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Abstract

System identi�cation takes a space of possible models and a stream of observational data of a phys-

ical system, and attempts to identify the element of the model space that best describes the observed

system. In traditional approaches, the model space is speci�ed by a parameterized di�erential equation,

and identi�cation selects numerical parameter values so that simulation of the model best matches the

observations. We present SQUID, a method for system identi�cation in which the space of potential

models is de�ned by a semi-quantitative di�erential equation (SQDE): qualitative and monotonic func-

tion constraints as well as numerical intervals and functional envelopes bound the set of possible models.

The simulator SQSIM predicts semi-quantitative behavior descriptions from the SQDE. Identi�cation

takes place by describing the observation stream in similar semi-quantitative terms and intersecting the

two descriptions to derive narrower bounds on the model space. Re�nement is done by refuting impos-

sible or implausible subsets of the model space. SQUID therefore has strengths, particularly robustness

and expressive power for incomplete knowledge, that complement the properties of traditional system

identi�cation methods. We also present detailed examples, evaluation, and analysis of SQUID.

keywords: qualitative reasoning; system identi�cation; qualitative simulation; monitoring; diagnosis; im-

precise models

�See note at end of paper.
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1 Introduction

System identi�cation, in its simplest textbook form, starts with a black box with several measurable inputs

and outputs. The goal is to build a model of the mechanism, typically an electrical circuit, inside the box.

The �rst step, called structural identi�cation, involves experimenting with the inputs, observing the outputs,

to determine the qualitative properties of the mechanism. The result is one or more imprecisely speci�ed

models; that is, descriptions of spaces of precise models. In the second step, called parameter identi�cation,

for each model input-output data is collected and analyzed to converge (in the limit) to the precise model

that best �ts the data.

In traditional methods for system identi�cation [27] and monitoring [17] the imprecise model, or model

space, is represented by a parameterized ordinary di�erential equation. Model re�nement is done by collecting

and analyzing input-output data to estimate numerical values for the parameters. As more data becomes

available, the previous best estimate may be adjusted.

We present an alternate approach (called SQUID, for Semi-QUantitative system IDenti�cation) to the re-

�nement of imprecise models using observations, exploiting the strengths of qualitative and semi-quantitative

representations for incomplete knowledge of dynamical systems. An imprecise model de�nes a space of pre-

cisely speci�ed models, and embodies the hypothesis that the desired model lies within that space. When

new information becomes available, rather than estimating the best-�tting precise model, SQUID re�nes the

model space by pruning o� those portions that are inconsistent with the new information, preserving the

hypothesis that the desired model lies within the space. If the model space becomes empty, this hypothesis

is refuted, so the correct model must be a re�nement of some other imprecise model. Clearly, this approach

to system identi�cation is highly relevant to tasks such as monitoring and diagnosis.

SQUID is based on the QSIM representation for qualitative models and algorithm for qualitative simula-

tion [24] and on its semi-quantitative extensions: Q2, Q3 [2] and SQSIM [18]. The model space is represented

by a semi-quantitative di�erential equation (SQDE), which de�nes a set of ordinary di�erential equations

consistent with qualitatively described landmark values and monotonic function constraints. The semi-

quantitative description includes real-valued bounds associated with the landmark values, and real-valued

functional envelopes associated with the monotonic function constraints. The model space for the SQDE

is the product of the model spaces for the individual landmark values and monotonic function constraints.

Model re�nement uni�es the observation stream with the predictions from the SQDE, shrinking the bounds

and envelopes. If any bound shrinks to the empty set, the product is empty, and the entire model space is

refuted.

This paper focuses on the representation of imprecise models and their re�nement with information from

the observation stream. Model creation is addressed by research on building qualitative models [9, 31, 10,

15, 34] and on model-based diagnosis [11, 30, 29, 28]. SQUID �ts within the MIMIC approach to monitoring
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[12, 13, 14] and signi�cantly extends its model-re�nement capabilities.

SQUID provides the following advantages over traditional methods for system identi�cation.

� SQUID is conservative, since model re�nement is based on refutation, eliminating only portions of the

model space that are provably inconsistent. When several qualitatively distinct alternatives remain

consistent with the observations, SQUID preserves them. Traditional methods, representing the re�ned

hypothesis as a single best-�tting set of numerical values for model-space parameters, can express only

a single possibility.

This di�erence is particularly important since many systems in continuous operation only demonstrate

a small portion of their dynamic behavior over a given observation period, so it is easy to converge too

quickly on too restrictive a model.

� SQUID clearly distinguishes between the cases where (a) a new observation is consistent with the

model but provides no new information; (b) the new observation provides new information, further

restricting the current model space; and (c) the new observation provides new information that reduces

the current model space to the empty set, refuting the hypothesis. The traditional approach, with a

single best-�tting precise hypothesis, does not distinguish between these alternatives.

� SQUID is highly expressive of states of incomplete knowledge. In fault model creation or black-box

system identi�cation, it may be easy to determine that two parameters are related monotonically, but

diÆcult to determine the functional form. Qualitative models can express this state of knowledge and

converge on a more precise characterization as more data becomes available. Traditional methods must

commit to a functional form at the beginning.

By relying on weaker assumptions, by re�ning the model space conservatively through refutation, and

by being more expressive of states of partial knowledge, SQUID provides an alternate approach to sys-

tem identi�cation that complements traditional methods and helps make them more widely and robustly

applicable.

The rest of the paper is organized as follows. Section 2 briey describes the QSIM framework for

qualitative and semi-quantitative representation and simulation of imprecise models. Section 3 describes

SQUID in detail: how the data in an observation stream is described by semi-quantitative trends; how

observed trends are mapped onto, and intersected with, predicted semi-quantitative behaviors; how the

re�ned behavior description is propagated back to re�ne the bounds and envelopes of the semi-quantitative

model; and how to address the problem of temporal uncertainty in the correspondence between observation

and prediction. Section 4 describes a set of experimental evaluations: assessing the e�ect of amount and

quality of observations; assessing the e�ect of single and multiple sources of uncertainty; assessing the e�ect
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of observability of variables; assessing the impact of temporal uncertainty; and demonstrating the application

of SQUID to the monitoring task. Section 5 discusses related work, and section 6 provides a summary and

discussion of future work.

2 Representing and Simulating Imprecise Models

When describing an uncertain system, it is helpful to separate the information that is precisely known from

that which is not, so that unambiguous inferences can be made from the precise information. Often, there

will be precise information about the structural and qualitative properties of the model, while the numerical

information will be imprecise. SQUID makes use of this distinction by using a multi-level representation

based on the QSIM [24] representation for ODE systems. In this section, we therefore briey summarize the

QSIM framework for representing and simulating imprecise models.

Figure 1 shows this multi-level representation demonstrated on a simple �rst-order tank system.

� The structural level (structural di�erential equations { SDE)

At this level, we describe the form of the ODE system in terms of the state variables and the constraints

that link them. Constraints are described as arithmetic operators and functional relationships. The

structural level provides the backbone of the modeling process.

� The qualitative level (qualitative di�erential equations { QDE)

The qualitative level adds information about each model variable by breaking its domain into an ordered

list of landmarks that represent important values of the variable, i.e., its quantity space (qspace). In

Figure 1, the qspace of variable A is given by the symbols 0 and FULL and the qspace of variable c is

given by the symbols 0 and IF, respectively. The QDE also adds information about the shape of the

functional constraints, e.g., monotonic (M+, M�) or U-shaped (U+, U�).

� The semi-quantitative level (semi-quantitative di�erential equations { SQDE)

At this level, we record the uncertainty in the model. We represent parametric imprecision with

numerical intervals that bound the landmark values. We represent functional imprecision by de�ning

static envelopes within which the functional constraint must lie.

At each level, we further restrict the model space so that it eventually contains only a single ODE. By

using simulation techniques targeted for particular levels, we can thus utilize this information in a variety of

ways.

The SQSIM simulator [18] generates semi-quantitative (SQ) behaviors from an SQDE and an initial

condition by using the QSIM [22, 23], Q2 [25], and NSIM [19] simulators, respectively. Thus, an SQ behavior

consists of three components (see Figure 2):
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A’ = c − f(A)

A(0) = 0.0 ODEf(A) = 3A+sqrt(A)

A(0) = 0f     M+∈
0

QDE

Specify ranges 
for landmarks

Specify
static envelopes

Specify IC
ranges

Narrow ranges Narrow IC

Specify
function
class

Specify Initial 
Conditions (IC)

Specify
qspaces

SQDEA(0) = [0 0]2A     f(A)     4A≤ ≤

Narrow envelopes

A=95

SDE

A@FULL = [80 100]
c@IF          

A: 0 ... FULL
c: 0 ... IF

= [20 30]

c = 22

Figure 1: Multi-level model of an imprecisely-known system based on the QSIM representation. At each

level, the representation entails a space of ODEs. At the top is the purely structural SDE. The QDE adds

qualitative information to the SDE, and the SQDE adds imprecise numerical information to the QDE. As

we move downward we specify more information, thus reducing the size of the model space.
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qualitative description dynamic envelope description

x

tt0
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x1

t1

event description

x1: [10, 20]

t1:

t0:

0:

[0.8, inf]

[0, 0]

[0, 0]

Figure 2: The SQ behavior description. SQSIM derives behavioral components at the qualitative, event and

dynamic envelope level.

� The qualitative description is generated by QSIM and represents magnitudes and derivatives of the

trajectory at time points and intervals between time points. The magnitude is expressed by a landmark

or the interval between two landmarks of the variable's qspace. The symbols ", # and 	 express the

derivative's sign (qdir) of the trajectory. QSIM requires the QDE as input and produces the qualitative

description by generating qspace subsets of all variables consistent with continuity conditions and the

constraints at each time point and interval.

� The semi-quantitative events are generated by Q2. They describe the uncertainty about the value of

instantaneous events such as x(t1) = x1 by providing interval bounds on t1 and x1. Q2 requires the

SQDE as input and generates the semi-quantitative event description by propagating interval bounds

among model parameters at time points and by applying the Mean Value Theorem to propagate interval

bounds over time intervals.

� The dynamic envelopes de�ne the overall bounds of the trajectory of the system with a pair of functions

that bound all trajectories of the system. Dynamic envelopes are generated by the NSIM simulator.

NSIM requires also the SQDE as input but transforms these semi-quantitative di�erential equations

into an extremal system of ordinary di�erential equations (ODE). NSIM then numerically solves this

extremal system; the solutions correspond to the dynamic envelopes.

The resulting SQ behaviors carry the guarantee that all real behaviors of the ODEs covered by the SQDE

are covered by the SQ behavior set generated by SQSIM. This guaranteed coverage property is essential to

SQUID's re�nement operator.

While SQUID was conceived and implemented within the QSIM framework, it could in principle be

implemented within another representational framework, as long as it provides: (a) a representation that

is highly expressive of states of partial knowledge; (b) a conservative inference method that maintains

a (possibly probabilistic) guarantee of covering all consistent precise models; and (c) includes inference

methods for excluding portions of the model space both by re�ning the model description (e.g. shrinking
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Model Space Trajectory Space

Simulation

Observations
Refinement

Matching
Overlap

Figure 3: Re�nement matches observations to the trajectory space of a corresponding model space. It then

infers a smaller model space that is consistent with the smaller trajectory space. In traditional identi�cation,

this process is simpli�ed because only one trajectory is compared at a time, so the simulation and re�nement

operators are easy to implement.

bounds and envelopes) and by refuting models entirely. For example, a version of SQUID built around

Bayesian probability models rather than bounding intervals and envelopes would be a major contribution.

3 Re�ning Imprecise Models

3.1 Overview of SQUID

Re�nement can be viewed as a process where measurements are matched to a model space. The portion of

the model space that does not match is refuted, resulting in a more precise description of the underlying

process. Because measurements and models are not directly comparable, we must match model predictions

to observations and then re-map the results into the model space (see Figure 3). We de�ne the trajectory

space of a model space to be the set of all trajectories produced from each individual model in the model

space. The mapping from model space to trajectory space is done via a simulator and the reverse mapping,

i.e., refuting portions of the model space that do not match the overlap, is done by a re�nement operator.

Note that the quality of the simulation processes has a great deal of impact on re�nement. In particular,

we require that the simulation and re�nement methods be conservative so that portions of the model and

trajectory spaces are not eliminated through simulation artifacts.

In traditional identi�cation, only one model at a time from the model space is matched against the mea-

surements. While this approach simpli�es both the simulator (which can use standard numerical methods)

and the re�nement (which is trivial since there is a one-to-one mapping between a precise model and its

behavior), it forces one to view the model space as a collection of independent models, ignoring any natural

similarity between models.
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Figure 4: Trend matching uses abstract properties of the observation (monotonicity, location of events, and

dynamic envelopes) to compare data to models (top). Traditional methods use speci�c function matches for

comparison (bottom).

In contrast, SQUID views the model space as a collection of sets of models that are related by abstract

properties of their associated trajectories (monotonicity, location of critical points, etc.). Matching is then

performed between these abstract properties of the trajectory space and the corresponding properties of the

observations, i.e., trends (see Figure 4). We call this process trend matching to distinguish it from the raw

data matching of traditional methods.

Trend matching has several advantages over raw data matching:

� Abstract properties describe sets of models, thus trend matching can rule out multiple models at once.

� Since abstract properties are simpler than precise functional forms, trend matching can be cheaper

than data matching.

While trend matching has many desirable characteristics, it requires more general methods for simulation

and re�nement since regions of the model and trajectory spaces are considered rather than single elements.

SQUID adopts the SQSIM framework for describing model spaces and trajectory spaces. Model spaces

are represented using the SQDE, and by applying SQSIM, their corresponding trajectory spaces can be

generated.

The adoption of the SQSIM framework was motivated by its expressive power of states of incomplete

knowledge and the conservative simulation methods. Thus, SQSIM provides a representation and simulator
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suitable for model re�nement. What remains is to de�ne the re�nement method that maps the trajectory

space back to the model space. As we will show, this method can also be implemented using the Q2 portion

of SQSIM. The resulting re�nement method is also conservative and provides a robustness guarantee with

respect to uninformative data that traditional identi�cation cannot provide.

There are three steps to SQUID:

1. Form an SQ trend for each measured variable.

2. Map the SQ trend to the SQ behavior generated by SQSIM for the SQDE.

3. If no match is found, then the SQDE is refuted. Otherwise, re�ne the SQDE to rule out those portions

of the model space that could not have generated the match.

These steps are discussed more fully in the following sections. As an aid to following the discussion, we

will apply SQUID to the model y00 = �9:8; y(0) = 0; y0(0) = v0; v0 2 [20; 60] with data drawn from

the same model with v0 = 50 and additive Gaussian noise with variance �2 = 5. This model represents the

e�ect of gravity on an object thrown into the air with an initial velocity v0.

3.1.1 Requirements for Using SQUID

SQUID makes the following assumptions about the identi�cation problem:

� A semi-quantitative model of the process to be identi�ed exists in the form of an SQDE.

� Each measured variable has the following properties:

{ The measurement signal can be viewed as a \pure" signal corrupted by additive Gaussian noise

of zero mean and �xed variance.

{ The measurements are sampled at a frequency fast enough such that the dynamics of the pure

signal can be reconstructed.

{ The variance of the noise is known (although this value may be conservative).

3.2 Forming the Semi-Quantitative Trend

Since SQUID maps the SQSIM behavior prediction to the corresponding properties of the observation, the SQ

trend consists of qualitative, event and dynamic envelope descriptions for each variable in the measurement

set. The �rst two components are generated through a process referred to as qualitative �ltering (or binning)

which breaks the measurement stream into monotonic segments (or bins). The dynamic envelope is generated

by �tting bounding envelopes to monotonic bins using a neural-network based estimator for monotonic

functions [21, 20].
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3.2.1 Qualitative Filtering (Binning)

Qualitative �ltering breaks the measurement stream into monotonic regions and intervening extrema. Each

region (or bin) has a sign (";	; or #) which provides a segment of the qualitative description of the trend.

The qualitative kernel function The qualitative �lter operates by applying a qualitative kernel function

to a window of �xed size that is slid across the measurement stream. We denote the window starting at

index i of the measurement stream by wi. The kernel function k(wi) returns one of three kernel values:

� " if wi contains a monotonically increasing segment,

� # if wi contains a monotonically decreasing segment, and

� � if the monotonicity of wi is unknown.

To determine monotonicity, the kernel function computes the slope of a linear least-squares �t to the

data within the window using the formula

slope =

P
i (ti � t)(yi � y)P

i (ti � t)2
(1)

where (ti; yi) is the ith data-point in the window and the bar indicates the average value over the window.

Because the measurement stream includes noise, it is not suÆcient to use the slope directly to determine the

sign returned by the kernel function. We must determine if the slope is signi�cantly di�erent from zero, i.e.,

if it falls outside a prede�ned con�dence range. The standard deviation of the slope of the data within the

window is de�ned as

� =
�vqP

i (ti � t)2
(2)

where �v is the given standard deviation of the measurement stream corrupted by Gaussian noise. In our

implementation, the sign returned by the kernel function is based on a 3:5� con�dence range which gives a

99.9% certainty that a slope outside of this range is not zero. If the slope does not fall outside this range,

i.e., jslope j � 3:5�, the kernel value is �.

The binning strategy Binning assigns signs to data-points in the measurement stream. Note that this

is not straightforward since k(wi) describes the slope over all of wi and not just at a single point. Instead,

signs can be determined only by comparing the kernel values of adjacent windows. Let sign(i) be the sign

assigned to measurement i and consider two adjacent windows wi and wi+1. There are four cases to consider

(see Figure 5):

1. If k(wi) = k(wi+1) =" or # then sign(i+ 1) = k(wi+1) since any extremum in wi+1 could only occur

after measurement i+ 1.

10



wi
wi+1

sign

wi
wi+1

sign

w

wi+1

j

sign

wm>j *

w

wi+1

j

sign

wm>j *

(1) (2)

(4a) (4b)

Figure 5: Determining signs (of data-points) from kernel values (of windows). Numbers in parentheses refer

to the corresponding cases in the text.

2. If k(wi) =" and k(wi+1) =# (or k(wi) =# and k(wi+1) =") then there must be an extremum inside

wi+1 since there is a change in slope.

3. If k(wi+1) = � then wi+1 may or may not contain an extremum and so no sign assignment can be

made.

4. If k(wi) = � and k(wi+1) =" or # then a sign assignment can be made. Let j < i be the last data-point

that has a sign. There are two cases:

(a) If sign(j) = k(wi+1) then all points between j and i+1, inclusive, must have the same sign since

there has been no explicit sign change.

(b) If sign(j) 6= k(wi+1) then there is an extremum somewhere between j and the end of wi+1.

Given this interpretation for changes in kernel values, we can construct a qualitative �ltering method

(Figure 6). The �lter outputs a sequence of bins where each bin is a contiguous sequence of data-points with
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1 new(ubin); new(cbin)

2 i  1; sign(cbin)  �
3 while (i � n-N+1) do
4 if (k(wi) 6= �) ^ (sign(cbin) = �) then
5 sign(cbin)  k(wi)
6 endif
7 if k(wi) = � then
8 ubin  ubin + data(i)

9 elseif k(wi) = sign(cbin) then
10 cbin  cbin + ubin + data(i)

11 ubin  ;
12 else
13 output(cbin)

14 new(cbin), sign(cbin)  	
15 cbin  ubin + wi

16 ubin  ;
17 output(cbin)

18 new(cbin); sign(cbin)  k(wi)
19 i  i + (N-1)

20 endif
21 i  i+1

22 end

Figure 6: The qualitative �ltering algorithm with a window of �xed size N breaks n data-points into bins
and assigns a sign (", # or 	) to each bin corresponding to its monotonicity.

the same sign. The implementation uses two bins to construct these monotonic regions { a current bin (or

cbin) which holds points in the current monotonic region and an unknown bin (or ubin) which holds points

whose monotonicity is unknown.

The procedure in Figure 6 uses a window of �xed size N to compute kernel values. Unfortunately, a

single window size is insensitive to slopes below the 3:5� threshold. By selecting a larger window size, we can

reduce the standard deviation of the slope � and hence the threshold at which a kernel function returns " or
# (since � depends on the window size via the summation in the denominator), but this larger window size

might miss dynamics in the signal. For our needs it suÆces to guarantee that we can detect any extremum

which is not due to signal noise. Thus, we start with a small window size and only consider larger �lter

windows when the data suggests that they may be needed.

In our implementation, we increase window sizes whenever the �lter runs into a large region of windows

with kernel value of �. Starting with a window size of N that is selected to �lter out noise, if more than 3N

points collect in ubin we create a new window of size 2N and re-process the measurement stream starting at

the �rst measurement in ubin. If the kernel value for this larger window is not �, then this window is used

to bin the data. If the kernel value for this larger window is � then the measurement stream continues to

be processed by both window sizes and if the smaller one �nds a kernel value other that �, that window is
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used to bin the data and the larger window is discarded. If ubin increases to size 6N , then an even larger

window of size 4N is created and the data is �ltered with it as well as the smaller windows. Whenever a

non-� kernel value is detected, this value is used to bin the data and all larger windows are discarded. In

this way, the �lter selects the appropriate window size as dictated by the measurement stream.

Binning breaks a sequence of measurements for each variable into monotonic regions and intervening

extrema by a qualitative �ltering algorithm. This process has several properties:

� It is conservative in that bins of sign 	 will be larger than necessary. This implies that the monotonic

regions will also be conservative since some of their end-points will be contained in the adjacent 	
bins.

� Signals that include regions with di�ering time-scales are properly binned.

� Since binning is based purely on the measurement stream, it is in no way a�ected by the model space

to be examined.

Figure 7 shows the results of binning data from the simulated data stream of the gravity model.

3.2.2 Fitting the Bins

Binning determines the qualitative description of the measurement stream. The next step is to determine

the quantitative aspects of the data, i.e., the event and dynamic envelope descriptions. Events in the

measurement stream correspond to 	 bins since they represent the precise instants at which a variable

reaches an extremum. Dynamic envelopes correspond to the monotonic bins since they represent the time-

intervals between the extrema. Given this correspondence, we can �nd events and dynamic envelopes in the

trend as follows:

� For each 	 bin, the width of the event associated with the bin is determined by the beginning and

ending times of the bin. The height is determined by the maximum and minimum values over the bin.

� For each monotonic bin, the dynamic envelopes are determined by two functions bounding the mea-

surements over the time interval of the bin. These bounding functions are generated by the monotonic

function estimator MSQUID [20] which takes the measurements from a monotonic region and generates

bounding envelopes out to any speci�ed con�dence band.

The �tting process has the following properties:

� The event descriptions are conservative since they over-bound both the width (time) and height (value)

of the event.
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Figure 7: Binning a simulated measurement stream (y00 = �9:8; y(0) = 0; y0(0) = 50 with added Gaussian

noise with variance �2 = 5). Binning �nds three regions for this data { one maximum (x's) surrounded by

two monotonic regions.
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� The �tting process is independent of the model space. Thus, the cost of �tting can be amortized over

multiple model spaces.

Figure 8 shows the result of �tting the binned data points in Figure 7. The dynamic envelopes generated

by MSQUID bound the measurements within the monotonic regions with a con�dence band of 3:5�. Note

that the dynamic envelopes are wider at the end of the regions because there are fewer nearby data points

to constrain the envelopes.

3.3 Mapping SQ Trends to SQ Behaviors

Once the SQ trend of the measurement stream has been computed, it can be mapped to the SQ behavior

generated from the SQDE by SQSIM. Since both descriptions presumably describe the same physical system,

we expect that they should overlap. This overlap represents the section of the trajectory space that is

consistent with both descriptions and will normally be smaller than the trajectory space de�ned by the SQ

behavior alone.

We compare the SQ trend and SQ behavior by mapping each of their components separately. For each

component, we seek to reduce the size of the SQ behavior so as to yield a smaller trajectory space for the

model.

3.3.1 Qualitative Mapping

For the descriptions to be consistent, their qualitative descriptions must match. Intuitively, this match

should provide a one-to-one correspondence between the bins of the trend and the qdirs of the behavior.

However, there are two reasons why the match may be weaker: First, the observed trend may be a pre�x

of the predicted behavior. The SQ behavior is normally simulated over the time interval [0;1]. Since the

measurement stream contains data over a �nite time interval [0; T ], it is possible that it may end before

some of the qualitative changes in the SQ behavior take place. Matching a pre�x of the SQ behavior with

the SQ trend eliminates this problem. Second, the SQ behavior may contain undetectable extrema. Because

the behavioral trajectory may include qdir changes of very small magnitude, they may be undetectable in a

noisy measurement stream. Thus, we relax the matching process by requiring that the trend regions appear

in the proper order within the SQ behavior.

These conditions weaken qualitative mapping considerably. In particular, they permit multiple mappings

between a trend and a behavior. However, because qualitative matching compares the relatively simple

representations of ordered lists of the three symbols ", #, and 	, it can be performed with low computational

cost. It is thus relatively easy to eliminate SQ behaviors that do not match the SQ trend at this level of

description.
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Figure 8: Fitting bins. Each 	 bin is bounded by the smallest box that includes all points in the bin. Each

monotonic bin is enclosed by bounding envelopes generated by the neural network-based function estimator

MSQUID.
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3.3.2 Event Mapping

Event mapping ensures consistency of corresponding behavior events in the SQ trend and the SQ behavior,

in the sense that their time and magnitude bounds overlap. Consistency of events is checked by asserting

the event boundaries of the SQ trend to the corresponding events of the SQ behavior and propagating these

boundaries to the other variables in the SQDE using Q2's interval propagation. Note that if the trend event

is larger than the behavior event, it will not reduce the existing bounds on the event. If, however, it is more

precise, Q2 will propagate this precision to other variables, which may refute an inconsistent mapping.

Because event mapping operates on the �xed set of symbols de�ned by the events in the SQ behavior,

its cost is independent of the complexity of the SQ trend.

3.3.3 Dynamic Envelope Mapping

Dynamic envelope mapping ensures consistency between the dynamic envelopes for each monotonic region

of the SQ trend and the dynamic envelope of the SQ behavior. The dynamic envelope for each trend

region holds over the time-range of the measurements that compose the region. Consistency between the

trend monotonic regions and the SQ behavior is maintained by intersecting the dynamic envelopes of each

description over the time-range of the monotonic region. If the intersection is empty then the behavior is

refuted.

Mapping SQ trends to SQ behaviors provides the following bene�ts:

� By mapping each component of the trend and behavior separately, it eliminates mismatches more

eÆciently. For example, a decreasing behavior can be ruled out by an increasing trend without resorting

to detailed numerical analysis.

� The mapped trajectory space is conservatively reduced since qualitative mapping is conservative and the

event and dynamic envelope descriptions produced by binning and �tting are conservative. Producing

a conservative trajectory space aids in providing a robust re�nement method.

3.4 Re�ning the Model

Model re�nement is the process of mapping a trajectory space back to the model space that generated it. In

the case of SQUID, this mapping takes an SQ behavior and determines the SQDE that covers the smallest

set of ODEs that could have produced it while preserving the guarantee that no ODE is excluded unless it

is genuinely impossible. Note that there are two sources of imprecision in the SQDE { variable uncertainty

and static envelope uncertainty. The re�nement method must therefore reduce both sources of uncertainty

to re�ne the model.
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This section begins by describing a method for re�ning variable uncertainty by using Q2 to derive bounds

on independent variables from dependent ones. This process hinges on deriving bounds for the derivatives

of state variables so that Q2 can be run on a behavioral snapshot: the values of state variables and their

derivatives at a particular time t.

Next, a method for re�ning static envelopes is described. This method excludes portions of the enve-

lope that are inconsistent with the ranges determined by the behavioral snapshot used to re�ne variable

uncertainty.

3.4.1 Re�ning Variable Uncertainty

We use the Q2 interval propagator to re�ne variable bounds. At a time-instant, an ODE system becomes a

system of algebraic equations whose left-hand sides are the instantaneous derivatives of the state variables.

Q2 solves this algebraic equation system for each model variable by manipulating the SDE portion of the

SQDE to form equations such that for each equation of n variables, n equations are generated with a di�erent

variable on the left-hand side. For example, for the equation

x0 = f(c; x)

Q2 produces equations whose left-hand sides are x0, c, and x. In particular, one of these equations is

c = g(x0; x):

With this equation, Q2 can thus run the SDE \in reverse" and derive constraints on independent variables

(c) from dependents (x and x0)1. If, as we assume, our measurements reduce the bounds on the dependent

variables, Q2 will be able to reduce the bounds on the independents. If, however, the measurements do not

contain enough information (for example, because we do not have adequate observability, too much noise,

or uninformative data) then the measured bounds will be greater than the original bounds and Q2 will be

unable to reduce the model space, but no information will be lost. This is in sharp contrast to standard

system identi�cation which can be led astray by uninformative data.

As part of SQSIM, Q2 runs only at qualitative time-point states which are by de�nition time-instants. As

part of the SQUID event-mapping process, Q2 is also run to unify the trend and behavior event descriptions.

Thus, event mapping is a re�nement operation. Unfortunately, since Q2 requires a time-point state, it cannot

be used over time-intervals since variables over a time-interval do not represent instantaneous values. The

trend dynamic envelopes, however, provide instantaneous interval bounds on values for variables and we

would like to exploit this information for re�nement. Thus, to extend Q2 propagation into time-intervals,

1Note that this property is provided since the mathematical operations that can occur in each equation are compositions of

the arithmetic operators (which have clearly de�ned inverses) and monotonic functions (which have user-speci�ed inverses).

18



we have to introduce instantaneous snapshots of the SQ behavior at any time and provide bounds for the

dependent variables at those snapshots. Since bounds on state variables can be directly derived from the SQ

prediction or { if available { measurements, we focus on computing bounds on derivatives at snapshots. We

improve the dynamic envelope prediction for each derivative by the following method:

If we know the sign of the �rst and second derivatives of a state variable x over an interval I = [t0; t2],

we can infer a bound on the derivative x0 by computing slopes over subranges of I . Consider the case where

x is monotonically increasing over I with a decreasing second derivative (i.e., concave down). Assume we

are interested in the derivative of x at t1 2 I . Note that the following facts hold:

1. If the slope at t1 is m, then for all t < t1, x
0(t) � m.

2. x(t) � x(t) � x(t), where x(t) and x(t) are the upper and lower envelopes for x over I .

3. At any t < t1 the maximal slope of x over [t; t1] is

m(t; t1) =
x(t1)� x(t)

t1 � t
:

Therefore, the maximum slope at t1 is bounded by the maximum value of m(t; t1) for t0 � t � t1 (see

Figure 9). Similarly, the minimum slope at t1 is bounded by the minimum value of
x(t)�x(t2)

t2�t
or zero.

Additional equations can be derived for monotonically increasing but concave down and monotonically

decreasing concave up or down functions. Note that this calculation is essentially what time-point insertion

of Q3 [2] computes, except without the overhead of generating additional qualitative time-point states.

Note that we can determine bounds on the interval I from the width of the SQ behavior events since

they are guaranteed not to overlap in time. This is because binning naturally breaks the trajectory into

non-overlapping regions of monotonic behavior and mapping assigns these regions to the SQ behavior.

For the gravity model, variable re�nement improves only the lower bound of y0 at t = 0 over its initial

value. This leads to the reduction of the initial state uncertainty from [20; 60] to [36:3; 60]. The �nal

prediction for y is shown in Figure 10.

Note that we can use the SQ trend of state variables to compute bounds on the derivatives as well.

MSQUID computes an envelope on a nonlinear function over monotonic segments. We can estimate the

envelope around the slope of the nonlinear function ŷ by applying exactly the same method outlined in

[20, 1], but with dŷ
dt in place of ŷ. Thus, a slightly modi�ed version of MSQUID can be used to determine

derivative bounds from the measurements.

3.4.2 Re�ning Static Envelopes

Re�ning a static envelope means reducing the width between the bounding functions. Assume that at some

time-instant t, the ranges of x and y are [a; b] and [c; d]. These ranges produce a box in the (x; y) plane of
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Figure 9: Computing bounds on the derivative of a state variable from its dynamic envelopes. The signs

of the �rst and second derivatives of x provide information to determine bounds on x0 from the dynamic

envelope of x.

the static envelope (see Figure 11). This box is analogous to an SQ event description in that the box de�nes

a region in which the true x and y values of the system must lie at t. If the upper-left corner of this box falls

inside the static envelope for f then re�nement is possible. This is because any point in the region above and

to the left of this corner is unreachable for a monotonically increasing function. We may thus eliminate this

region from the envelope. A similar argument rules out the region below and to the right of the lower-right

corner of the envelope.

If we also have curvature information about f , we can further re�ne the static envelope by eliminating

regions that violate the curvature assumption. For example, assume that f is concave downwards and that

the upper-left corner of the range box is at (a; d). If we determine the maximal slope at this point to be

m (by using the method for inferring derivatives from envelopes, for instance) then we may eliminate all

portions of the envelope above the line y = m(x� a) + d for all x > a since any point above this line could

only be reached by a path that has a slope greater than m (see Figure 11). Consideration of the minimal

slope and lower-right corner of the bounding box eliminate further portions of the static envelope.

The gravity model does not include static envelopes. We will therefore demonstrate static envelope

re�nement on the �rst-order model

A0 = 10� f(A) A(0) = 0

where f 2 M+ with static envelope 2A � f(A) � 5A and the maximum value for A is represented by

the landmark FULL 2 [50; 60]. We use a data source for A computed from A0 = 10 � 3A corrupted with
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Figure 10: The predicted trajectory of the gravity model after re�nement. The bound on initial velocity

has been reduced from [20; 60] to [36:3; 60]. Note that the bound for y near t = 0 is better than that of the

trend dynamic envelope (Figure 8) since the model prediction provides greater constraining power than do

the measurements at that time.
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y=f(x)

x[a,b]

[c,d]

Figure 11: Re�ning a static envelope. Monotonicity requires that an increase in x leads to an increase in

y. Thus, if the region in the box contains a point on f(x), the dark-shaded regions cannot contain parts

of the function. Curvature information about f(x) allows a further re�nement, i.e., the elimination of the

light-shaded regions for a concave down function.

additive noise of variance 0:25 and sampled at 10 measurements per time unit. SQUID is then applied to the

SQ behavior and data source. Figure 12 shows the resulting uncertainty in f (top) and their e�ect on the

behavior prediction (bottom) with and without using curvature information. In Figure 12a, no knowledge

of curvature or the range of the FULL landmark is given. Note that the static envelope is reduced, although

the e�ect is very localized about the A values at the snapshot time points. If we add the further information

that f is concave downward (f 00(A) < 0) and FULL 2 [50; 60] and rerun SQUID on the same data, we

obtain the results in Figure 12b. Notice that the static envelope is much improved. Figures 12c and 12d

show the e�ect of the improved static envelope in the prediction. Using the additional curvature information

greatly improves the predicted dynamic envelope as seen by the reduction of the upper bound from 5 to 3.6

(Figure 12d).

In the previous sections, we have described the three steps of SQUID, i.e., trend forming, trend mapping

and model re�nement, necessary to re�ne an imprecise model given a behavior prediction and uncertain

observations. In the following section, we discuss the e�ect of an additional source of uncertainty on SQUID's

re�nement capability: the time uncertainty between prediction and observation.

3.5 Time Uncertainty Between SQ Trend and SQ Behavior

An inherent problem of monitoring and diagnosis applications is that the initial knowledge of a hypothesis

like a fault may be very weak. More speci�cally, the exact starting time of the hypothesis with respect to
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Figure 12: Static envelope re�nement (top) and the e�ect on behavior prediction (bottom). Adding addi-

tional information about the curvature of the static envelope greatly reduces the uncertainty in both the

re�ned static envelope and the predicted dynamic envelope (right). The dashed lines in the upper graphs

represent the true function (f(A) = 3A).
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the data observed may not be known. Only bounds on this instantaneous time may be speci�ed. We call

this interval on the starting time of a hypothesis Hi the time uncertainty tu = [tu; tu] of Hi where lower and

upper bars indicate lower and upper bounds, respectively.

Time uncertainty a�ects the entire correspondence between the prediction and the observation. The

time scales of the observed SQ trend to and the predicted SQ behavior tp no longer have a precisely known

relationship. The SQ trend can be shifted relative to the SQ behavior by any o�set within the range of

the time uncertainty (tp = to � tu). This variable time o�set must taken into account when the overlap

between the SQ trend and SQ behavior is determined.2 Thus, trend/behavior mapping is a�ected by time

uncertainty in the following way:

Event Mapping The time uncertainty tu enlarges the overlap's time bound of an event ei. To map the

observed time bound tobs(ei) of ei to the trajectory space of the SQ behavior, the time uncertainty

(interval) must be subtracted from tobs(ei). This enlarged time bound (tobs(ei)� tu) is then intersected

with the predicted time range of ei (Figure 13(a)).

Dynamic Envelope Mapping Time uncertainty a�ects dynamic envelope mapping in two ways. First,

the time range of a monotonic region in the trajectory space decreases because the time intervals of the

adjacent events increase. Second, the magnitude overlap between the SQ trend and the SQ behavior

enlarges. Magnitude bounds of the SQ behavior Xp(ts) are intersected with magnitude bounds of the

SQ trend at any time-point ts within the monotonic region. In the presence of time uncertainty, the

time instant ts in the SQ behavior corresponds to the time interval ts + tu in the SQ trend. Thus,

the trend's magnitude bound used for the overlap is given by the minimal and maximal values of the

envelopes Xo(t) over the time range [ts + tu; ts + tu] (Figure 13(b)).

Note that for a valid mapping the intersection between SQ trend and SQ behavior must be non-empty

at any time o�set within the time uncertainty. This precondition can be exploited to narrow the time

uncertainty before the actual trend/behavior mapping takes place [33].

Time uncertainty results in broader numerical bounds in the trajectory space and, therefore, in less

e�ective re�nements. However, the mapping process between SQ trend and SQ behavior remains conservative

and no modi�cations are needed for the model re�nement step.

2The overlap may be represented in the time scale of either the SQ trend or the SQ behavior. Since model re�nement uses

the SQ behavior as time reference, we represent the overlap in time scale of the SQ behavior.
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Figure 13: The e�ect of time uncertainty tu in trend/behavior mapping. In the presence of time uncertainty

the SQ trend can be shifted from the SQ behavior by any time o�set within the time uncertainty (tp = to�tu).
Time uncertainty increases the time overlap between the SQ trend and the SQ behavior of events (a) and

the magnitude overlap of dynamic envelopes (b). These broader bounds weaken the re�nement process.
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4 Analysis and Evaluation

4.1 The Models Used for the Experimental Evaluations

This section explores the capabilities and limitations of SQUID as demonstrated through several illustrative

models. Four models are used for the experimental evaluation of SQUID:

� A single tank with constant inow

A0 = c� f(A)

where c is a constant and f is a monotonically increasing function that is concave down. The state

variable A has a landmark FULL = [50; 60] which represents the maximum amount that the tank can

hold. The system is simulated from A(0) = 0.

� A two tank cascade

A0 = c� f(A)

B0 = f(A)� g(B)

where c is a constant and f and g are monotonically increasing functions that are concave down. The

amount in the upper tank A and the amount in the lower tank B are state variables of this model. The

variable A has a landmark FULL = [92; 98] and B has the landmark FULL = [50; 60]. The system is

simulated from A(0) = FULL and B(0) = 0.

� The gravity model

y00 = �9:8

simulated from y(0) = 0, y0(0) 2 [20; 60]. Height y and velocity y0 are state variables of this model.

� A Continuously-Stirred Tank Reactor (CSTR) [18]

dCA

dt
=

CAi � CA

�
� k0e

�E=TCA

dT

dt
=

Ti � T

�
� hrk0e

�E=TCA

with CAi = 0:9, Ti = 340, � = 10, k0 = 10000, E = 5000, hr = �200. Concentration CA and

temperature T are the state variables of this model.

Each model was simulated using SQSIM to produce an SQ behavior tree3 which was used as input to

SQUID along with noisy datasets.

3The single tank and gravity models produced only a single behavior.
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4.2 The E�ect of Quality and Length of Observation

A particular observation stream provides information about only a portion of the dynamics of a process.

In this section, we consider the e�ect of decreasing noise, and of increasing length of observation, on the

re�nement of the model space.

We begin by examining the single-tank system with inow c 2 [5; 10] and 2A � f(A) � 5A. Figure 14

shows the result of using measurement streams of 100 points derived from the model A0 = 10 � 3A with

noise variances of 0.25, 0.01, and 0.003 in terms of both trajectory and model uncertainty. Note that the

static envelope and range on c improve with decreasing noise, thus reducing the model space. Unfortunately,

the predicted dynamic envelope shows no improvement as t ! 1. This is due to the e�ect of multiple

uncertainty sources in the model, a situation that we will discuss more fully in Section 4.3.

The length of the measurement stream is another factor in informativeness since short streams may

not capture all the dynamics of the underlying process. We next examine this e�ect on the gravity model.

Figure 15 shows the resulting prediction from identifying increasingly longer measurement streams of y using

the gravity model. The �rst prediction is generated without any data. The second prediction is generated

from data that stops before the local maximum while the third makes it slightly past the maximum. Note

that the prediction narrows greatly as a function of increasing data length.

4.3 The E�ect of Model Uncertainty and Measurement Uncertainty on Re�ne-

ment

As can be seen from the tank example in the previous section, the e�ect of multiple sources of uncertainty can

greatly reduce the e�ectiveness of re�nement. This is the ip-side of robustness { because interval arithmetic

is conservative, its ability to reduce the model space is also conservative. In this section, we examine the

reasons for why this is true.

Re�nement in SQUID is a�ected by both measurement uncertainty and model uncertainty. Measurement

uncertainty can be described by the width of the trend dynamic envelope of a measured variable. Model

uncertainty can be described by the amount of uncertainty per source (i.e., the widths of the ranges of model

parameters and the widths of static envelopes) and the number of uncertainty sources. In order to study the

relationship between uncertainty and re�nement, we make use of the single tank model

A0 = C �Q Q = f(A)

where we measure the value of A0.4 We wish to examine the conditions under which the measurement of

A0 permits re�nement of f(A). Assume that at some time t we have a bound on A0 of [a0; a0]. Intuitively,

4In this analysis, upper-case names correspond to model variables while lower-case names correspond to scalar values.
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Figure 14: The e�ect of noise on re�nement for the single-tank model. As the noise variance decreases, so

does the static envelope for f (upper graph). The corresponding ranges on c are [5:9; 10] for variance 0.25,

[7:4; 10] for variance 0.01, and [7:9; 10] for variance 0.003. In all cases, a sample of 100 points over the range

t 2 [0; 2] was used. Although the model improves with decreasing noise, the prediction from the model (lower

graph) does not improve as t!1. Note that further improvement of the dynamic envelope is possible given

that it is known that the curvature of the envelope is concave downward, however this information does not

lead to improving the model itself, nor does it improve the bound as t!1.
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Figure 15: The e�ect of varying the length of the measurement stream for Y from 30 to 80 points (the

sampling rate is 10 samples per unit time). The three envelopes correspond to bounds at 0 (outer), 30

(middle) and 80 (inner) measurement points. The bounds on the value for y0(0) and the event y(t) = max

when y0 = 0 are given in the table below the graph.
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we would expect that if a model with small uncertainty can be re�ned by A0 then a model with greater

uncertainty could also be re�ned by the same bound.

Single-source Uncertainty Consider the single-source uncertainty SQDE derived from the above SDE

where f(A) � f(A) � f(A) and C = c, a precise constant. To re�ne the model at t, we create a snapshot-

state (or use an existing one) that contains the bounds of all model variables at t. This state represents the

uncertainty in f by Q(t). Q2 generates the following equations whose left-hand side contains this term:

Q = f(A)

Q = c�A
0

Let us assume that the bound on A(t) = [a; a] is such that the �rst of these equations improves the bound

on Q so that Q = f(a). Then in order to improve Q further it must be the case that c� a0 > f(a). Thus,

a0 < c� f(a) (3)

de�nes the maximum value that an observation [a0; a0] of A
0

(t) can attain while still permitting re�nement

of f .

Multiple-source Uncertainty Now consider the multiple-source uncertainty SQDE where f(A) � f(A) �
f(A) and C 2 [c; c]. Q2 generates the following equations for de�ning Q:

Q = f(A)

Q = c�A
0

As before, assume that the bound on A(t) = [a; a] is such that the �rst of these equations improves the

bound on Q so that Q = f(a). Then in order to improve Q further it must be the case that c� a0 > f(a).

Thus,

a0 < c� f(a) (4)

de�nes the maximum value that an observation [a0; a0] of A
0

(t) can attain while still permitting re�nement

of f .

Let us now assume that both the single- and multiple-source uncertainty models have the same static

envelope for f and the same bounds for A at time t. Then the second terms on the right-hand sides of

both Equation 3 and Equation 4 are identical. Since c � c we see that the value of a0 that produces an

improvement in f is lower for the multiple-source model than it is for the single source. This means that
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values of a0 that satisfy c�q < a0 < c�q will re�ne the single-source model but not the multiple source model.
This is contrary to the intuition that models with larger uncertainty should be re�ned by measurements that

can re�ne models with smaller uncertainty and suggests that our re�nement operation is overly conservative.

Collapsing Multiple-source Uncertainty The problem with multiple uncertainty sources is that they

are not complementary { uncertainty in one source leads to further conservatism in another. One approach

to eliminating this problem is to collapse the uncertainty into a single source. For our example, consider

rewriting the SDE as

A0 = �R R = h(A)

where h(A) = f(A) � C, h 2 M+ and f(A) � c � h(A) � f(A) � c. This model replaces uncertainty in C

and f with a single function h which contains all the uncertainty. For this model, the relevant Q2 equations

for R are:

R = �A0

(5)

R = h(A) (6)

For an observation [a0; a0] of A0(t) to improve h, we must have

r < �a0:

Substituting for r using Equation 6 gives

h(a) < �a0

and using the de�nition of h gives

f(a)� c < �a0:

Finally, rearranging terms lead to

a0 < c� f(a): (7)

Let us assume that the single-, multiple-, and collapsed-uncertainty models have the same static envelope

for f and the same bounds on A(t). Then, since c � c � c we see by comparing Equations 3, 4, and 7 that

the collapsed uncertainty model requires the weakest bound on the upper envelope of A0. This is consistent

with the expectation that greater model uncertainty requires less precision in measurement to improve the

model. Figure 16 shows that this strategy leads to a greatly improved model and prediction.

The Advantages of Multiple-source Uncertainty Collapsing uncertainty sources is a useful method

for improving model re�nement, however, there is a cost. In the original multiple-source uncertainty model,

note that the re�nements of c and f are independent in that the conjunction of the statements C 2 [c; c] and
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Figure 16: The e�ect of collapsing uncertainty sources. Using the single uncertainty source h(A) rather than

f(A)�C leads to improvements in both the bound on h(A) (upper graph) as well as the predicted trajectory

whose upper equilibrium bound shrinks from � 5:0 to � 3:9 (lower graph). Dashed lines in the upper graph

correspond to multiple-source uncertainty f(A)�C, the solid lines correspond to the re�ned static envelope

of the collapsed multiple-source uncertainty h(A).
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f(A(t)) 2 [f(A(t)); f (A(t))] are true. As a result, we can extract the static envelope for f and use it in a

di�erent model with the assurance that the re�ned static envelope will be correct. This property is not true

for traditional identi�cation methods since any function that produces a satisfactory �t can be chosen. For

instance, if we assume that the \true" model for C � f(A) is c1 � f1(A), the search may �nd the function

c2 � f2(A) where c2 = c1 + d and f2(A) = f1(A) + d. In this case, f2 is not a model for the true f .

By collapsing multiple-source uncertainty, we also remove the individual constraints on each individual

source. This means that it is no longer possible to determine better bounds on these terms. As long as we

are not interested in anything but the combination this is �ne. However, if we do still care about the bounds

on the individual sources, we could still include the constraints on the individual uncertainty sources. This

would result in redundant constraints in the model which would ensure the best possible overall bound while

still providing bounds on the individual sources.

4.4 The E�ect of Observability

Observability is a measure of the degree to which the internals of the model can be seen. For precise models,

observability determines whether the state of the system can be reconstructed from the measured variables.

For imprecise models, observability also impacts the degree of re�nement that can be achieved.

For our observability study, we examined the two-tank cascade with �xed inow and ran SQUID on four

cases where we measure B, A and B, B and g(B), and A, B, f(A), and g(B). In each case, 150 measurements

were generated from the model

A0 = 25� 9
p
A

B0 = 9
p
A� 8

p
B

A(0) = 95 B(0) = 0

with additive noise of variance 2 added to each measured variable. The SQDE is:

A0 = c� f(A)

B0 = f(A)� g(B)

with c 2 [25; 25] and static envelopes for both f and g of [1:5x; 15
p
x] for x < 16 and [0:4(x�16)+24; 15

p
x]

for x � 16. Table 1 shows the results of this test and Figure 17 (top) shows the static envelopes for f

and g when all four variables are measured. As more variables become observable, both static and dynamic

envelopes improve. Note that while f(A) improves in the presence of measurements for A, the same is not

true of the relationship between B and g(B). This is because the di�erential equation B0 = f(A) � g(B)

includes two uncertainty sources whereas A0 = c� f(A) includes only one. Figure 17 (bottom) presents the

predicted dynamic envelopes using the re�ned static envelopes for f and g.
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Measured variables Envelope area ratio

f(A) g(B) A(t) B(t)

None 1.00 1.00 1.00 1.00

B 1.00 0.97 1.00 0.13

A and B 0.51 0.97 0.28 0.13

B and g(B) 1.00 0.50 1.00 0.13

A, B, f(A), and g(B) 0.28 0.50 0.16 0.12

Table 1: The e�ect of observability in the two-tank cascade. Each entry represents the ratio of the area

of the envelope when selected measurements are made to the area with no measurements. The envelope

area is de�ned to be the integral of the di�erence between the upper and lower bounds over the domain of

interest. The absolute envelope areas for no measurements are 6357, 3764, 782, and 2772 when measured

over A 2 [0; 100] for f(A), B 2 [0; 70] for g(B), and t 2 [0; 40] for A and B.

These results demonstrate that the best re�nement is obtained when all uncertainty sources are measured.

For parameters, this means directly measuring the parameter. For static envelopes, this means measuring

both the domain and range of the function.

4.5 The E�ect of Time Uncertainty

Time uncertainty is the time o�set by which the SQ trend can be shifted from SQ behavior. It represents

the uncertainty of the starting time of the simulation with respect to the observation. This section examines

the e�ect of time uncertainty on the re�nement of both static and dynamic envelopes.

Our evaluation was based on the two-tank cascade with �xed inow. The same SQDE and data source

as in Section 4.4 were used. 150 measurements at a frequency of 20 per unit time were taken for each

measured variable A;B; f(A) and g(B). We ran SQUID on �ve di�erent cases where we increased the time

uncertainty between prediction and observation from [0; 0] to [0; 2:0]. Table 2 shows the results of this test.

The re�nement of both static and dynamic envelopes decreases considerably with increasing time uncertainty.

Due to the wide dynamic envelopes of the prediction the improvements for A(t) and B(t) remain high (small

envelope area ratios) even if the time uncertainty increases to [0; 2:0].

4.6 SQUID as Applied to Monitoring

SQUID has been described as a method for improving monitoring applications. In this section, we examine

the behavior of SQUID on such problems. We focus on two tasks of importance in monitoring { detection

of model-data mismatch and detection of model drift.
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Figure 17: Re�nement of the static envelopes f and g (top) and the predicted dynamic envelopes A and B

(bottom) in the two-tank cascade when A, B, f(A), and g(B) are measured. The outer envelopes in the

upper graphs are the initial ones provided by the SQDE. The measurements for A and B are plotted in the

lower graphs.
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Time uncertainty Envelope area ratio

f(A) g(B) A(t) B(t)

[0; 0] 0.28 0.50 0.16 0.13

[0; 0:25] 0.42 0.59 0.19 0.14

[0; 0:50] 0.52 0.60 0.24 0.15

[0; 1:00] 0.90 0.61 0.35 0.17

[0; 2:00] 0.91 0.65 0.42 0.20

Table 2: The e�ect of time uncertainty in the two-tank cascade with measurements of A;B; f(A) and g(B).

Each entry represents the ratio of the area of the envelope when selected measurements are made to the area

with no measurements.

We begin by examining the behavior of SQUID on the model-data mismatch problem. Recall that we

can break monitoring into two phases { selecting an appropriate structural model and tracking the selected

model. Considerable reduction of computation is possible if we can refute an incorrect structural model

quickly since this reduces the numerical computation required. As an example, consider the case where we

have selected a second-order model to monitor a data-stream, but in reality, our data comes from a �rst-order

model. Figure 18 shows the result of re�ning the gravity model using a data-stream from the single-tank

model A0 = 50 � 50
110A with variance in A of 25. At up to 60 points, SQUID determines that the gravity

model could correspond to the given data. Implicit is the assumption that the maximum value has not been

reached. With the addition of 20 more points, however, the qualitative �lter determines that the trend has

no maximum before t = 6 and so the model is refuted.

A more subtle case of model mismatch occurs when the model is structurally correct, but the true system

does not lie within the model space because the parameters and/or monotonic functions of the true system

lie outside the bounds and static envelopes of the SQDE. Consider a two-tank cascade with c 2 [22:5; 27:5]

which represents �10% error on the nominal value c = 25 and bounds on f and g in the range [8
p
x; 10

p
x].

We wish to examine two separate possibilities:

1. At what point does an error in c cause refutation?

2. At what point does an error in g cause refutation?

We use a data-stream consisting of measurements for A and B with a variance of 4 from the nominal system

where c = 25, f(A) = 9
p
A, and g(B) = 8

p
B.

In the �rst case, we �nd that the model is refuted with a 100 point data set when the true inow is outside

the range 15 � c � 35. For values of c between 15 and 18, re�nement greatly reduces the initial bounds on c

while for other values, the initial ranges hold. For the second case, we vary the true g(B) = k
p
B by varying
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Figure 18: Structural mismatch between data and model. At up to 60 points (dots), SQUID �nds a portion

of the initial model space that is consistent with the measurements. After 80 points (crosses), SQUID is able

to refute the model because no extrema was detected in the data before the end of the simulated maximum,

i.e., event mapping resulted in an empty overlap.
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k. SQUID refutes the model for k � 6.

These examples demonstrate that SQUID can detect both structural and non-structural mismatches

between a model and a measurement stream. Structural mismatches are easier to detect, however, since

they normally exhibit a qualitative trend description that di�ers from the qualitative behavior description

of the model. Since only the qualitative �lter is required to detect this di�erence, structural mismatches are

normally caught before the more expensive re�nement operation is performed.

As a �nal example, we examine the e�ect of drifting faults5 in a CSTR model. We begin with the CSTR

model

dCA

dt
=

CAi � CA

�
� k0e

�E=TCA

dT

dt
=

Ti � T

�
� hrk0e

�E=TCA

with �5% in uncertainty in the nominal value hr = �200 and starting at the steady-state CA = 0:933 and

T = 353:36. [18] gives a detailed discussion of this model and its behaviors when simulated from this state.

We begin monitoring CA using measurements with variance 0.0001 from a model starting at this state. At

t = 25, we introduce a gradual fault in the inlet temperature Ti such that Ti(t) = 340 + 20
75 (t� 25). As the

inlet temperature shifts, SQUID re�nes the model as shown in Figure 19. Eventually, the data no longer

matches the behavior space of the model and the model is refuted. Note that in this case re�nement is not

necessary since the original lower bound is suÆcient to detect a discrepancy. Thus, SQUID could have simply

run its mapping component, skipping re�nement without any loss of diagnostic capability. Note however, a

more complex analysis shows that the improvement in the lower bound has now caused more points in the

region t 2 [20; 40] to fall outside dynamic envelope. This could be used as a signal that the model is shifting

(since normally one would expect old measurements to remain in envelope). Thus, re�nement could be used

to detect the discrepancy earlier.

5 Related Work

In addition to traditional system identi�cation, SQUID can also be compared to other systems developed in

the AI community for trend detection, monitoring and identi�cation.

5.1 Trend Detection in Noisy Data

Detecting a trend in the presence of noisy data is the topic of �lter theory. One limitation of traditional

methods is that it is often necessary to have extra information about the underlying trend such as its power

spectrum to de�ne a �lter that reconstructs the original signal. Scale-space �ltering [35] eliminates this need

5A drifting fault is caused by a gradual change of one or more system parameters.
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Figure 19: Refuting a drifting fault in a CSTR. The inner dynamic envelope is generated from data up to

t = 70. The outer envelope is generated from the original SQDE. Note that the model is clearly in error

from t = 70 onward.

by �ltering the signal through a family of Gaussian �lters whose �lter coeÆcient is continuously varied across

a range of values. As the coeÆcient increases, the signal is smoothed further until it eventually becomes

at. If we plot the inection points of these �ltered data-streams and graph them with time as the abscissa

and �lter coeÆcient (or scale) as the ordinate, we obtain the scale space of the original signal. Curves in

scale-space represent the occurrence and disappearance of critical points in the signal as the scale increases.

The height of the critical point on each of these curves is the scale at which the underlying inection point

is completely smoothed out. By analyzing the di�erences in heights of these critical points, the time-scale of

the signal over di�erent time intervals can be determined and an appropriate �tting function can be selected

to reconstruct the signal at that scale.

Scale-space �ltering permits the recovery of a trend with no prior knowledge. Unfortunately, it does

so at the cost of �ltering the signal through a theoretically in�nite number of Gaussian �lters. Work has

been done on reducing this need [26], but it still involves multiple �ltering of the data as well as pattern

recognition to infer the scale-space portrait from a �nite set of points.

In part as a solution to the computational expense of scale-space �ltering, Cheung and Stephanopoulos

developed the \triangle representation" for trend description together with an algorithm for extracting a

trend from noisy data [6]. By de�ning a trend in terms of a primitive triangle component that captures the

qualitative �rst and second derivatives of the trend and by describing a method for combining triangles into

higher-level constructs (such as trapezoids) [7], they are able to construct a fast algorithm for constructing

a scale-space and �ltering a signal with it.
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The SQUID binning algorithm can be seen as a variant on these trend detection techniques. Since

SQUID requires only qualitative �ltering (i.e., the location of regions of monotonicity in the signal), the

actual �ltering technique can be reduced to computing regions of constant slope in the signal. By using

multiple-sized windows, it can detect slope changes at di�erent time-scales6.

5.2 Semi-Quantitative Monitoring and Identi�cation

The use of semi-quantitative models for monitoring was the basis for the MIMIC system [12, 14]. MIMIC

implements both the tracking and hypothesis generation phases of monitoring. It uses the SQDE as a

model space representation from which an SQ behavior set is generated by (an earlier version of) SQSIM.

Each behavior in the set is then matched to the measurement stream. If a model is refuted, MIMIC enters

the hypothesis phase where it suggests new models to track based on the reason for the mismatch and

knowledge of the structure of the device being monitored. MIMIC's strengths lie in the use of a robust

prediction method (which guarantees that all possible behaviors of a an imprecise model are considered) and

a hypothesis generator based on a structural model (which eliminates the need for pre-enumerating the set

of possible fault models).

SQUID can be seen as an improvement to the tracking component of MIMIC. It adds a more realistic data

model (MIMIC assumed that each measurement had a 100% con�dence bound and that the derivative was

given) together with a theory of semi-quantitative trends which make SQUID more suitable for operating on

real data-streams. Also, by shifting the focus from monitoring to identi�cation, SQUID can produce better

predictions by including model re�nement in the tracking process. These improvements make SQUID more

eÆcient and robust than the tracking method of MIMIC. Of course, SQUID does not address the hypothesis

generation component of MIMIC and so these methods are very much complementary.

Another semi-quantitative monitoring system is TrenDx [16]. This system also uses a semi-quantitative

representation of behavior and attempts to �t data to the behavior. Unlike both SQUID and MIMIC,

however, TrenDx does not use a model space representation. This has two consequences: First, since there

is no model space, TrenDx cannot do re�nement. Second, the user must generate the SQ behavior by hand.

By sacri�cing a model space representation, TrenDx simpli�es the tracking component of its monitoring

method. This permits more eÆcient methods for matching (since the user can provide customized behavior

segmentation and �tting methods) at the expense of greater sophistication on the part of the user. SQUID

chooses to include a model space representation together with simulation to produce an SQ behavior set.

While computationally more expensive, focusing on a model allows the user to describe the structure of the

process rather than exhaustively describing its behavior. Furthermore, a structural model (with a simulator)

6Conceivably, one could also use the SQUID binner to construct a qualitative scale-space portrait, although this is not

necessary for SQUID.
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is more exible than a behavioral model in that one can change the structural model and then predict the

consequences. This is particularly important in monitoring where faults are manifested as structural changes.

PRET [3] uses qualitative, symbolic, algebraic and geometric reasoning to automate the process of system

identi�cation. Given a set of hypotheses, observations and speci�cations PRET constructs an ODE model of

the physical system. PRET is based on a library of traditional system identi�cation methods and applies the

reasoning techniques to select the appropriate system identi�cation method. PRET performs a structural

identi�cation (model selection) by combining hypotheses into candidate models and a validation of those

models against the observations modulo the precision inherent in the speci�cations. By applying standard

system identi�cation methods PRET has the same properties as traditional system identi�cation (performed

by a human expert). PRET focuses on helping engineers to model a physical system and not to monitor it.

Finally, another use of qualitative methods for identi�cation is embodied in the system of Capelo, Ironi

and Tentoni [5]. This system addresses the problem in traditional identi�cation of how to select the best

parametric model from a set of potential models. By using the qualitative properties of di�erent parametric

models and comparing them to the properties of the measurements, this system can eliminate from consider-

ation those parameterizations that are inconsistent. The method does a form of qualitative trend extraction

from the data which is then matched against the qualitative behavior of candidate models based on a larger

set of primitives (concave, increasing, linear, etc.) but does not appear to address the problems of noise in

the measurements.

6 Discussion and Conclusion

This paper has described SQUID, a new method for re�ning imprecise models using a stream of observations

from a physical system. SQUID is based on the SQSIM framework which uses a multi-level representation

for expressing and reasoning with incomplete knowledge. SQUID re�nes an imprecise model by a process

called trend matching which compares the semi-quantitative trajectory descriptions derived by SQSIM with

the corresponding properties of the observation, i.e., the semi-quantitative trend.

6.1 Comparison to Traditional System Identi�cation

Since we are evaluating SQUID in comparison with traditional system identi�cation, it is important to

understand the situations in which one method is better than another. We can de�ne several types of

identi�cation problems and see how each method performs on them. We look at the following:

� No functional uncertainty, small number of parameters.

In this case, we have a precise functional form and the search space is small. This is exactly the

situation that traditional identi�cation excels at and it produces a better re�ned model space (see
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Figure 20). SQUID can re�ne its initial model, however the ultimate re�nement represents a much

larger segment of the model space.

� No functional uncertainty, large number of parameters.

In this case, while the functional form of the model is precise, the parameter space is large. Searching

the parameter space with gradient-based methods is diÆcult and traditional identi�cation may even

fail to converge. Since SQUID does not search the model space, it is una�ected by the size of the

parameter space and can still produce a re�nement.

� Functional uncertainty.

Since traditional identi�cation cannot express imprecise functional models, it must approximate them

using a highly parameterized model.7 This leads to the previous case. SQUID represents imprecise

functional models using bounding envelopes, which require only monotonicity within the envelopes,

and no further assumption of functional form.

� Uninformative data.

In this case, traditional identi�cation may be led astray by reducing the model space too far because the

data does not reveal the full range of the underlying dynamics. In contrast, since SQUID eliminates

only inconsistent portions of a model space, uninformative data does not cause a re�nement to an

overly restrictive model space.

6.2 Factors A�ecting Re�nement

As has been discussed in Section 4, there are a number of factors that a�ect SQUID's ability to re�ne models.

We summarize these factors here.

� Model uncertainty vs. measurement noise.

The uncertainty present in the SQDE determines the maximum amount of noise tolerable in the

measurements to achieve re�nement. SQUID is able to make more use of a noisy dataset in case

of single-source uncertainty. When multiple uncertainty sources exist, measurement bounds must be

tighter than in the single-source case for re�nement to take place. The solution to this problem is to

collapse uncertainty sources. By taking the collapsing method to its limit, we can reduce each equation

in the SDE to

x0i = fi(x)

7One can use a high-parameter neural-net estimator to replace monotonic functions. For example, translate the model

A0 = c � f(A) to A0 = c � f̂(A; ŵ) where ŵ is a vector of weights for the function estimator f̂ . This model is then used to

identify the behavior of the system. Unfortunately, this approach is highly ineÆcient because the model space is very diÆcult

to search.
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Figure 20: Comparison of the dynamic envelopes from traditional identi�cation (top) and SQUID (bottom)

for the gravity model given 50 data-points. Traditional identi�cation excels in the case of functionally precise

models with small parameter spaces (in this case, only y0(0)). Least square �tting results in identifying a

single value for the initial velocity (y0(0) = 50:28 with standard deviation � = 0:12), whereas SQUID

identi�es the range of possible values ([35:5; 60]) for which the predicted envelopes enclose the data out to a

speci�ed con�dence band.
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thereby creating a single uncertainty-source for each equation. The disadvantage in this approach is

that individual uncertainty sources are no longer distinct but redundant constraints can be used to get

the bene�ts of both approaches.

� The set of observable variables.

The degree to which the trajectory space can be measured is determined by the observability of the

model. In particular, SQUID does best when all imprecisely known constants and state variables as

well as both sides of all monotonic functions are measured.

� Prediction imprecision.

There are some models for which SQSIM produces numerous spurious behaviors [18]. Since SQUID

relies on SQSIM to determine the trajectory space associated with an SQDE, if this trajectory space

is large then SQUID must work harder to reduce the trajectory space. This can reduce both the

e�ectiveness and eÆciency of re�nement. Abstraction methods [8] can collapse unnecessary distinctions

between qualitative behaviors.

� Time uncertainty.

Time uncertainty a�ects the mapping between the SQ trend and the SQ behavior, resulting in a

larger overlap in the trajectory space. Thus, time uncertainty is an additional source of uncertainty

which reduces the re�nement capability of SQUID. In the future, \time alignment" methods should be

developed and applied to regions of high slope to re�ne time uncertainty.

6.3 Summary and Future Research

To summarize, SQUID o�ers the following properties:

� By using the SQSIM framework, SQUID can express functional as well as parametric uncertainties.

This is di�erent from traditional identi�cation where functional uncertainty is approximated by a highly

parameterized model. Highly parameterized models complicate the search in the parameter space and

are prone to converge to the wrong model. Furthermore, traditional identi�cation may even fail to

converge in this case.

� SQUID uses refutation rather than search to identify a model of a physical system. By ruling out

implausible portions of the model space, SQUID is more robust in the face of uninformative data and

functional model uncertainty than traditional identi�cation methods.

� SQUID's re�nement is conservative. Since all re�nement steps (trend forming, trend mapping and

model re�nement) are conservative, SQUID guarantees that no ODE is excluded from the model space
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unless it is genuinely impossible for the ODE to produce a trajectory within the re�ned trajectory

space.

� In its current implementation, SQUID is limited to measurements that can be viewed as a superposition

of Gaussian noise with �xed variance to the \pure" signal. Since SQUID uses abstract properties of

the measurements it can be easily extended to other noise models of the measurements by revising the

trend forming step.

Directions for future research on semi-quantitative system identi�cation include:

� There are several areas for improving SQUID itself. First, SQUID currently operates as a batch

computation over the measurement stream. We would like to make SQUID incremental, in the sense

that new measurements do not require a re-computation over the entire new data set. Second, processes

whose inputs vary with time are an important class of systems studied by system identi�cation. This

class of systems was excluded from our original design due to limitations in the QSIM modeling and

simulation method. Recently, techniques for adding such properties to the QSIM framework have been

developed [4] and should be included in SQUID. Third, adding the ability to control inputs as well as to

measure outputs is necessary for SQUID to be able to solve \black box" problems. Such an extension

would permit SQUID to encompass the experiment design component of system identi�cation.

� SQUID is able to infer guaranteed bounds given uncertain hypotheses and noisy measurements. For

monitoring and diagnosis, these \hard" bounds are important to distinguish whether the observation

is consistent with the hypothesis. On the other hand, traditional methods using a single model with

probabilistic error result in smaller but \soft" bounds. The probabilistic information of these bounds

is useful in discriminating between competing hypotheses. Ideally, we would like to combine SQUID

with traditional methods and bene�t from both approaches.

� SQUID can be viewed as a method for tracking hypotheses and detecting discrepancies in the con-

text of monitoring and diagnosis. To develop a complete fault diagnosis system for dynamic systems,

SQUID could be combined with existing methods for automated model building [10, 32] and propos-

ing hypotheses given weak information such as the signs of discrepancies between observations and

predictions [11, 29].
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