence of GO-TO and
TURN instructions that formed the basis of the early formulations [Kuipers,
1977, 1978]. The further process of assimilation described there takes spatial
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information from the context of particular route descriptions and associates
it with fixed features of the environment. Thus the egocentric view and
action descriptions are assimilated into a nonegocentric place description
whose local geometry summarizes the possible actions that can take place
there. Similarly, order information that is implicit in the sequence of places
encountered on a route is associated with path descriptions of the streets
involved.

6 Conclusion

This chapter has essentially been about graceful degradation: how the per-
formance of a representation for commonsense knowledge can survive the
unpleasant computational environment of the real world. In particular, how
it can minimize the level of disaster resulting from interruptions, destruc-
tion of information, and limitations in resources. Important properties of
commonsense representations include (1) the ability to express intermediate
states of the learning process, (2) resilience in the face of partial destruction
of the represented information (preferably without even having to notice the
destruction), and (3) the ability to express a meaningful response when a
process is prematurely asked for the result of a computation. A number of
examples were presented to illustrate different aspects of these properties.

The examples and properties give a qualitative description of the char-
acteristics that are important in a commonsense representation, but they
need to be supplemented by a quantitative, mathematical analysis.

How resilient is a representation under what kinds of destruction?
Which sequences of observations can and cannot be represented

completely?
What kinds of partial results of procedures are usable by the

process that made a premature demand for an answer?
How bad is a given class of disaster, for a given request in a given

context?

For some of the questions (“how resilient,” “how bad”), it is not even
clear how to state the question mathematically or what form the answer
would take. For other questions, the answer requires a precise description of
the set of all possible observations, outputs, or items vulnerable to destruc-
tion .

Another intriguing class of mathematical questions that arises from these
examples concerns the characterization of commonsense knowledge. How
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many computational representations are there? Infinitely many, of course,
but can they be generated in some interesting way from a small basis, the
way we describe cyclic groups? Of all these representations, how many
satisfy the performance constraints we would like to apply to representations
of commonsense knowledge? Even if we cannot generate all representations,
perhaps we can generate all commonsense representations?

An alternative possibility is that there really are not very many common-
sense representations at all, perhaps a dozen or two. Then we could catalog
them in the way we catalog the “simple machines” out of which other me-
chanical devices are constructed. The wide use of metaphor from concrete
physical and spatial knowledge to more abstract domains ends some plausi-
bility to this curious notion. Perhaps one reason for the use of metaphor is
that there are only a few suitable representations for commonsense knowl-
edge, we learn them initially when learning about the physical world, then
apply them metaphorically to get access to powerful representational devices
in new domains.
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