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Abstract

To be autonomous, intelligent robots must learn the foundations of commonsense knowledge from
their own sensorimotor experience in the world. We describefour recent research results that contribute
to a theory of how a robot learning agent can bootstrap from the ‘blooming buzzing confusion’ of the
pixel level to a higher-level ontology including distinctive states, places, objects, and actions. This is not
a single learning problem, but a lattice of related learningtasks, each providing prerequisites for tasks
to come later. Starting with completely uninterpreted sense and motor vectors, as well as an unknown
environment, we show how a learning agent can separate the sense vector into modalities, learn the structure
of individual modalities, learn natural primitives for themotor system, identify reliable relations between
primitive actions and created sensory features, and can define useful control laws for homing and path-
following.

Building on this framework, we show how an agent can use self-organizing maps to identify useful
sensory featurs in the environment, and can learn effectivehill-climbing control laws to define distinctive
states in terms of those features, and trajectory-following control laws to move from one distinctive state
to another. Moving on to place recognition, we show how an agent can combine unsupervised learning,
map-learning, and supervised learning to achieve high-performance recognition of places from rich sensory
input. And finally, we take the first steps toward learning an ontology of objects, showing that a bootstrap
learning robot can learn to individuate objects through motion, separating them from the static environment
and from each other, and can learn properties useful for classification. These are four key steps in a larger
research enterprise on the foundations of human and robot commonsense knowledge.
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1 Introduction

Commonsense knowledge is a bottleneck problem on the way to artificial intelligence [McCarthy, 1968].
Common sense, and hence most other human knowledge, is builton knowledge of a few foundational do-
mains, such as space, time, objects, action, causality, andso on [Piaget and Inhelder, 1967, Minsky, 1975].
Spatial knowledge is arguably the most fundamental of thesefoundational domains [Lakoff and Johnson, 1980].
We are investigating how the foundations of spatial knowledge can be learned from unsupervised sensorimo-
tor experience.

We have done extensive work on human and robot knowledge of large-scale space (the cognitive map),
leading to the Spatial Semantic Hierarchy [Kuipers, 2000, Remolina and Kuipers, 2004, Kuipers et al., 2004].
The multiple levels of the SSH demonstrate how higher levelsof representation can be based on lower, simpler
levels. The SSH Control level, the lowest, makes a good target for bootstrap learning.

The basic idea behind bootstrap learning is to reach a learning goal by composing multiple simple ma-
chine learning methods, using weak but general learning methods to create the prerequisites for applying
stronger but more specific learning methods. The result is a lattice of learning methods that collectively learn
the desired knowledge.

We assume that a learning agent1, human or robot, starts with a low-level ontology for describing its
sensorimotor interaction with the world. William James called this the “blooming buzzing confusion” that
confronts the infant from its unfamiliar senses. From a robotics perspective, we call it the “pixel level”,
referring to the individual pixels of a camera image, the individual measurements in a laser range scan, the
incremental motions caused by motor signals, the individual cells of an occupancy grid map, and so on. The
learning task is to create useful higher-level representations for space, time, objects, actions, etc, to support
effective planning and action in the world, bootstrapping up from experience at the pixel level.

In the remainder of this paper, after discussing the methodological framework for learning without prior
domain-specific knowledge, we describe four recent research results that carry us significantly further toward
autonomous learning of the foundational representations for commonsense knowledge.

Section 3 describes a method for starting with a completely uninterpreted sensorimotor system, applying
a hierarchy of learning methods to define sensor modalities and their structures, primitive actions, sensory
features and how they are affected by actions, control laws and distinctive states. Section 4 re-examines how
sensory features and control laws are learned, providing anunsupervised method based on self-organizing
maps. This method, SODA, uses self-organizing maps to learnthe abstraction from “pixel-level” sensor in-
puts and motor outputs to perceptual features, distinctivestates, and hill-climbing and trajectory-following
control laws. Section 5 shows how highly reliable place recognition can be learned through a bootstrap learn-
ing process, combinging unsupervised learning, map-learning, and supervised learning. Section 6 describes
how an ontology ofobjectscan be learned from pixel-level experience. These are initial steps toward a
foundational theory of how commonsense knowledge is possible.

2 A Methodological Framework

There are some serious questions about how one even begins toinvestigate the problem of learning founda-
tional representations from uninterpreted sensors and effectors.

There are four different nested learning problems, where each defines the learning target for its predeces-
sor.

1We use the term “robot” to refer to the physical system and itssensors and effectors. The “learning agent” is the computational
process observing and learning to control the robot. Body and mind, if you wish.
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1. As human researchers with limited resources of various kinds, we need to develop a suitable research
strategy and research methodology to allow this overall research enterprise to be broken down into
projects of manageable size. This research enterprise is a collective and extended search for . . .

2. . . . a learning algorithm that takes as input a set of domain-independent statistical learning methods and
an uninterpreted set of sensors and effectors allowing exploratory behavior in the environment, and
eventually learns . . .

3. . . . a higher-level ontology for commonsense knowledge, including such foundational concepts as space,
time, motion, objects, actions, causality, etc, along withinference methods for abduction and planning,
in order to . . .

4. . . . build higher-level models (“maps”) that describe theenvironment in terms of the concepts in the
learned high-level ontologies, to explain the observations the agent obtains during exploratory behavior.
The quality of such a “map” is determined by its utility for generating effective predictions and plans.

Our own extensive work on learning cognitive maps of unknownenvironments through exploration is a
contribution to problem 3, devising an appropriate ontology for knowledge of large-scale space, and problem
4, the task of building the maps given that ontology. The result of this work is the Spatial Semantic Hierarchy
(SSH), which we use to define the target ontology for bootstrap learning of spatial knowledge as part of
problem 2.

Our own work on bootstrap learning (summarized in this paper) contributes in various ways to problem 2.
Continuing progress in our map-learning research makes theSSH a moving target. Nonetheless, we believe
that the progress we have made so far on bootstrap learning will have sufficient generality and robustness to
survive changes in the target ontologies it is intended to reach.

Problem 2 is itself an enormous problem, with many diverse aspects, so it must be solved by the research
community over an extended period of time, which raises the strategic questions of problem 1.

Problem 1 is how to break the overall research enterprise of problem 2 into manageable pieces. Each
piece necessarily makes assumptions about what other research results, some to be created in the future, will
provide. Ideally, as the individual pieces are created, they will fit together into a larger intellectual structure,
the assumptions of each piece being satisfied by the results from some pieces it rests on. In reality, we don’t
always guess right in making those assumptions or deciding how to break the large problem into manageable
pieces, so some work will inevitably need to be modified or redone.

One research strategy that we have adopted is to avoid placing a prior constraint on the set of domain-
independent statistical learning methods to be used in solving problem 2. We are pragmatic in our choice of
methods, driven by the needs of the research problem at hand,while attempting to ensure that the statistical
learning methods chosen are as general as possible, withoutdomain-specific assumptions. After we have
discovered sets of learning methods sufficient to provide solutions for problem 2, then we can begin to
identify minimal subsets of those methods compatible with particular implementation technologies, including
biological ones.

Another research strategy we have adopted is to place secondary importance on the question of whether
a particular learning problem is solved by the species (overevolutionary time) or by the individual (over
developmental time). In our work, we frame the learning problem as a problem for the individual, but this
is a gedankenexperimentor “intuition pump” to help us develop useful insights at this early stage of our
research enterprise. Eventually, we will need to consider whether particular kinds of learning take place
during evolution, embryogeny, development, or mature behavior. In the biological world, the answers clearly
vary from species to species.
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The underlying hypothesis behind problem 2 is that the sophisticated higher-level ontology of human
commonsense knowledge can arise from an undirected bootstrap-learning search through a space of repre-
sentations. In the end, a solution to problem 2 in its entirety must be evaluated according to the ability of the
learning process to construct a useful higher-level ontology for a complex world, without external direction.
Our hypothesis is that the learning process is directed by the structure of the knowledge that is being learned,
not by external supervision based on explicit goals.

However, Problem 1 recognizes that human research efforts cannot be undirected. A particular research
project, intended to be accomplished by a few researchers within a year or two or three, must have an ex-
plicit target for the learning process to be developed. Is this inconsistent with the overall goal of undirected
learning? No.

We attempt to define manageable projects directed as particular aspects of successful human common-
sense knowledge. If we are successful in defining a project with an initial set of assumptions and a learning
target along the path that human learning followed, then thetarget should be reachable by some undirected
learning method. If the project succeeds, our confidence in the selection of the initial assumptions and the
learning target, not to mention the learning method that wasdiscovered, are all increased. If the project fails,
it could be due to insufficient cleverness in finding a learning method, but it also could be due to poor choice
of initial assumptions or learning target.

Considered within the context of a larger research enterprise, an individual research project can succeed,
not only by solving a stated problem, but by modifying the given problem into one that has a good solution.
Such a problem-solution pair must interact well with its neighbors, in the sense that the initial assumptions
are satisfied by some prior process, and the target of this learning process is useful to other processes.

Thus, we can resolve the apparent paradox of a directed research project to develop an undirected learning
method. Each individual research project is a part of the larger research enterprise. Each explicit learning
target is a working hypothesis about how the solution to the overall research enterprise will look. The methods
used in each project must be undirected, encoding no domain-specific knowledge about the learning target.
The solution to the overall enterprise is obtained if the choice of intermediate learning targets leads to a set
of compatible undirected learning methods that, together,reach the overall goal. (Figure 2 is a preliminary
example of this.)

3 Learning from Uninterpreted Sensors and Effectors

The lowest level problem is faced by a learning agent in an unknown environment with unknown sensors and
effectors. Our goal is to learn the foundation for the Spatial Semantic Hierarchy [Kuipers, 2000]. The SSH
rests on a set of hill-climbing and trajectory-following control laws and the knowledge of the sensorimotor
interface to support them. How can this knowledge be learnedfrom unsupervised experience?

Pierce and Kuipers [Pierce and Kuipers, 1997] answered thisquestion in the context of a simulated mo-
bile robot with unknown sensors and effectors. The learningagent conducted a variety of experiments and
analyzed the data, building a hierarchy of representationsof both the sensory and motor systems, and even-
tually creating control laws that could define distinctive states (Figure 1). The experiment had the following
steps.

1. Gather observations during random sequences of actions.First, coarsely cluster the sensors according
to the qualitative properties of a histogram of values returned by each sensor. Then, within appropriate
clusters, compute pairwise correlations among sensor values and interpret them as similarity measures.
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(a) (b) (c)

Figure 1: Exploring a simple world at three levels of competence. (a) The robot wanders randomly while learning a
model of its sensorimotor apparatus. (b) The robot exploresby randomly choosing applicable homing and open-loop
path-following behaviors based on the static action model while learning the dynamic action model (see text). (c) The
robot explores by randomly choosing applicable homing and closed-loop path-following behaviors based on the dynamic
action model.

2. Assign the sensors in a cluster to positions in a high-dimensional space reflecting their pairwise sim-
ilarities. Project to a low-dimensional subspace (2D in ourexamples) that best accounts for most of
the variance in the cluster. Once sensor values have a spatial as well as temporal dependence, we can
calculate spatial as well as temporal derivatives, and thusdefine motion fields.

3. The motion fields corresponding to different motor signals are analyzed using principal component
analysis to determine the most significant motion effects and the motor signals that correspond to
them. These signals are used as the natural primitives for the motor space.

4. Higher-level sensory features are proposed, based on thespatial and temporal attributes of the field
of primitive sensory values. These include features such asdiscontinuities, local minimum and local
maximum, with magnitude, position, and scope. Proposed features are evaluated according to stability,
predictive power, and extensibility.

5. Evidence is collected of the effects of primitive motor commands on higher-level features, searching
for motor commands that change features in predictable ways. “Local state variables” are defined for
particular neighborhoods in the environment. Trajectory-following and hill-climbing control laws are
defined according to which local state variables correspondto features that are both observable and
controllable.

6. Open-loop control laws are defined by identifying commands that reliably change one feature while
keeping another one relatively constant. Closed-loop control laws are defined by searching for and
identifying commands that can reduce deviations in the relatively constant feature, actively keeping
it close to a desired setpoint. (Think of moving along a wall,turning slightly to maintain a desired
distance from it. Compare figures 1(b,c).)

Figure 1 shows exploration traces at three stages of the learning process. The analysis uses a variety of
mathematical methods, but only ones that can be applied to weakly interpreted data, using local computations
such as neural networks. The sequencing of the learning steps arises because later learning methods depend
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on prerequisites learned by earlier ones. Figure 2 shows thelattice of learning methods that supported these
conclusions.

One lesson from this work is that learning even an apparentlysimple sensorimotor skill such as wall-
following, starting from a pixel-level ontology, requiresa large number of distinct learning algorithms, con-
structing a lattice of different representations of the sensory and motor capabilities of the robot.

4 Learning Distinctive States

The learning of high-level sensory features and hill-climbing and trajectory-following control laws in Pierce
and Kuipers [Pierce and Kuipers, 1997] made use of certain background knowledge about sensors and con-
trol, albeit of an abstract and domain-independent kind. Inorder to eliminate this use of background knowl-
edge, Provost, et al [Provost et al., 2006] use more generic learning methods such as self-organizing maps
and reinforcement learning to achieve the same goals.

Modern robots are endowed with rich sensory systems, in which a high-dimensional sense vector pro-
vides a high-bandwidth stream of information about a continuous environment. In addition, many important
real-world robotic tasks havehigh diameter, that is, their solutions require a large number of primitive ac-
tions by the robot, for example, navigating to distant locations using primitive motor control commands.
Reinforcement learning (RL) methods show promise for automatic learning of robot behavior, but extending
these methods to high-dimensional, continuous, high-diameter problems remains a major challenge. Thus,
the success of RL on real-world tasks still depends on human analysis of the robot, environment, and task to
provide a useful set of perceptual features and an appropriate decomposition of the task into subtasks. Our
goal is to create autonomous learning agents, relying on fewassumptions about the nature of the robot and
its world.

Self-Organizing Distinctive-state Abstraction(SODA) is a new method for automatic discovery of high-
level perceptual features and large-scale actions for reinforcement learning in continuous environments [Provost etal., 2006].
A distinctive stateis the isolated local maximum of a selected measure defined over the local neighborhood,
so that a hill-climbing control law can bring the robot to thedistinctive state from any point in its neighbor-
hood.

In SODA, we use a version of self-organizing maps (SOMs) [Kohonen, 1995] called the Growing Neu-
ral Gas (GNG) [Fritzke, 1995] to learn a small and general setof prototype units to represent the sensory
experience available in the domain. Unlike the original SOM, the GNG allows the number of units and the
topology of the mesh to adapt to the properties of the domain.To define distinctive states, we define the
activation level of the leading GNG unit to be the target value for hill-climbing. The activation levels of the
GNG units therefore serve as the perceptual features for this agent.

As the agent moves around the environment, different GNG units will have the leading activation level,
and will thus define distinctive states based on different hill-climbers. Motion from one distinctive state
neighborhood to another is done using trajectory-following control laws. In this preliminary version of
SODA, these are simply repetitions of particular primitiveactions until the dominant GNG unit changes,
so they correspond to open-loop path-following control loops in [Pierce and Kuipers, 1997] (Figure 1(b)).

Thus, without prior knowledge of the robot’s sensorimotor system or its environment, SODA does several
distinct types of abstraction. It doesperceptual abstractionby abstracting a high-bandwidth sense vector to
a small set of GNG units, which serve as perceptual features.It doesstate abstractionby defining locally
distinctive states to represent large portions of the continuous state space. And it doestemporal abstractionby
defining higher-level actions that take the agent from one distinctive state to the next, combining the effect of
a trajectory-following control law to take the agent to a newneighborhood, and a hill-climbing control law to
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reach the distinctive state itself within that neighborhood. These abstractions reduce both the dimensionality
and the diameter of the robot’s tasks.

Given high-dimensional, continuous-valued sensory inputand continuous motor output, SODA works as
follows.

1. Explore the environment with primitive (A0) actions, using a Growing Neural Gas [Fritzke, 1995] self-
organizing feature map to learn a set of high-level perceptual features that define distinctive states in
the environment. Figure 3(bottom) shows examples of the learned perceptual features.

2. Learn a set of high-level (A1) actions in the form of control laws that carry the robot fromone distinc-
tive state to another. Each action consists of a trajectory-following control law that repeats a primitive
action until a new perceptual feature becomes dominant, followed by a hill-climbing control law that
maximizes the new dominant feature.

3. Use reinforcement learning in the abstracted space of high-level distinctive states and actions to learn
a policy for the same high-diameter task, which now has much lower diameter with respect to theA1
actions.

Each distinctive state created by SODA is characterized by the GNG unit whose activation is maximized
at that state. Different underlying states may be aliased according to this criterion, leading to an action model
that is non-deterministic due to state aliasing. In future work, we plan to draw on our methods for learning
causal and topological maps [Remolina and Kuipers, 2004], to learn when distinctive states are and are not
aliased, and to create a deterministic map. Nonetheless, even with a non-deterministic state-action map,
reinforcement learning on the abstracted states and actions is very successful.

An experiment on a simulated robot navigation task (Figure 3) shows that the agent using SODA can
learn to perform a task requiring 300 small-scale, local actions using as few as 9 autonomously-learned,
temporally-extended, abstract actions. The learning timeis substantially improved (Figure 4).

The methods discussed so far can learn the properties of the pixel-level sensorimotor system well enough
to support autonomous learning of control laws and distinctive states suited to the environment the robot is
embedded in. These distinctive states and the actions connecting them are the first steps toward a higher-level
ontology for describing the robot’s world. We now turn to twolearning scenarios that build further on this
higher-level ontology. First we look at the problem ofplace recognition: overcoming the variability of the
pixel-level sensory image to recognize the current distinctive state directly and correctly from sensory input.
And second, we take an important step toward learning the concept ofobject, a higher-level explanatory
concept that makes it possible to learn useful causal regularities about the world.

5 Bootstrap Learning for Place Recognition

It is valuable for a robot to know its position and orientation with respect to its map of the environment. This
allows it to plan actions and predict their results, using its map. Kuipers and Beeson [Kuipers and Beeson, 2002]
applied the bootstrap learning approach to the problem of learning to recognize places that may have origi-
nally been perceptually aliased.

We defineplace recognitionas identifying the current position and orientation in a large-scale space, a
task sometimes called “global localization” [Thrun et al.,2001]. However, not every location in the environ-
ment is a “place”, deserving of independent recognition. Humans tend to remember places which are distinc-
tive, for example by serving as decision points, better thanintermediate points during travel [Lynch, 1960].
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Figure 3:Navigation using Learned Abstraction. The upper diagram shows the robot’s environment and
an example episode after the agent has learned the task usingtheA1 actions. The triangles indicate the
distinctive states the robot is in at the start of eachA1 action. The bottom part of the figure shows the sequence
of perceptual features corresponding to these distinctivestates. The narrow line indicates the sequence ofA0
actions used by theA1 actions. Navigating to the goal requires only 9A1 actions, instead of hundreds ofA0
actions – task diameter is vastly reduced. (Figure from [Provost et al., 2006].)
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We assume that the world and the agent’s sensors are both veryrich, so distinguishing information exists,
but is hard to find. Real sensors are imperfect, so important but subtle image features may be buried in sensor
noise. Two complementary problems stand in the way of reliable place recognition.� Perceptual aliasing: different places may have similar or identical sensory images.� Perceptual variability: the same position and orientation may have different sensory images on different

occasions, for example at different times of day.

These two problems trade off against each other. With relatively impoverished sensors (e.g., a sonar ring)
many places have similar images, so the dominant problem is perceptual aliasing. With richer sensors such
as vision or laser range-finders, discriminating features are more likely to be present in the image, but so
are noise and dynamic changes, so the dominant problem for recognition becomes image variability. For
this research, we use only real sensors in real environments, in order to avoid assumptions that restrict us to
certain types of sensors or make it difficult to scale up to large environments.

When unique place recognition cannot be done using the current sensory image alone, active exploration
will provide history information that can localize the robot and determine the correct place. However, when
subtle features, adequate for discriminating between different places, are buried in the noise due to image
variability, we want to recover those features.

We build on the abstraction of the continuous environment toa discrete set ofdistinctive states(dstates),
provided by theSpatial Semantic Hierarchy(SSH) [Kuipers, 2000]. We assume that the agent has previously
learned a set of features and control laws adequate to provide reliable transitions among a set of distinctive
states in the environment [Pierce and Kuipers, 1997, Provost et al., 2006]. The steps in our solution to the
place recognition problem apply several different learning methods (Figure 5).

1. Restrict attention to recognizingdistinctive states(dstates). Distinctive states are well-separated in the
robot’s state space.
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2. Apply an unsupervised clustering algorithm to the sensory images obtained at the dstates in the envi-
ronment. This reduces perceptual variability by mapping different images of the same dstate into the
same cluster, even at the cost of increasing perceptual aliasing by mapping images of different states
into the same cluster. We define each cluster to be aview, in the sense of the SSH [Kuipers, 2000].

3. Build the SSH causal and topological maps — symbolic descriptions made up of dstates, views,
places, and paths — by exploration and abduction from the observed sequence of views and actions
[Kuipers, 2000, Remolina and Kuipers, 2004]. This providesan unambiguous assignment of the cor-
rect dstate in the map to each experienced image, which is feedback path (a) in Figure 5.

4. The correct causal/topological map labels each image with the correct dstate. Apply a supervised
learning algorithm to learn a direct association from sensory image to dstate. The added information
in supervised learning makes it possible to identify subtlediscriminating features that were not distin-
guishable from noise by the unsupervised clustering algorithm. This is feedback path (b) in Figure 5.

We evaluated this method in experiments in two different real-world environments, one constructed to
have a subtle distinguishing feature in an otherwise simpleand symmetrical environment, and the other the
main corridor in an office building. In both cases, unsupervised clustering produced significant amounts of
perceptual aliasing, but with the help of the learned topological map, supervised learning was able to converge
rapidly to 100% accurate place recognition.

This is a paradigm example ofbootstrap learning. A weak learning method (k-means clustering) pro-
vides the prerequisites for an abductive method (topological map-building), which in turn provides the labels
required by a stronger supervised learning method (nearestneighbor), which finally achieves high perfor-
mance.

6 Bootstrap Learning of Object Representations

The blooming buzzing confusion of the pixel-level world is too variable to contain meaningful causal reg-
ularities useful for prediction and planning. Among the many important achievements in early childhood
development is learning the higher-level concept ofobject, which along with the higher-level concept ofac-
tion is capable of supporting learning of causal regularities useful for understanding and manipulating the
world [Spelke, 1990].

In recent work toward this goal [Modayil and Kuipers, 2004],we have shown how an agent can au-
tonomously learn an ontology ofobjectsto explain many aspects of its sensor input from an unknown dynamic
world. For an agent to learn about an unknown world, it must learn to identify the objects in it, what their
properties are, how they are classified, and how to recognizethem.

The robot’s sensorimotor system provides time-varying sensor inputs and motor outputs. From this, we
assume that it can construct a description of the local environment in the “pixel-level” ontology of occupancy
grid models.2 The learning scenario described here takes place in “small-scale space”, the space within the
immediate sensory surround of the agent where it can reliably localize itself [Kuipers et al., 2004].

The occupancy grid representation for local space does not include the concept ofobject. The occupancy
grid representation assumes that the robot’s environment can be divided into cells that are empty and those
that are occupied. Evidence provided by range sensors is used to update the probability of occupancy of each

2The learning methods in Pierce and Kuipers [Pierce and Kuipers, 1997] can learn the properties of sensors and effectors from
experience. We assume that the occupancy grid representation and inference method can be learned in a similar way. We have a sketch
of such a learning scenario, but it is outside the scope of this research on objects.
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cell. Simultaneous localization and mapping (SLAM) algorithms can efficiently construct an occupancy grid
map and maintain accurate localization of a mobile robot within it using range sensor data [Moravec, 1988,
Thrun et al., 2000].

In this bootstrap learning scenario, the learning agent acquires a working knowledge ofobjectsfrom
unsupervised sensorimotor experience. We begin by using the properties of occupancy grids to classify
individual sensor readings as static or dynamic. A cell in the occupancy grid is consideredstatic if it is
labeled occupied with high confidence, and has never been labeled free with high confidence. A cell is
considereddynamicif it has ever been labeled free with high-confidence, even ifit later becomes occupied.
An individual sensor reading is labeled static or dynamic according to the label of the cell it falls in. Static
readings are considered to be explained by the structure of the fixed environment, and are not considered
parts of objects.

The representation of objects is constructed from dynamic sensor readings in four steps: Individuation,
Tracking, Image Description, and Categorization. Dynamicreadings are clustered and the clusters are tracked
over time to identify objects, separating them both from thebackground of the static environment and from
the noise of unexplainable sensor readings. Once trackableclusters of sensor readings (i.e., objects) have been
identified, we build shape models when shape is a stable and consistent property of these objects. However,
the representation can tolerate, represent, and track amorphous objects as well as those that have well-defined
shape. The shape models are classified, so that instances of the same type of object can be categorized
together.

In Modayil and Kuipers [Modayil and Kuipers, 2004], we demonstrate this learning process using a mo-
bile robot equipped with a laser range sensor, experiencingan indoor environment with significant amounts
of dynamic change. The agent learned to individuate and track dynamic objects in the scene, acquired shape
models where the shape was stable, and created a categorization of shape models. The scene could then be
described in terms of the static environment (grounded to the static portions of the occupancy grid), and the
dynamic objects (whose identities and trajectories could be described symbolically, grounded to the tracked
objects in the scene). Figure 6 shows selected steps leadingto this result.

By this process, the agent has learned substantial portionsof the concept ofobject. It has learned to
separate objects from the background environment, describing it as an individual that has a spatial extent
and persists over time. Some individual objects have a consistent shape, which can be used to categorize
individual objects into object types. A straight-forward consequence of this, but one not explored yet in
this paper, is the ability to identify new individual elements of the object type, which might not have been
identified using previous methods, perhaps because it has never moved, or perhaps because its image has
always been entangled with other objects or the environment. We are also investigating the learning of
appropriate actions for interacting with object individuals and types.

7 Conclusions

To be autonomous, a robot must be able to learn its own ontology of higher-level concepts from its own
pixel-level experience with the world, rather than obtaining it from an external programmer. We have
described recent research that shows how the structure of unknown sensors and effectors can be learned
[Pierce and Kuipers, 1997]; how high-level perceptual features and actions can be learned and used to define
distinctive states [Provost et al., 2006]; how high performance place recognition can be learned by bootstrap-
ping unsupervised learning, map-building, and supervisedlearning [Kuipers and Beeson, 2002]; and how an
ontology of objects can be learned from low-level experience with a dynamic world [Modayil and Kuipers, 2004].

There are many other aspects of commonsense knowledge of thephysical world still to be learned. We
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(a) (b)

(c) (d)

Figure 6: Multiple representations of a scene. The robot observer is the small round robot in the foreground.
The larger ATRV-Jr is used as a non-moving object.(a): A photograph of the scene.(b): A range image
of the scene at approximately the same time.(c): An occupancy grid representation of the scene.(d): An
iconic representation of the scene. This is a symbolic description of the robot’s environment enabled by the
learned object ontology. The location of the observing robot is indicated by a small triangle (�). A moving
object (pedestrian) of amorphous shape is shown with its trajectory. A non-moving object (ATRV-Jr) has
been classified, and is shown by the convex hull of its shape model. The permanently occupied cells in the
occupancy grid represent the static environment.

14



have already mentioned the need to learn the occupancy grid representation, or more generally, a local per-
ceptual map representation of the immediate sensory surround [Kuipers et al., 2004]. We are also extending
the learned theory of objects with the actions that affect those objects, along with their preconditions and
postconditions [Modayil and Kuipers, 2004]. Another important research direction will be learning to use
vision as a sensory modality. Naturally, this kind of learning will straddle the evolutionary/developmental
boundary.

Bootstrap learning of foundational representations may also be an important part of developing a sci-
entific theory of consciousness [Kuipers, 2005]. One of several aspects of consciousness is a property that
philosophers callintentionality: the referential connection from concepts in the mind to objects in the external
environment [Searle, 2004]. Critics of “strong AI” claim that robots can never have “original” intentionality
(instrinsic to itself), but can only have “derived” intentionality (from the mind of a human author or pro-
grammer). However we have seen, albeit in very simple forms,bootstrap learning of concepts ofplaceand
object, complete with referential connections to individual places and objects in the world through the causal
properties of the sensorimotor system. The ability of a robot to learnits ownhigher-level concepts fromits
own low-level experience is the foundation for havingits ownoriginal intentionality.
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