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can be observed. Typically, the controller for Joint Position Control is near-critically
damped, but in the case of this large initial displacement there is a slight overshot
before converging, and the motion appears slightly underdamped. While Joint Position
Control lacks flexibility that would allow for additional hypothesis testing, we use it
for all remaining experiments in this work due to its straightforward usage and high
reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 An example of the agent’s visual percept and stored representation for a node ni. (a) A
single RGB image IRGB, scaled down to 120 × 160 resolution, taken while the arm
configuration is set to qi = q(ni). (b) The registered depth image ID taken at the same
time. Note that the depth values are a measure of disparity, so smaller values are further
from the camera. (c) The full representation the agent stores for the node ni. Aided by
the yellow block held between the gripper fingers, the agent segments the palm mask,
corresponding to the grasping region of the hand. The larger hand mask includes the
palm mask (shown in yellow) and parts of the robot image segment near the block,
typically the gripper fingers and lower wrist (shown in red). The range of depth image
values within each mask is also stored, as are the center of mass and mean depth value
for each mask. Finally, to estimate the direction the grippers are pointing, a vector is
drawn from the hand mask center through the palm mask center. . . . . . . . . . . . . 79

4.10 Two visualizations of the Peripersonal Space (PPS) Graph P , with size |N | = 3000.
Each visualization shows wide coverage that facilitates movement throughout the
environment, with a few sparse patches. (a) An example RGB percept of the empty
environment, overlayed with the (u, v) center of mass locations for all |N | nodes. The
dot for each node is colored and sized according to its mean disparity value d (see key
along right edge). Nodes with higher disparity (closer to the camera) appear larger and
more red, while nodes with lower disparity (farther from the camera) appear smaller
and closer to blue. The information in this display is stored in the individual node
representations and is available to the agent. (b) The nodes of P displayed in the true
world (x, y, z) coordinates of the Baxter Research Robot’s default frame of reference.
The gray plane represents the surface of the table. Nodes are plotted as blue points.
The 2999 edges in the original chain from motor babbling are shown as dotted red lines.
Not shown are the edges added according to the safe motion heuristic. The information
in this display, or anything involving (x, y, z) coordinates, is not available to the agent. 80
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4.11 A histogram of the distribution of distances traversed with motor babbling motions that
defined the first 2999 edges of the graph. Each edge length was calculated according to
Equation 4.3, using the distance between the endpoint nodes in configuration space
rather than in image space or standard 3D coordinates. The mean and median edge
lengths are superimposed at the correct value on the plot’s horizontal scale. The median
edge length is used in a heuristic to evaluate all pairs of nodes to determine if an edge
should be added between them. This heuristic allows 108,718 new edges with lengths
less than this median to be added, producing the final state of the Explored PPS Graph. 82

4.12 A histogram of the distribution of the degrees of each node in the Explored PPS Graph
P . The degree of a node is defined by the number of edges connected to the node, and
each edge connects a distinct pair of nodes, the degree also indicates the number of
neighbors a graph node has. The minimum degree is 1 and the maximum degree is 110.
The average degree can be represented with the mean of 36.8, median of 34, and mode
of 25. The distribution is skewed to the right, with most node degrees between 10 and
55. Nodes with especially low degrees tend to be near the edges of the graph and only
have neighbors on one side, while nodes with especially high degrees tend to be near
the center where they can be surrounded with neighbors and where the random walk
may have passed nearby many times. As nodes generally have more than one neighbor,
the agent has multiple options for moving to almost every node and these can help with
obstacle avoidance and alignment of the hand for actions like grasps. Additionally, the
maximum degree of 110 is still low enough that it is feasible in time complexity to
evaluate properties of every neighbor or incoming edge, which is also important for
grasping and any other action that does not always use the shortest graph path trajectory. 84

4.13 A histogram showing the distribution of shortest path lengths, in terms of number of
edges between all pairs of distinct nodes ni and nj . Note that this is not necessarily
the lowest sum of configuration-space edge lengths along the path, and often does
not minimize the total movement during the trajectory in image-space or the 3D
environment. The mean, median, and mode length for shortest paths are 4.8, 5, and 4,
respectively. As expected, the number of length one paths matches the number of edges,
117,717. This distribution is also skewed to the right, with very few exceptionally long
paths. The maximum path length is 14, so the diameter of this Explored PPS Graph is
also 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.14 A histogram showing the distribution of shortest path lengths between the home node
nh and any other node ni. The lengths of these paths are generally more influential
than the shortest path lengths between pairs of arbitrary nodes shown in Figure 4.13,
as the agent begins and ends each pre-reaching move, reach, and grasp trajectory at
the home node. Short paths from the home node are beneficial so that the arm can be
moved along the path with less pauses for visual observations at each node traveled
through, and so that a higher share of the observations that must be processed to check
for unusual events like bumps will be the observation at the final node of the trajectory,
where the event is more likely to occur once the action is more reliable at producing
the event than random motion. The distribution of shortest path lengths from the home
node nh to any other node ni can be described by the range of 1 to 8 edges in the
trajectory, as well as the mean of 4.3, median of 4, and mode of 4. . . . . . . . . . . . 86
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4.15 An illustration of trajectories along PPS graph edges which feature jerky submotions,
and where the direction may change significantly at each node. The trajectories are
plotted using the position of each node visited in standard 3D Euclidean coordinates
for the environment, calculated from the nodes’ stored configurations and the robot’s
default forward kinematics software that the agent does not have access to. The green
plane matches the location of the table’s surface and is provided for context. In each
plot, the trajectories begin at the agent’s home node and end at a randomly selected
other node. The red trajectory is the shortest graph path from the home node to the
final node when measured in configuration space (which the agent uses) and the blue
trajectory is the shortest graph path between the same nodes in terms of distance in
image space. Neither of these is necessarily the shortest path in standard coordinates
for the environment, which the agent cannot measure or use. As a result, the paths tend
to be inefficient, and can be improved to produce smoother and more skilled late action
forms of the early actions learned in this work. . . . . . . . . . . . . . . . . . . . . . 88

4.16 (a) The agent considers the graph neighborhood around a node ni to estimate the
change in appearance for small changes in configuration near ni. The predictions will
be made by a local Jacobian estimate Ĵ(ni) (see equation (4.4)). ni is near the center of
P and has a large number of neighbors. Each edge is relatively short in configuration
space, where edge feasibility is measured, even though some neighbors appear distant
in image space. The furthest neighbors tend to be those where most of the edge length
comes from a difference in proximal joint angles that have a larger effect on workspace
position. (b) The images of the node ni and one of its neighbors are superimposed
with a representation of the edge, drawn between their centers of mass. This example
illustrates a change in configuration ∆q and the resulting change in center locations
∆c along one edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.17 Each value shown in this heatmap is the mean over the local Jacobian estimates Ĵ(ni)
of all nodes ni of the mean error values calculated by Equation 4.9 in the predicted
image-space coordinates ĉpj . Each mean of mean errors shown is calculated using a
particular combination of training and evaluation neighborhood radii. The radius R
of a neighborhood NR(ni) is the maximum shortest path length (in number of edges)
from ni to a node nj for nj to be included in the neighborhood. The minimal mean of
mean errors value observed with the (1,1) neighborhoods justifies the use of radius one
neighborhoods for all future calculation of local Jacobian estimates and as a guideline
for the region of space where the estimates can be used to produce reliable predictions. 95
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4.18 A heatmap of the image-space prediction errors for all local Jacobian estimates Ĵ(ni),
when those estimates are calculated considering only a subset of joint values. Each
error shown is the mean of the mean prediction errors in the neighborhood of individual
nodes (the mean of Equation 4.9 over all nodes ni). To read this figure, the row of the
heatmap indicates the number of nodes considered when calculating the local Jacobian
estimates and center position predictions, and the column number can be converted
to a binary representation of the specific joints included. For example, column 74
corresponds to 10010102, which indicates s0 is included, s1 is not, e0 is not, e1 is, w0
is not, w1 is, and w2 is not, or the set of joints {s0,e1,w1}. This set contains three
joints, so column 74 has the mean error displayed in row 3, and NaN is displayed in
all other rows because the number of joints does not match the set. The joint sets that
produce the local Jacobian estimates with the most accurate predictions (lowest error)
in each row are highlighted with a green border. In increasing size and decreasing error,
these optimal sets are {s0}, {s0, e1}, {s0, e0, e1}, {s0, s1, e0, e1}, {s0, s1, e0, e1,
w1}, {s0, s1, e0, e1, w0, w1}, and the complete set of joints {s0, s1, e0, e1, w0, w1,
w2}. The order in which the joints should be included to have the least error with the
simplest model is roughly proximal to distal, with shoulders tending to come before
elbows and both of those before wrists. At the extremes, the most proximal s0 should
always be included and the most distal w2 should only be included if all joints are
being used. The joint sets that produce the highest errors, and should be avoided if
possible, are highlighted with a pink border. These sets have joints added in nearly the
opposite order, and are {w2}, {w0, w2}, {w0, w1, w2}, {s1, w0, w1, w2}, {s1, e1,
w0, w1, w2}, {s1, e0, e1, w0, w1, w2}, and the full set of joints {s0, s1, e0, e1, w0,
w1, w2}. If the agent is not capable of modelling the relationship between all joint
angle changes and the change in image space position, the most accurate alternative is
to use as many joints as it can perform the calculation for, and for these joints to tend to
be proximal. These results are consistent with a hypothesis that proximal to distal bias
in joint use may be an effort to perform motions with only the subset of joints included
in a simplified mapping between configuration space and image space, such as, but not
necessarily equal to, these local Jacobian estimates calculated with only a subset of joints. 98

4.19 The mean of the mean prediction errors of local Jacobian estimates that are computed
using only a subset of joints. In this case, joints are included or excluded as a set that
resembles the role (but not structure) of the shoulder, elbow, or wrist of the human arm.
The optimal order for inclusion of the groups is perfectly proximal to distal. When all
groups are included, the estimate matches the one from Experiment 4.2, and the mean
error value is the same. This is the most accurate model, but when only a subset of
groups can be included, the shoulder should always be chosen. It is also valuable for the
agent to consider as many groups as it can perform the computation with, as increasing
the number of groups from one to two always improves the prediction accuracy, even
if it is {e,w} instead of {s}. Even though the wrist group includes information from
three joints instead of the two joints of the other groups, w should always be included
last, and the estimate based on only w is the least accurate. . . . . . . . . . . . . . . . 99
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5.1 All observed values of IOU(t, t′) where t is a target object mask prior to a motion and
t′ is a mask for the same target object after the motion. Three objects were observed
during 102 motions to produce the 306 values. There is a clear separation between a
large cluster where the IOU is approximately one and a smaller cluster where the IOU
is significantly less than one. The large cluster contains examples of the typical “no
change” event and the small cluster contains examples of the unusual “bump” event. . 106

5.2 Candidate final nodes are identified from their intersection features. [top row] RGB-D
percepts taken from the node definition (left two) and from the current percept of the
environment (right two). [middle row] The palm masks and depth ranges from the
stored percept (left) and current percept (right). [bottom image] The intersections
of the palm masks and the depth ranges are both non-empty, so the current node is
identified as a candidate for reaching the observed block. The palm masks and depth
ranges for each node can be computed in advance. The intersections of the mask and
range from a target block can be quickly evaluated for all 3000 PPS graph nodes to
generate the set of candidate final nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Given percepts for hand and target object, the agent searches for the feature f that
will maximize the conditional probability P (Bump | f). Each feature considers the
centers of the palm and target in (u, v, d) image-space. fu, fv, and fd evaluate to true
if the absolute difference in one coordinate is less than a variable threshold k, and fc is
true if the distance between centers is less than k. The probabilities shown in this graph
are based on the 102 trajectories used previously, and their outcomes. For all values
of k, P (Bump | f) is maximized when f = fc. The agent therefore selects as nf the
candidate node where the hand is closest to the target object, thereby minimizing k and
maximizing P (Bump | f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Reliability of the agent’s action to reach and bump a single target object by following a
trajectory to a selected target node. The four groups represent (1) randomly selected
target node; (2) random selection from among candidate nodes with non-empty image
intersections; (3) select closest among candidate nodes; (4) adjust node with local
Jacobian to best match target object. Within each group, the bars represent different
criteria for success: (l) observed bump at final node, which measures the agent’s ability
to cause bumps intentionally and efficiently; (m) observed bump anywhere in the
trajectory, which identifies bumps that can be learned from; (r) any bump, observed or
unobserved, which measures ground truth of bump occurrence. . . . . . . . . . . . . 114

6.1 The agent’s RGB percepts during attempted grasp trajectories. Images for the forward
portion toward nf are shown in the first of each pair of rows, and images for the portion
to return to nh are shown in the second rows. Images for some nodes in the middle of
trajectories with more than five nodes have been omitted. The agent classifies the result
of the grasp attempt by observing the state of the target object during the trajectory. In
all cases but miss, there is a substantial change between the first and last observations,
and the trajectory is a successful reach. In all other cases these observations should be
significantly different, and the reach component of the grasp was successful. Further
classification depends on the state throughout the return trajectory and whether the
Palmar reflex was activated, as discussed in section 6.1.1. Only the result of the final
example is considered to be a successful grasp. . . . . . . . . . . . . . . . . . . . . . 122

xiv



6.2 The portion of attempted reach trajectories that produce observed bumps (orange),
ground truth bumps (yellow), and Palmar bumps, or bumps which also trigger the
Palmar reflex (purple) for varying gripper apertures a. The high reliability of the reach
action is independent of a, indicating it could be learned and executed with any setting.
By contrast, triggering the Palmar reflex is much more likely as a increases, and is
learned as a prerequisite for the Palmar bump event and later for the grasp action. . . . 124

6.3 The agent plans modifications to the end of the trajectory, and defines a preshaping
configuration q∗p. Human intuition and the agent’s learning recognize that all vectors
describing gripper direction and the direction of motion should be near parallel, with
all of these vectors near perpendicular to the target’s major axis. The agent plans a final
motion with these features in three steps: (a) The agent chooses nf from the candidate
final nodes (equation (6.1)) to minimize C(~gf , ~o). This image displays the palm mask
(yellow) and hand mask (red) for the chosen nf , along with the target mask (blue). A
blue outline is used to show the boundary of the intersection between the hand and
target. ~gf and ~o are displayed in light blue and orange, respectively. (b) The agent
uses Ĵ+(nf ) to estimate the change in joint angles necessary to cause the image-space
translation shown here. This translation improves the approach accuracy by aligning
cpf with ct by moving to q∗f . (c) The agent constructs q∗p by equation (6.3), which is
predicted to have masks translated as shown from those for q∗f . A final motion from q∗p
to q∗f has aligned gripper and motion vectors. . . . . . . . . . . . . . . . . . . . . . . 127

6.4 The top plot presents the overall results from the reaching methods as a baseline for
the grasp action as found in Experiment 6.1. The final reach method, Adjusted Closest
Candidate Node (Experiment 5.5), is always successful at reaching, but within these
interactions only 12.5% are fully successful though accidental grasps. By considering
additional features, the grasp methods in the bottom plot all achieve more than double
this success rate for grasping with only modest decreases in reach reliability. The
Cosine Similarity Approach Method (Experiment 6.4) aims to increase the number of
Palmar Bumps, with nf chosen from the candidates such that |C(~gf , ~o)| is minimized
and with np replaced by a preshaping position so that all other cosine similarities are
1. Approaching with a motion parallel to ~gf and perpendicular to ~o also increases the
number of successful grasps. The Wrist Orientation Method (Experiment 6.5) further
adds a technique to copy the most distal degree of freedom q7 used at the nearest
configuration to previously succeed, converting more bumps into Palmar bumps and
grasps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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6.5 Spatial representations of the results of three methods for the agent’s learned reach and
grasp actions. Each shows a superposition of all placements of the single target object,
colored according to the result of the agent’s attempt to repeat an unusual event by
executing a motion trajectory. (a) Experiment 6.1 uses the final reaching trajectories
of Section 5.3 to successfully repeat the bump event for all target placements. Twelve
of these reaches accidentally trigger the Palmar reflex, five of which become early
examples of grasps. (b) Using cosine similarity features in Experiment 6.4 (Section 6.3),
the agent modifies the final approach so that this motion causes significantly more
Palmar bumps and more grasps are also observed. (c) In results from Experiment 6.5,
the agent grasped from additional placements by changing the angle of the most distal
joint, w2. The wrist orientation is copied from the final configuration of a trajectory
that succeeded for a nearby placement (Section 6.4). The use of nearest neighbors
applies best very close to existing successes, so most improvements can be observed in
these areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 The top plot shows the palm depth range extracted from the original image set for
all nodes, with the nodes sorted by minimum disparity in ascending order. The full
range appears as a vertical blue line, and the mean disparity value recorded for that
palm is plotted with a red dot. The horizontal black lines denote the minimum and
maximum disparities observed for the surface of the table, meaning that blocks that
can be reached and grasped from positions on the tabletop will occupy this range of
[33,46] and just above it. The bottom plot shows the corresponding information for
the palm depth ranges extracted from the new set of images after the move to the new
environment and the camera angle was changed. The range of disparities for the table
in these images was [32,47]. Despite the wider range occupied by the table in the
new images, a smaller number of nodes appear to have the palm at this key range of
disparities to coincide with objects on the table’s surface. Excluding the nodes in the
top plot with inaccurately large ranges and the undefined or zero valued ranges in the
bottom plot, it appears that about 1400 nodes intersected with this range in the original
data and only approximately 1100 nodes intersect with this range in the new data.
This suggests that the position of the robot has changed relative to the position of the
table, and nodes tend to appear further from the table in images than before. For some
regions, this will reduce the number of final node candidates, and when candidates
are found they are more likely to need larger adjustments to align the d component
of their center with the d component of the center of a target on the table. Both cases
make planning reliable grasps more difficult, and may explain some of the reduction in
success rate that needed to be corrected for. . . . . . . . . . . . . . . . . . . . . . . . 133
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6.7 These plots show pairs of coordinates (u, v), (u, d), and (v, d) for all palm centers,
with different coordinate pairs in each column. The top row displays information
derived from the original image set for the Explored PPS Graph, while the bottom row
displays information derived from the new image set taken for the Rebuilt Explored
PPS Graph in the new environment. Comparing plots in the same column shows that
the correlation between all pairs has increased when the new data is used (seen in the
increased R2 values), and increases most significantly for the pairs involving d. The
p-scores reported are calculated using a distribution F (p, n − p − 1), where p = 1
in all cases and n = 2945 for the original data and n = 2917 in the new data, based
on the number of nodes with defined palm centers. The very low p-scores indicate
that there is very little chance that these coordinates would be determined to have this
correlation when they are actually independent. The correlation between d and the
other coordinates was expected as a line out from the camera to measure distance is
not perpendicular to either axis of the RGB image. The observation that u and v are
correlated is more surprising, but is explained in that for the agent to reached to the far
right side of the image (where the palm center will have a high v coordinate) during
motor babbling, it is more likely that the hand is also near the bottom of the image
(where the palm center will have a high u coordinate) since it requires less additional
extension of the arm. Some correlation is expected when using the nonstandard axes of
the agent’s image space rather than the independent axes of a standard Euclidean 3D
space, and the agent shows a tolerance for correlated axes by performing well in the
original environment. However, when all correlations are increased, this implies the
new camera perspective provides more redundant information about the 3D space (at
least at the sampled positions of the palm centers), and the agent has less information
for planning. Therefore, this change is one of the hypothetical explanations for the
drop in grasp reliability in the new environment. . . . . . . . . . . . . . . . . . . . . 136

6.8 (a) A heatmap displaying the number of palm masks (out of all 3000 nodes) contain
each pixel (u, v) when derived from the new image set for the Explored PPS Graph.
These numbers reflect palm masks at that position and any disparity, so the number of
masks at the level of the tabletop or just above to interact with blocks on its surface
will tend to be lower. The heatmap is overlaid with the boundary and center of each
of the two locations of interest. The presence of these boundaries demonstrate that
L1, the green location, is at one of the most dense areas of the graph, and that L2, the
blue location, is more sparse because only when motor babbling had the arm close
to fully extended across the body were nodes recorded there. The periphery of the
image has even fewer nodes due to the biasing of the motor babbling to generate useful
nodes where the hand was fully in view and above the table. The density of the graph
is important for planning reach and grasp actions, as it determines the number of nodes
that will have intersections with a given target placement, and can be used to plan
the final pose. (b) The same heatmap and overlaid locations, but only counting the
palm masks of nodes that would be considered for candidacy after the more extensive
exclusions in Experiment 6.8. The dense and sparse regions are generally the same,
with lower numbers of nodes throughout. Note that this heatmap uses the same scale
as the original so that it can be directly compared by colors, even though its range is
[0,96] instead of the original range, [0,107]. . . . . . . . . . . . . . . . . . . . . . . . 140
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6.9 The top left panel shows a histogram of the differences in the area of each node’s palm
mask when derived from the image taken for “rebuilt” graph in the new environment
and when derived from the original image. The range of this distribution is [-212,238],
with the extreme values coming from 5 cases where a node was not visible in one set
of images but was in the other due to the change in camera perspective. In general,
the new palm masks tend to be larger, by a mean of 33 pixels, due to differences in
the raw images and the image processing methods. The agent was observed to fail
grasp attempts after selecting nodes that appeared to intersect with the target object,
but did not produce a successful reach or grasp when used. This may be due to the
larger palm masks over-representing the size of the palm, and the selection of final
nodes that were only candidates because of false positive intersection features. To
compensate, we added a final step to the image processing algorithm that extracts the
palm mask representation. Once the palm mask is extracted, a binary image erosion
with a small disk or square is performed to create the final mask. The remaining panels
show the resulting histograms in the difference of areas, with the bottom left panel
displaying the best result (Note that erosion with a square of side length one produces
no change in the binary images, so its results histogram is omitted). When the erosion
is performed with a disk of radius one, the distribution narrows and centers nearest to
zero, better matching up with the original areas of the palm masks. These eroded palm
masks will be used to check for the presence of an intersection with the target mask in
all experiments from this point on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.10 The cosine similarity between the two estimates of the palm vector’s direction in 2D
(u, v)-space can be used as a measure of confidence that the resulting vector is a reliable
representation of the orientation of the hand in the agent’s simple understanding of
space. There is a large bar at zero due to the 267 nodes where one or both gripper fingers
are not visible, and the estimation method that relies on them cannot be computed.
With one of the estimates undefined, the cosine similarity is also undefined, but is set to
zero as the agent has no confidence in those nodes - the estimates cannot be evaluated
through comparison. With the exception of these nodes, it can be observed that the
confidence is typically very high, near the maximum cosine similarity of 1. (Note that
the cosine similarity is never negative because the estimate that is perpendicular to the
line between the gripper fingers can be flipped to have the same sign as the estimate
based on the palm’s relationship to the base of the hand.) The number of nodes in
each bar drops off in a long tail near the selected threshold value of 0.707, which
corresponds to a 45 degree difference between the estimates for the vectors. Because
cases that fall below this threshold are uncommon and show that two generally reliable
ways of estimating the vector have produced very different angles for the same pose,
these nodes will be excluded from consideration as final node candidates. If they were
considered, it would be impossible for the agent to know which of the estimates, or
some point between them, is an accurate portrayal of the orientation, and the fitness for
grasping could not be determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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6.11 A histogram of the sizes of the palm depth range of all nodes, measured as the maximum
disparity observed within the masks for the gripper fingers minus the minimum disparity
observed within the masks. These sizes are calculated after all measures have been
taken to eliminate noise and error readings and the extremes have been trimmed to be
at most two standard deviations from the mean disparity value (with both the mean and
standard deviation calculated for each individual node). For a large majority of nodes,
the size of the palm depth range was between 0 and 10 units. Once the size is greater
than 10 units, the hand is spanning an abnormally high range of disparities, and these
nodes are excluded from consideration as final node candidates starting in Experiment
6.8. While it is possible for these large ranges to be accurate representations, it is
much more likely that they are the result of errors that could not be eliminated in
the systematic procedure, and would have to be corrected for manually and on an
individual node basis in order for the agent to predict the result of their usage. We want
to avoid this level of experimenter involvement with individual nodes, so the agent will
simply not be allowed to use these nodes that may have inaccurately reported depth
ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.12 A visualization of all 49 target placements for Experiment 6.10, where grasping was
57.5% reliable, with successful grasps in 23 out of 40 attempts, and 9 rejected trials.
Each placement is shown as the boundary of the target mask as observed at the start
of the trial, colored according to the result of the trial. These results can be compared
with Figure 6.5 to see a continued trend that while the positions where successful
grasps can be performed are spread around the table, and in both sparsely and densely
covered regions, grasping tends to be most reliable in localized lines and areas, and
a progression from success to failing to activate the Palmar reflex to failing the reach
component as the object’s placement is further from these most reliable regions. This
appears to have some relationship to the number of final node candidates (shown here
near the center of the mask for each trial), which makes intuitive sense since more
options will be available to find at least one that has a well-aligned orientation and
approach direction and where these vectors are perpendicular to the target’s major axis.
However, there appear to be other factors, as some of the failure cases in green L1

have significantly more candidates than the successful cases in blue L2. The bumps in
the lower left corner of L1 may reflect a difficulty of the agent to line up a successful
grasp approach so close to the home node, while the rejections and misses in L2 may
indicate the graph is too sparse to have any reliable candidates when the arm must
be so extended to reach an area. The regions where grasping is most reliable may
reflect where the hand happened to have clearly identifiable and desirable features
when motor babbling near that region, and in other regions the hand may be more
difficult to observe accurately or tend to have an undesirable pose. The factors that
cause localized success and failures will be identified and addressed in future work. . . 154
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6.13 A visualization of the masks for subregions of the self that can be segmented using
the method that assumes the gripper fingers will have distinctive colors. The masks
are shown as boundaries rather than solid masks to allow the original color of the
RGB image percept to show. The gripper fingers are identified by their color, and are
bordered in green and blue. The mask for the robot’s arm is bordered by cyan, and is
the largest region of the image that has changed from the static background, minus
the gripper masks. The mask for the full arm is used minimally in this work, but may
be important for obstacle avoidance tasks in future work. The base of the hand is the
intersection of a dilation of the union of the gripper masks and the robot arm mask,
and is shown here with a red border. The full hand of the robot is found as a convex
hull around the base and grippers, shown here in white. The palm mask occupies the
pixels inside the hand mask that are not part of either gripper mask or the base of the
hand. In order to make sure the palm corresponds to the grasping region between the
gripper fingers, both gripper fingers must be visible and their masks nonempty. If only
one or zero gripper fingers is visible, it is possible for the convex hull to indicate a
space outside the hand where grasping will not be possible. When the palm mask can
be successfully found, the methods for palm vectors use these subregions of the hand,
where one estimate finds a vector from the center of the red base through the center of
the palm, and another estimate finds a vector perpendicular to the line from the center
of the green mask to the center of the blue mask. Starting in Experiment 6.8, the agent
excludes nodes without both grippers visible and nodes where the estimates for the
palm vector are at least 45 degrees apart. . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1 The intended and actual changes to the gripper aperture in 20 trials where the degree
of freedom set by a was selected for adjustment. Each intended change was sampled
from a normal distribution. We see that for negative intended changes there is no actual
change, intuitively because the grippers are already closed as far as the grasped block
will allow at the beginning of the trial, so the grippers cannot close to a narrower setting.
We also observe that for positive intended changes, the actual change tends to be smaller
than the intended change. In these cases, the grippers only open until the value of a
enters the tolerated range of errors from the intended value, with this tolerance specified
by the built-in controller for the grippers. The leftmost annotated trial demonstrates
that an intended change of ∆a = 0.63 is too small to produce an actual change as
the setting is already inside the tolerated range before any motion occurs. The next
annotated trial shows that an intended change of ∆a = 5.6 is sufficiently large to
be above the error tolerance, and produces an actual change of 2.08. All trials with
intended changes of at least this magnitude had a nonzero actual change, so this value
is treated as a threshold for future experiments to ensure the grippers move. The final
annotated trial, marked in red, has the second largest intended and actual changes,
and was the only trial in this experiment that produced an ungrasp. Using normally
distributed deltas for a has a 5% reliability for producing ungrasps. . . . . . . . . . . 166
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7.2 The intended and actual changes to the angle of the wrist joint w2 in 30 trials where the
degree of freedom set by q7 was selected for adjustment. All trials produced the typical
result where the grasp was maintained after the adjustment, confirmed by moving along
a graph path trajectory and observing that the block continued to move along with the
hand. While the absence of any unusual events will rule out this degree of freedom for
use in further ungrasping experiments, we can take away the additional observation
that the robot and the controller used are proficient at achieving the intended change in
most cases. It is unclear at this time what caused the smaller magnitude of the actual
change for the two trials that did not fit this pattern. . . . . . . . . . . . . . . . . . . . 167

7.3 The results of Experiment 7.2, where the agent performs 50 more trials where the
gripper aperture a is adjusted after determining in Experiment 7.1 that changes to a
can produce an ungrasp but that changes to w2 have not. The plot shows the 50 trials
of Experiment 7.2 along with the 20 trials of Experiment 7.1 that also adjusted a. We
can observe a similar trend as in Experiment 7.1 between the intended changes and
the slightly smaller actual changes. Due to the rejection sampling, all new trials from
Experiment 7.2 increase the opening by at least 5.6% of the full range. 6 of 50 (12%)
of ungrasps attempted with this threshold enforced succeeded, and 7 of 70 (10%) of all
ungrasps attempted with adjustments to a have succeeded. Improving the reliability of
the ungrasp action further relies on the observation that the successful ungrasps are
concentrated in the higher changes to a. Five of the new ungrasps occur with a change
of at least 17 percentage points , and only two trials above that threshold had the typical
maintained grasp result instead. This provides an estimate that a policy using only
changes (∆a ≥ 17) will be 71.4% reliable (5 out of 7). Another estimate that 100% of
attempts so far with intended changes of ∆a > 21.5 suggests that a policy’s reliability
may be improved by using increasingly high minimum thresholds. . . . . . . . . . . . 169

7.4 The intended and actual changes to the gripper aperture as a percent openness a used
in experiments 7.1-7.3. The 50 trials from experiment 7.3 are generally the largest
changes, due to sampling the intended changes ∆a from U(∆a∗, 100− a) instead of
N(0, 10), which provides experience in previously untested ranges of values more
efficiently. Sampling in this way also meant that in experiment 7.3, the agent only
attempted ungrasps by opening the gripper by at least an intended amount ∆a∗, a
threshold equal to the largest change that has been observed to fail to produce an
ungrasp so far. With this choice, the agent expects all of the attempts to succeed.
However, two attempts unexpectedly fail, and the agent revises ∆a∗ from an initial
value of 21.4 to 32.74 and finally 41.94. This pattern demonstrates that the agent may
need to increase this threshold further indefinitely as it encounters rare failures in the
future. Instead, the agent will extrapolate from the trend that larger ∆a tend to be more
reliable and conclude that it should always fully open the grippers to perform an ungrasp.171

7.5 Of the 55 successful ungrasps during Experiments 7.1-7.3, these 14 resulted with the
object coming to rest into the blue location L2. The RGB images shown are those
recorded immediately after the change to a that caused the ungrasp. The nodes these
ungrasps were performed from, where the arm is still positioned in these photos, will
be evaluated for their reliability for placing into the blue location in Experiment 7.4.
The agent will learn and evaluate a technique for placing into the blue location in
Experiment 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
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7.6 Of the 55 successful ungrasps during Experiments 7.1-7.3, these 19 resulted with the
object coming to rest into the green location L1. This was the most common result.
The agent will learn to reliably place into the green location as a transfer of the learning
it performs to reliably place into the blue location. This will be tested in Experiment 7.6.174

7.7 Of the 55 successful ungrasps during Experiments 7.1-7.3, these 11 resulted with the
object coming to rest in view and on the table’s surface, but outside of both the blue
and green locations. We expect a technique for purposefully placing in this region (L3)
to be more difficult to learn than a technique for the blue and green locations, due to
the more complex shape and the presence of “holes” where the other locations appear.
Learning this technique will be left for future work. . . . . . . . . . . . . . . . . . . . 174

7.8 Of the 55 successful ungrasps during Experiments 7.1-7.3, these 11 resulted with the
object coming to rest out of the agent’s field of view. While this disappearance of the
object is qualitatively unique, the agent will not study this phenomenon until future
work. We have made this decision as placing the object out of view and out of reach
cannot be part of a continuing sequence of pick and place actions (it will always be the
final time the object can move without experimenter intervention), and as we expect it
to be more difficult to make a general rule for which nodes or positions can be used to
repeat this event of placement into an out of view location. . . . . . . . . . . . . . . . 175

7.9 The colored surface depicts the approximately planar set of observations (u, v, d) of
the blue location L2 in image space. The 14 blue placement nodes are also plotted
by the (u, v, d) coordinates of their palm centers. The color and shape of the plotted
points varies with the number of successful placements were observed for that node
out of the five attempted. Note how the green points with 4 and 5 successes tend to be
near and just above the location (these four nodes are all in the closest 100 nodes to
the location’s center out of all nodes in the graph), while the red nodes that only had
one success are further away (the closest of these is more distant than 493 other graph
nodes). The agent continues looking at the relationship between the success rate of
the place action using a given node ni and the distance ||cL2 − c

p
i || in the remainder of

Experiment 7.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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7.10 Conditional probabilities that an ungrasp will result in a successful placement into the
desired location L2 given that the node where the ungrasp was performed is at most x
units from the location in image space. The probability values shown are based on the
success rates of the 14 nodes tested in Experiment 7.4, so the values change when the
value of x is equal to ||cL2 − c

p
i || for any of those nodes ni. At those points, the total

number of successes in the calculation of the probability increases by the number of
successes observed at that node, and the total number of trials increases by five. Due to
a single failure to place into L2 when using the second closest node, the estimate of
conditional probabilities that the agent calculates is not monotonically decreasing as x
increases. The failure at this node despite its closeness can be attributed to factors that
are not modeled by the agent, such as the orientation of the object in the hand when
a grasp is maintained at that node, or whether the displacement from the location’s
center in image space corresponds to a displacement in workspace that would have
the object near the table’s surface and squarely “above” the location for an ungrasp.
Despite this anomaly, the agent can conclude that it should use nodes with minimal
distances ||cL2 − c

p
i || so that they fit into the condition of a lower threshold x, and so

that successful placements are expected to be more likely. . . . . . . . . . . . . . . . 179
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7.16 Images when placing into the green location L1 from the closest node, which is
expected to be reliable based on the minimum distance policy transferred from placing
experiments with L2. As before, the top-left panel shows the observation just before
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7.24 The 48 initial positions of the target object when testing the reliability of the agent’s
pick-and-place action. Each position is shown as a boundary of the target mask that
corresponded to the block when placed upright at random coordinates within one of the
locations by the experimenter. Each boundary is superimposed on a zoomed-in image
of the locations without the block or arm present. Each position is annotated with the
number of candidate nodes found when planning the grasp component of the pick-and-
place. The relative sparsity of the graph in the blue location L2 is evident in the lower
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many candidates appears to increase the chance of selecting a node with false positive
desirable features, leading to a failure. This image resembles the visualizations of grasp
results because the current method for pick-and-place only fails if the grasp fails, as
the place action remains 100% reliable. Note that we require a successful place action
to end the agent’s control over the object that was maintained during a grasp, so this
makes weak grasps a failed grasp, rather than a failed placement. Similarly, even if the
agent would bump the block into the desired location without a grasp - a possible edge
case that did not occur in these trials - the agent would not consider this a successful
placement because it can determine it never had full control of the block with a grasp. 193
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ABSTRACT

Human infants are not born with the ability to reach and grasp. But after months of typical
development, infants are capable of reaching and grasping reliably. During this time, the infant
receives minimal guidance and learns primarily by observing its autonomous experience with its
developing senses. How is it possible for this learning phenomenon to occur, especially when this
experience begins with seemingly random motions?

We present a computational model that allows an embodied robotic agent to learn these founda-
tional actions in a manner consistent with infant learning. By examining the model and the resulting
behaviors, we can identify knowledge sufficient to perform these actions, and how this knowledge
may be represented.

Our agent uses a graph representation for peripersonal space, the space surrounding the agent
and in reach of its manipulators. The agent constructs the Peripersonal Space (PPS) Graph by
performing random motions. These motions are performed with the table but no other nonself
foreground objects present to facilitate simple image segmentation of an unoccluded view of the
hand. For each pose visited, a node stores the joint angles that produced it and an image of the arm
in this configuration. Edges connect each pair of nodes that have a feasible motion between them.
Later in the learning process, the agent may use learned criteria to temporarily remove a node or
edge from consideration if motion to it or along it is expected to cause a collision given the current
position of a foreground object being treated as an obstacle. The PPS Graph provides a mapping
between configuration space and image space, and the agent learns to use it as a powerful tool for
planning manipulation actions.

Initially, the only known actions are moves to selected PPS Graph nodes. The agent begins
learning by executing move actions, and will continue to learn by applying the same learning
method with other actions once it has defined them. The agent selects a random node as target,
and observes the typical results of moving to it. The action is performed in the presence of at least
one nonself foreground object, and the results of each action trial can be described in terms of
the object’s qualitative state and any changes it undergoes. Clustering of the results of all trials
may identify the large cluster of typical results and perhaps some small clusters corresponding to
autonomously observed unusual events. If there is at least one such cluster, the agent defines a new
action with the goal of achieving the same type of unusual result. Once a new action is defined, the
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agent learns features that help achieve the goal more reliably. This learning phase is the focus of this
work. This phase resembles early action learning in human infant development, where a relatively
small set of examples provides the necessary experience to learn to make the action reliable, though
perhaps awkward and jerky in execution. These results prepare for a second learning phase to be
carried out in future work, which corresponds with late action learning in humans, where actions
become efficient with smooth trajectories. At the conclusion of this work, the move, reach, ungrasp,
and place actions are fully reliable, and the grasp and pick-and-place actions are semi-reliable.
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CHAPTER 1

Introduction

1.1 Overview

We investigate the question of how an autonomous agent can learn to represent and act in its
spatial environment. We design a graph-based representation for peripersonal space, the space
surrounding the agent and within its reach. Our agent constructs an instance of this representation
with observations of its motor babbling motions. We present a learning method inspired by human
infant development that allows the agent to identify the typical and unusual results of its actions, and
to define new actions to repeat the unusual results reliably. We implement this method for use by
an embodied robotic agent, and we evaluate the reliability of the learned actions with the physical
robot. Our computational model also produces behaviors consistent with those observed in infants,
and provides insights into their learning and a framework for testing hypotheses.

The remainder of this chapter provides additional information on the scope and contributions
of this work. One of our goals is to contribute to the discussion of the questions ”Where does
knowledge of space come from?” and ”How can an autonomous agent learn to move and act
in its environment?” These questions are prompted by learning evident in human infants, which
is discussed in Section 1.2. Our focus is on the learning of manipulation actions carried out in
peripersonal space, specifically reaching, grasping, and placing. Infants learn these actions in the
early and late phases discussed in Section 1.2.1. The presence of these separate stages suggests that
there are also two separate learning processes, an early process that produces reliable actions and
a late process that fine-tunes the actions to be executed more efficiently. Our agent performs the
early learning process in this work, and learns with a much lower sample complexity than typical
reinforcement learning or deep reinforcement learning methods, and without encoding the goals of
the actions to learn in a reward function. The late learning phase is left as future work, and could be
carried out with reinforcement learning much more efficiently given the information from the early
phase.

While our learning method may be applied to define an action for any unusual event the agent
has observed and make that action reliable, we assume for this work that the agent defines the
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reach, grasp, and place actions after observing their respective events. This constraint allows
an efficient evaluation of the agent’s success rate for these actions during and after learning.
Section 1.3 elaborates on the selection of these actions, which were chosen for their importance for
an independent agent and the clear demonstration they provide of our learning method. Our agent
relies on the observation of unusual events and intrinsic motivation to learn to repeat them reliably
(in particular, an intrinsic reward based on the rate of improvement of action reliability), and this
learning method is discussed further in Section 1.4. Our theoretical model allows the agent to learn
in a general environment with fully unguided exploration, but at this time we have implemented a
model with some additional assumptions about the environment and guidance for the agent so that
the learning could take place and be evaluated within the scope of this work. In future work, the
model can be improved toward the ideal proposed version, primarily by removing assumptions that
simplified visual tasks and object properties, by relaxing the schedule of learning phases to focus on
actions or features, and by giving the agent a stronger feature generation capability. The current
progress towards fully unguided learning is described in Section 1.5. This chapter concludes with a
summary of the major contributions of this work in Section 1.6 and an outline of the remainder of
the dissertation in Section 1.7.

1.2 The Learning Phenomenon we Study

Typical humans, from children to adults, are capable of moving and acting in their environments,
manipulating objects efficiently to perform a variety of tasks even as the space and their own bodies
may change over time. But where does the knowledge necessary for these skills come from? Two
possible explanations propose that the knowledge is innate or provided by an expert designer in a
one-time transfer prior to its application, as it would be for a carefully programmed robot. This is
clearly not the case for humans.

Human infants begin with neither the spatial knowledge nor sensorimotor proficiency to execute
the actions that they carry out as older children and adults, as evidenced by their behavior. Initially,
babies engage in motor babbling, making seemingly random motions, and do not appear capable of
achieving more coordinated goals. The responses to stimuli and the motions carried out by young
infants are not consistent with innate spatial knowledge that would be necessary for manipulation
actions. Specifically, infants can be observed to be incapable of reaching and grasping objects in
their environment, even within their peripersonal space, or the space that should be in reach of their
hands. The knowledge for these actions is not innate or present at these very early stages.
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1.2.1 Early and Late Learning Phases

Unlike an artificial agent receiving new programming, the difference in capability between
infants and adults is not realized in a single event, and occurs over several developmental stages in a
long learning process. While behaviors vary between individuals, these stages can also be observed
(especially by trained developmental psychologists) as clear landmarks between the initial motor
babbling and a fully developed human.

Our work reflects the division of actions into their early and late forms that has been observed by
developmental psychologists. We make a similar distinction, defining an early action as a method
that can be learned according to a small number of features or patterns, but that is sufficient so
that when executed in this manner the action’s goal is reliably achieved. An early action may be
inefficient and appear awkward due to a lack of optimization and practice. For example, early
reaching exhibits a sequence of jerky submotions instead of a single smooth trajectory found in
late reaching. For some actions, the technique will only be considered early when it is the very
first one discovered, while others in our work have multiple early forms as additional salient,
human-understandable features are iteratively added to the model for improved reliability. The
changes between stages of early actions will focus on increasing the success rate of accomplishing
the goal, often by allowing a prerequisite to be considered or more reliably met. Iterations of early
actions are seldom different in terms of the efficiency with which underlying component motions
are carried out. Our model only uses the knowledge representation of early actions, and the scope
of this dissertation ends with reliable early reaching, semi-reliable early grasping, and reliable early
placing.

Later forms of actions emerge as the agent gathers larger amounts of data, and the changes
necessary to produce them can be derived from pixel-level features or practice that reveals precisely
which motor commands will create the smoothest, most skilled motions. These learning stages may
be best modeled by RL including deep reinforcement learning methods. Learning these actions from
a minimal or random initialization has a high complexity in time and data, but future works with
these techniques could use the results of our work, the learned spatial model and accompanying early
action forms, as scaffolding to reduce the necessary training time. Late actions will be smoother
and in some cases more reliable than their early counterparts. The defining difference between early
and late is the types of learning methods and features that allow these improvements.
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1.3 Why Reaching, Grasping, and Placing?

1.3.1 The Importance of the Grasp Action

An agent that can operate and survive independently must be able to observe its environment
and perform actions to change the state of itself and its environment. Grasping is a fundamental
action for the manipulation of objects. The grasp is a powerful and versatile tool for an agent due to
the expanded level of control over an object. When an object is grasped, it enters a new qualitative
state where it is temporarily bound to the hand, acting as a part of the agent’s self. In particular,
this binding can be observed through continued motion to the object, with each movement highly
correlated with the direction and magnitude of the hand’s movements.

When the grasp is performed successfully, the object’s grasped state continues as long as the
agent chooses, and the agent has more choice of how the grasp influences the environment due to
this control of the time and place that the grasp ends. The grasped state continues until the agent
performs an ungrasp action, and then the object transitions back into a state where it is no longer
bound to the hand or moving with the self. The persistence of the effect is one of the key differences
between the grasp and simpler techniques the agent can use to trigger an isolated motion from one
quasi-static state of an object to another, ranging from small contacts to shift it or tip it over, to
more forceful contacts that knock the object to the side or clear of an area. These bumps only give
brief control of the object in a single direction, and sensitivity to differences in the amount and
application of force during the brief contact make the control less reliable for achieving a predictable
result. Using a push action to steadily apply a force allows control over a duration like a grasp, but
the range of motion possible is limited to a surface. With a grasp, the agent can move the object
in 3D space for the full duration, and can control the motion precisely due to the already-present
knowledge of how to move the hand itself, which the object follows.

1.3.2 Reaching as a Precursor to Grasping

While the grasp is the key manipulation action for exercising this level of control and going on to
several higher order actions, we also consider the reach action that causes the previously discussed
bumps to be an important benchmark for an agent. Reaching is significant because grasping is
highly complex, and can only be performed successfully when a number of conditions are met
simultaneously. By contrast, reaching and causing a bump has only a singular condition of moving
the hand to the same position in space as the object so that they collide and the object is moved
out of the way. In a developing agent this is initially significant for the ability to influence nonself
foreground objects. Observing the persistent change to an object caused by the bump at the end of a
successful reach may be important to conceptualizing the existence of these objects in peripersonal
space, as it will be efficient to model the change as the new appearance of an object that has been
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moved to a new state. This evidence of additional objects is unique to reaches and other actions
that causes a persistent change, and will not be provided by motions that only move the hand. For
example, a move that occludes an object causes a temporary change to its distinct patch in the visual
field, but this also occurs for the background, and does not suggest the patch corresponds to an
object that can be manipulated. Moves that do not occlude objects are also missing evidence of the
objects’ existence. Therefore, successful reaching is important for learning that it is possible to
interact with the environment, and for identifying the specific parts of the environment that can be
interacted with.

Reaching will continue to be important to the agent in our work because reaches provide a
constrained set of experiences where grasps can be observed more frequently by chance, which is
an essential step in our learning model. The complexity from grasping comes from the need to open
and preshape the hand, then come into close proximity with the object with a suitable approach
vector, and then close the hand securely around the object to fix it to the hand during subsequent
motion. A situation where all of these conditions are met by random chance simultaneously will be
too astronomically rare to observe - even if this unusual event occurs within the span of the agent’s
experience, without very large-scale data collection (which may employ multiple robots over a long
period of time) there will certainly not be enough observations to find patterns between them and
draw conclusions about how to perform the grasp action.

We incorporate two measures observed in infant learners to mitigate this complexity. The first is
that as in the natural setting, the agent will learn the reach action as a precursor to the grasp action.
When executing the reach action, the agent satisfies the same condition of bringing the hand to
the object as is needed for the grasp approach. This is a helpful partial step due to its observable
bump effect. Without performing a successful reach, the agent could have all of the other factors
correct but not observe any change in the object. The reach is not dependent on any of the additional
grasping conditions, and with these varied during the grasping attempts the agent will observe both
the typical result of a quasi-static change and in rare (but less rare) cases the unusual result of a
grasp and the associated change to follow the hand. As it is present in infants when they learn to
reach and grasp, we also simulate the Palmar reflex, which in humans causes the fingers to close
around an object pressed into the palm. This is an important learning aid since it also reduces the
number of factors for the agent to put in place at once. In this case, the Palmar reflex closes the
hand at the correct time, so that all that is necessary to complete a grasp is a successful reach with
the correct approach direction and hand pose. As the agent becomes more skilled with grasping the
Palmar reflex fades and the agent will need to compensate by consciously closing the hand, which
will allow more selective grasps - not picking up objects unintentionally and finding the best grasp
point before initiating the grasp - and will prevent an object that is being intentionally ungrasped
from being caught reflexively.
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1.3.3 Ending Grasp-Initiated Manipulation with Intentional Placements

The work in this dissertation also includes the learning of the place action, which is combined
with the grasp action into an early move object action, which can also be called pick-and-place. The
place action must begin with an object grasped in the hand, and consists of an ungrasp to release the
object so that it comes to rest in a new quasi-static position within a specified qualitative location.
In order to reliably place into the desired location, the agent may need to use the move hand action
to perform the ungrasp at a suitable position.

We choose the pick-and-place action as the final learning step within this dissertation for our
agent, as demonstrating the acquisition of the knowledge required to perform each component of
this action sequence is meaningful for multiple reasons. One of the straightforward sources of utility
for the grasp action is realized from the extension to pick-and-place, where the object can be moved
from an undesirable location where it may be in the way, or moved to a desirable location where it
serves a new purpose. The reach, grasp, and place component actions of the pick-and-place also
allow a suitable demonstration of our model’s learning method, both on a series of increasingly
complex actions (moving the hand, reaching to objects, and grasping objects) and on the place
action, which shares fewer components. As a practical robot learning problem, these actions require
the embodied agent to 1) learn to control the movement of its degrees of freedom in the hand and
arms, 2) learn to use the robot’s sensors and end-effectors to detect and manipulate objects, and 3)
learn to form and execute plans using sequences of the component actions to succeed at a larger
goal. This set of actions has also been observed for decades in human infants, and we can compare
the behavior of our agent executing these actions with the behavior of the infants. Finally, this
endpoint allows this work to easily serve as a starting point for other works, such as those with
symbolic planners where the ability to move an object between locations is an assumed primitive
action. The capability to pick-and-place can be combined with higher level search or reinforcement
learning to solve problems like the Tower of Hanoi, or to perform real world tasks like cleaning and
sorting.

1.4 Learning from Unusual Events

1.4.1 From First Motions to a Model for Moving and Acting

Human infants begin with seemingly random motor babbling motions, which are made even
less predictable as the infant adjusts to the changing size of its own body and develops the strength
and coordination of the muscles it must use. Our embodied robotic agent will begin with a similar
set of capabilities. The agent quickly learns to use a proportional controller to set the velocities of
its joints to move each to a desired set point, and then to use these control laws in parallel to move
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the entire arm from one configuration to another. During these first movements, the agent learns
aspects of its own appearance and can gain a meaningful concept of self. A minimally complex
model where the world is viewed as static can be improved upon by modeling the self. As the agent
moves single joints and the full arm, it can identify the portion of its field of view that changes in
directions and with timings correlated to the motor controls it has used. These portions are treated
as the self, and the distal part of the self that moves most quickly can be defined as the end-effector
or hand. The combination of the modeled appearance of the self and the rest of the environment as
a static background is a much stronger prediction of the true appearance of the workspace.

After learning to recognize the self and to move the arm to any set point, the agent can carry out
a large number of motor babbling moves to poses throughout the peripersonal space. Within these
motions we assume that the agent observes its first typical result of its move arm action - when the
arm is commanded to a new configuration, the position and appearance of the arm may change, but
the static background model for the environment that is not occluded by the arm remains unchanged.
These movements also give the agent the opportunity to observe the arm (the visually observable
part of the self) in multiple poses. Rejection sampling is used to bias the poses generated as the
targets of these motions, to ensure that each is safe and visible, protecting the fragile robot and
facilitating learning from visual features. In our model, the agent will record the data from its visual
and proprioceptive senses at each pose, and each pairing of sensory data will serve as a discrete
mapping between the visual image space and the proprioceptive joint angle configuration space at
the values of the observed pose. We assume that images are taken from a fixed perspective, and
the agent does not use any degrees of freedom to adjust the position of the head or its gaze. This
fixed perspective allows a straightforward comparison of stored and current percepts. The model
associates the stored percepts within a graph node, and connects nodes with edges when the move
between the poses they represent is feasible and safe. The determination of edge safety is initially
based on edges that have been traversed during motor babbling - the motions that have already been
made should continue to be safe and are suitable for edges - and the graph can be expanded to
include additional edges for motions that are similar to those for the initial edges. The overall shape
of the workspace is assumed constant, so nodes and edges that have been added will remain valid
throughout all of the agent’s learning and acting phases. In particular, the small table in front of the
robot is present during motor babbling, so all proposed nodes inside or below the table’s surface
will be rejected by the sampling, and no motion along an edge will cross through the table. This
prevents the agent’s action trajectories from having significant collisions with the static background.
The full collection of nodes and edges will be referred to as the Peripersonal Space (PPS) Graph,
and will be used extensively as the agent identifies features relevant to making actions more reliable
and plans motions to execute those actions.
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1.4.2 Defining Actions from Observations of PPS Graph Motions

While the typical result of the arm motions is observed more frequently and can be understood
early enough for the creation of the PPS Graph, the agent will be able to identify one or more types
of atypical results as it continues to perform the motions. With enough executions of the move arm
action and with a sufficient number of foreground objects present to make interactions frequent
enough to be observed, the agent can determine a set of trials with qualitatively different results
from the results in the typical set. In this case, in addition to the motion and corresponding visual of
the arm, a nonself object will also have a new percept. As the unusual result type occurs much less
frequently than typical results, and the individual outcome of each unusual result is more difficult to
predict accurately with the agent’s current knowledge state, an application of intrinsic motivation
rewards the agent for observing the event more often, so that it can better understand the new
phenomenon. By understanding the phenomenon, the agent can predict its result more accurately,
and with a higher rate of increase of this accuracy than could be obtained for phenomenons that are
already well understood or that are at this time too complex or stochastic in the current world model.
In order to receive the intrinsic reward, our agent will formulate a new action defined by a goal of
causing the type of qualitative state seen in the unusual event, and then must search for features that
make the action reliable so that in practicing the action it encounters the event and can improve.

In the following paragraphs, we briefly discuss additional instances of this learning from unusual
events pattern. In this pattern, the agent executes over multiple trials a motion it is innately capable
of or an action it already knows how to perform. By observing the results of each trail, the agent
can determine the typical result of that action. Using clustering, the agent can also identify one or
more types of atypical results, which stand out as separate clusters with fewer members than the
cluster of typical results. In this work, the agent only identifies a single unusual cluster at a time,
but subsets may be found within this cluster in later iterations, as is done for the advancement from
reaching to grasping.

1.4.2.1 Observing Bump Events and Defining a Reach Action to Repeat Them

The unusual events observed when a nonself object’s visual percept changes will be collectively
known as bumps. For bumps, one metric that reveals them as an unusual cluster of results is the
intersection over union (IOU) of a visually distinct connected component of pixels in percepts
taken before and after a move of the arm. In the typical case, the IOU is approximately 1, but for
the atypical cases of bumps, the IOU will be significantly lower than 1, intuitively because it has
been bumped to a new location and this appears in a at least somewhat different set of pixels in the
agent’s view. By observing that bumps can occur, the agent can derive the existence of objects, as
recognizing that there are other objects within the foreground will be the most efficient and accurate
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way to model the interactions between these parts of the environment. Without the abstraction to
objects that allows the data to be grouped in meaningful ways, the agent would be forced to consider
these regions with pixel level data, where reasoning about their physical interactions would be
intractable. While these objects will be able to change position like the self, the agent will be able
to differentiate between the self and these other objects because they cannot be directly controlled
and do not move in correspondence with the agent’s motor commands (without the later capability
of grasping to bind them to the self).

Distinguishing bumps as a set of results that qualitatively differs from the most common result
leads to additional learning steps motivated by this unusual event. Due to its initial rarity and
novelty, along with the presence of learnable conditions that make bumps conditionally more or less
likely to occur, there is a high expected intrinsic reward for focused practice on a reach action that
causes bumps. The agent uses the goal of causing a bump to define the reach action, which will be
planned and executed using a sequence of one or more of the move arm actions that the agent is
already capable of. By making this action reliable, the agent can maximize the reward it receives
over time. An important detail is that the agent does not provide itself a reward each time that
another event that can be described as a bump occurs, which would allow arbitrarily high rewards
by simply executing more trials and without learning to produce bumps more reliably. Instead, the
agent’s intrinsic reward is based on the rate of increase in the reliability in the reach action over time.
This creates the highest reward when a new action is significantly more reliable with the current
feature set or in the current set of trials than in the previous sets, and relatively low rewards when
there is little improvement, either when a new feature is unhelpful or the action was already very
reliable in the previous sets.

Our agent identifies features that can be measured in past recorded trials and differentiate those
with bumps from those without bumps. These same features can predict whether a certain sequence
of arm movements is likely to cause a bump in a new trial, so the agent can evaluate all possible
movement paths and choose one that is, according to its model, most likely to produce a bump.
These features can be refined over time using the trials where the reach succeeds or fails, so that
the feature values that are considered the most reliable are consistent with these results. The agent
improves the reliability of the reach action through this refinement and also by adding features
as they become evident. In particular, the agent will choose a motion that ends with the hand
attempting to occupy the same region of space as the object, and among multiple options for doing
this the agent will prefer moving the center of the hand to the center of the object. The learning
process for the reach action has these positive qualities to note: 1) The agent learns a reliable reach
action without any expert provided knowledge about what a bump or reach is, and without assuming
any external utility to causing bumps, 2) The intrinsic reward is obtained when a reach successfully
produces a bump, and not for efficiency. This focus on the goal only allows the agent to learn the
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early form of the action, which is far less data or time intensive than a process to learn a more
efficient late or skilled action method, and 3) The agent learns reliable reaching with a small number
of features (much smaller than the number of features in a deep network model), and each of these
features corresponds to a high-level concept that is humanly understandable and thus useful in the
discussion of how the necessary knowledge for the action is acquired and represented.

1.4.2.2 Learning Grasping from an Observed Unusual Result of Reaching

The pattern of observing typical and atypical results of known actions and then learning a new
action to reliably repeat the atypical result can be applied for an arbitrary number of iterations.
In each case, the agent is intrinsically motivated to improve the reliability of the new action to
obtain the highest reward, which correlates with the fastest rate of improvement in understanding
and reliability that it can achieve. In our work, the agent learns to grasp, place, and move objects
through these additional iterations of the pattern. The following paragraphs will outline the learning
process for each of these actions.

Once the reach action is suitably reliable, the agent can plan reach trajectories and see the typical
result of their execution, which is a quasi-static change in the target object’s visual percept. At this
time the agent does not differentiate by the magnitude of this change as long as it is large enough to
be differentiated from noise-based differences between multiple observations of a stationary object.
At this time, we also do not allow a learning phase for identifying qualitatively different types of
quasi-static bumps, though in future work the agent could apply the intrinsic motivation to identify
and more reliably produce specific categories of bumps, such as those that do or do not change the
orientation of the block via tipping.

In our current method, the agent begins a new stage by observing a sufficient number of
accidental grasps to identify a cluster as an atypical result of reaching. This qualitative difference is
more significant than the difference between types of quasi-static bumps by creating a new dynamic
relationship between the object and the hand, and there is also a greater increase in flexibility
and utility the agent gains by being able to manipulate objects with a grasp. Observing enough
accidental grasps is aided in or experimental robot platform by the presence of a simulated Palmar
reflex that closes the hand when it is suitably posed relative to the object to grasp it, and by first
observing the activation of this reflex as an intermediate unusual event before requiring that the
closing of the hand produces a successful grasp. Our intuition is that reliable grasping requires the
fingers to be able to close around the object. We break this into three conditions:

1. the hand is fully open before the final motion of the grasp approach

2. the grasp approach direction is aligned with the vector along the axis of the forearm, pointing
out parallel to the gripper fingers
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3. the hand is oriented by the wrist such that the plane that passes through the gripper fingers is
perpendicular to the major axis of the grasp target

When these conditions are met, the grasp approach allows the opening of the hand and the grasping
region between the grippers to intersect with the target before the exterior of the hand, which would
bump it away and prevent the grasp. Rotating the hand so that the grasp is attempted on a relatively
small cross section of the hand provides the best chance that the object can fit between the grippers,
which is also aided in our experimental robot platform by fully opening the hand to increase the size
of this grasping region. Passing between the gripper fingers is necessary to trigger the Palmar reflex
for an early reflexive grasp, and is also a prerequisite for later grasps with deliberate commands
to close the hand. In addition to allowing the object to fit inside the hand, a wrist orientation
perpendicular to the major axis of a rectangular prism target creates a reliable grasp point. In this
situation, the grippers close evenly on two flat surfaces of the object for a firm connection that is
less likely to squeeze the object out of the hand or allow it to slide out of the grip during subsequent
motions. The agent experiments to identify features and ranges of values for those features that best
predict whether a reach trajectory will meet these conditions and produce a grasp instead of a bump.
Early grasps planned in this way become about 50% reliable.

1.4.2.3 Further Learning from Grasped Object Typical and Unusual Behavior

Once the agent has grasped an object, the typical result of the grasp involves the object moving
with the hand, with the expectation that the percepts of the hand and object will be highly correlated.
This will be the case for any moves within the PPS Graph and for almost all adjustments to the
agent’s degrees of freedom in the hands and arm. However, in the smaller set of cases where the
agent chooses to modify the degree of freedom for the openness of the hand to a sufficiently higher
percent open, the object is released from the hand to a new quasi-static position and does not exhibit
motion correlated to the motion of the hand for future arm moves. As it ends the grasped property
for the target object, This event will be called an ungrasp. Within the set of all grasps, a smaller
set will be successful placing actions, where the agent ungrasps an object and its new quasi-static
position is within the desired location. In this work, locations will be defined as qualitative regions,
such as a visually distinct patch on a table. An object will be in one of these locations when it is
in contact with the interior or boundary of the region, without requirements of a specific pose or
coordinates. This definition is more appropriate for the early developmental agent and requires a
lower level of precision that limited visual sensors can verify and limited motor coordination can
achieve. In order to make the place action reliable, the agent must learn to fully open the hand for
the best chance of the ungrasp succeeding, and to do so after moving the hand to a pose that is
expected to maximize the probability the ungrasped block drops into the desired location.
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1.4.3 Combining Known Actions to Form Higher Order Actions

In this work, the agent is assumed to be able to compose known actions together into new higher
order actions. This can involve performing actions in parallel, as is done early on to create the
move arm action from the action to move each degree of freedom individually, or sequentially, as is
done to plan reach trajectories using several move arm actions, or for placing to combine a similar
sequence of move arm actions with ungrasping. At the conclusion of this thesis we demonstrate the
agent’s ability to pick and place objects, which it learns to do by learning the component actions
and then composing them in the proper order. Within the search space, the branching is reduced by
which actions are applicable at each step of the process (for example, the agent does not consider
ungrasping when no object is grasped), and the search can be further restricted to only branches
that produce qualitatively distinct results from those offered by a shorter sequence. This allows
the agent to quickly discover the correct method for pick and place, it first reaches to and grasps a
target object, then moves the arm and hand together with the object, and finally places the object
with a suitable ungrasp. The pick and place action will be semi-reliable, mostly constrained by the
reliability of the grasp component action, and the agent’s ability to perform it will demonstrate the
results of multiple applications of the intrinsic motivation learning pattern and relate our work to
those in other fields that begin with a reliable pick and place action.

1.5 How Unguided is our Agent’s Learning?

We aim for our agent to resemble the example of human infant learners, with methods that
allow for the agent to learn from its own experience with minimal outside guidance or structure
for the learning activities. The agent should be intrinsically motivated to study unusual events that
are qualitatively different from the typical results of the agent’s current set of actions. The agent
will then expand its set of actions to include actions to repeat new phenomenon, and will focus on
improving the reliability of actions with a pattern or contingency that can be observed with the
agent’s current senses and knowledge state, as these actions will be improved most quickly, yielding
the highest expected intrinsic reward. While these are true for the agent in our ideal model, we have
had to introduce some guidance into our learning methods for efficiency in order to demonstrate
specific landmarks within the timeline of this work and the resources of our laboratory.

1.5.1 The Presence of Learning Stages Focused on Single Actions

A noteworthy difference from our ideal learning algorithm with a fully unguided agent is the
presence of learning stages, where we limit the agent to practice a single action at a time, rather
than a naturally interleaved learning of actions or processes that may improve the policies of
multiple actions using the same trials (for example, the ideal unguided agent could opportunistically
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use information from the same trial or set of trials in continued practice toward making reaching
fully reliable and to learn the first key considerations that make grasping reliable). In rough
correspondence with an agent free to choose the action with the highest intrinsic rewards, we start
the agent’s focus on an action when its prerequisites have been learned well enough for the action
to be learned efficiently, and end trials with that action when the agent experiences a plateau in the
reliability of the action, which would lower intrinsic motivation to continue to a point that would
drive a natural switch in focus.

Within a stage of focus on a single action, we also provide the agent with potential features,
either as single features or as features that it can select from a relatively small group of options. We
do not provide any information of how to use these features. The agent must process its current and
stored past percepts without further input to determine the values of each feature, and the agent is
not instructed on the values that indicate reliability, so it must still learn these aspects autonomously
from experience and using general statistical analysis methods. However, we acknowledge that a
completely unguided agent would have a larger capability for feature generation or would select
features from a larger set. Another effect of the agent being partially reliant on the experimenters for
feature generation is that the level at which action reliability plateaus may be influenced by the set
of new features to test being exhausted. This - along with sensorimotor limitations and the higher
difficulty of the grasping task - can explain that we were able to instruct the agent to move on from
reaching after seeing a plateau at essentially 100 percent reliability, but in our current experiments
the agent has had to end its focus on grasping with a semi-reliable grasp action (57.5% reliable).

A satisfactory level of reliability is different for different actions in our work to date, but we
claim that this does not detract from our claims of foundational learning or unguided exploration.
State of the art methods can be observed to have a similar result pattern of being almost completely
reliable for reaching, but less reliable for grasping. We do not intend to compete with these
methods, which often begin with much stronger information or learn from orders of magnitude
more experiences. Our model is also meant to serve as scaffolding for a later model, so its final
performance level before the additional learning with other methods is not critical to the success of
this work. However, our agent will be expected to become more reliable at reaching and ungrasping
than grasping, which is a much more complex action and requires more features and more precise
control. Our final demonstration of the ability to move objects will be primarily limited by the
bottleneck of grasping reliability.

The presence of learning stages is our current method for restricting the agent to the actions
within our focus area. In a natural learning environment, the agent would be concurrently learning a
hierarchy of actions, alternating making notes of observations that provide information for how to
make actions in different branches of the hierarchy reliable. While an infant may learn to reach and
grasp in the same time windows as it improves its vision, locomotive, or other skills, we prevent
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our agent from focusing on any of these tasks outside of our action hierarchy branches, those for
reaching and grasping and for ungrasping and placing, and then the combination of those actions in
sequence. This restriction is also necessary for the physical capabilities of our robot, which cannot
adjust its viewing angle or focus of the eyes, and does not have the ability to crawl or walk. We
also omit learning stages for low utility actions within these action hierarchies, such as learning to
reliably occlude an object.

While it has been necessary for us to impose a set ordering of learning phases for practical
considerations within this thesis work, this added structure is advantageous for evaluating the
contributions of the work. Results of the natural learning pattern are more difficult to follow
and record since any given action may be refined or not addressed at all within any set of trials.
Further, we wish to demonstrate a specific set of actions can be learned to a reasonable level of
reliability within a set period of time, which would not necessarily be possible if the agent was free
to choose any action within the hierarchy at any time. By enforcing learning phases so that the agent
addresses each action in the sequence and then moves on after reaching the reliability threshold for
a satisfactory evaluation in this work, we can most efficiently reach these results. Learning a single
action at a time also gives more reliable information about the sample complexity of each learning
task, and allows for more clear reporting of the results and on which trials any breakthroughs have
occurred.

1.5.2 Behavior Based on Assumed Intrinsic Reward Values

It should also be noted that our learning model does not include an explicit calculation of
intrinsic reward. However, we claim that our agent is intrinsically motivated to learn actions
to repeat unusual events more reliably as this would maximize an intrinsic reward such as the
one proposed by Schmidhuber [42], where the reward is proportional to the rate of increase in
performance of a task. This is justified within our use of learning phases because we are able to
have the agent attempt and observe the action that is at the appropriate level of complexity for the
agent to learn most efficiently about it, maximizing the reward. We always start phases when the
agent has the necessary prerequisite actions already sufficiently reliable and the agent has the ability
to consider all necessary features. We also end the learning phase consistently when the agent has
no more room to improve, either because it is fully reliable or because the agent’s set of features
cannot significantly increase the reliability further in our methods.

We intend this work to contribute an application of intrinsic motivation by choosing the phases
according to which actions should produce the highest intrinsic rewards as actions and predictions
become more reliable at the fastest rate. This will be of value to the intrinsic motivation community,
since it will demonstrate a new method that intrinsic motivation can be applied to where it allows
for successful learning. It is not intended to advance the theory of intrinsic motivation or propose a
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new method for implementing intrinsic motivation, but these do not interfere with the goals of our
work.

1.5.3 A Note on Assumed Sensorimotor Capabilities

The assumed visual capabilities of our agent and the built-in motor command processing of the
physical robot could be considered to be sources of guidance. However, we claim these assumptions
provide an amount of information that is relatively small compared to alternative methods. Further,
while we do favor biologically plausible features and methods, our focus is not on the computer
vision aspect of this learning problem, so we have made simplifications to allow our learning method
to function without the implementation of one of the sophisticated techniques being developed in
the state of the art of that field. For the motor command processing, we have demonstrated that
our agent is capable of learning to bring individual joints or the arm to a stable set point using the
built-in systems, and that the underlying methods are important for the safety and maintenance of
the robot’s operation, and also do not have a significant impact on the learning process we focus on.

1.6 Contributions

1.6.1 Demonstrated Learning

The Peripersonal Space (PPS) Graph. By unguided exploration of the proprioceptive and visual
spaces, and without prior knowledge of the structure or dimensionality of either space, the learning
agent can construct a graph-structured skeleton (the PPS Graph) that enables manipulator motion
planning by finding and following paths within the graph. The graph representation requires only
limited knowledge of the attributes of the nodes, and no knowledge of the dimensionality of the
embedding space. The PPS Graph provides a discrete approximation of the agent’s configuration
space as sampled at the nodes, and can be extended with the local Jacobians of each node to
interpolate the rest of the continuous space. We have demonstrated that the local Jacobian allows
more precise control to complete actions more reliably, and in future works expect work with the
local Jacobian and improvements to the dynamical model of hand motion to explain qualities of the
early actions and to advance the agent toward the smooth and directed late actions of an adult.

Learning Reliable Reaching. By learning conditions to make a rare action (i.e., reaching to
cause a bump of a block) reliable, the agent learns a criterion on perceptual images (stored and
current) that allows it to select a suitable target node in the PPS Graph. Motion to that target
node accomplishes a reliable reach. The PPS Graph representation accounts for reaching in a
way that matches striking qualitative properties of early human infant reaching: jerky motion, and
independence from vision of the hand.
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By interpreting the target node and its neighborhood as a sample from a continuous space, the
agent can approximate the local Jacobian of the hand pose in perceptual space with respect to the
joint angles. This allows it to adjust the trajectory to make reaching more reliable.

Learning Reliable Grasping. At this point, reaching reliably displaces the target block. Occa-
sionally, instead of quasi-statically displacing the block, the block continues to move, to follow
the subsequent motion of the hand. The agent is intrinsically motivated to change its focus from
learning to reach to learning to reliably repeat this newly observed phenomenon. Making this
result reliable requires several distinct conditions. The innate Palmar reflex makes these rare events
common enough to learn from. Conditions on gripper opening, wrist orientation, and approach
direction can all be learned based on positive feedback from the unusual block motion.

Learning Reliable Placing. The agent learns to place in two stages. Successful grasps put the
agent in a novel state of having an object moving with the hand. The agent learns to ungrasp by
attempting changes to each degree of freedom. It finds that only adjusting the gripper aperture
degree of freedom toward open reliably releases the object, returning to a familiar state with no
object grasped. Starting with a firm grasp, movements between nodes or any other changes to the
degrees of freedom do not result in an ungrasp.

After the agent has learned to ungrasp, it can refine this action to find the subset of ungrasps
that place the object into a desired location. As the agent has limited visual and motor capabalities,
the locations are relatively large and qualitatively defined, and do not require a precise location
or particular orientation of the object. The agent learns that if it moves the hand, along with the
grasped object, to a PPS Graph node that is close in image-space to the center of the location, and
then opens the grippers for an ungrasp, that the object reliably comes to rest in the desired location.

Sequencing to Reliably Pick-and-Place. We show that the agent can perform a simple action-
space search to combine the learned grasp, move, and place actions in sequence into a pick-and-place
action. This action is semi-reliable, with its reliability mostly determined by the reliability of the
grasp action, as it is the most complex and is the least reliable learned action given the current
method and set of features. This action could be used as an action primitive in future robotics and
learning works.

1.6.2 Significance for Developmental Psychology

There have been recent impressive results from unguided end-to-end learning of multiple games
[45, 44]. Using very large-scale data collection and deep learning methods, a robotic agent may also
learn the necessary coordination between vision and the motion dynamics of the hand to achieve a
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reliable grasp action [38, 31, 30]. While these results are very exciting, some limitations come from
the need for vast amounts of training experience, and the lack of transparency and explainability of
the learned knowledge. Our contributed learning method addresses these limitations and instead has
these desirable unique properties:

• Agent-defined Actions. Our agent defines actions to learn based on its own observations.
We avoid providing an error metric, a requirement for reinforcement learning methods and the
back-propagation training of deep networks, as these metrics must build in some information
about the action to be learned.

• Suitable for Learning Multiple Actions. Our learning method may be applied in several
iterations for the agent to learn multiple actions. In each use of this pattern of observing
unusual results for a known action and defining a new action to reliably repeat them, transfer
learning can be used to achieve a baseline performance using the learned prerequisites of
successfully completing the known action to attempt the new action. This removes the need
to start from scratch or to create a new function or structure for each action.

• Understandable Features. Our model is fully transparent and the learned features are easily
interpreted by humans. These understandable features and the methods that produce them
allow us to add more to the discussion about how an agent learns actions in peripersonal space
than if our method operated as a black box.

• Low Sample Complexity. All learning is performed within thousands of motions, with the
majority of these taking place while motor babbling to build the Peripersonal Space Graph.
Individual actions are learned within tens or hundreds of trials. Deep reinforcement learning
and end-to-end networks produce highly reliable actions and can be argued to have little
assumed knowledge and guidance, but have a well-documented issue of a sample complexity
that is orders of magnitude higher than our method’s.

We hope that our work on reaching, grasping, and placing in peripersonal space can illuminate
the kinds of intermediate states that a developmental learner goes through. Those intermediate
states make the structure of the knowledge more comprehensible, and the learning stages between
them more efficient. Combining the strengths of these approaches could be important.

Our agent has learned to complete actions with trajectories that resemble early infant behaviors.
Where these similarities are observed between the robot and infants, our computational model
suggests hypotheses for features and parameters that are sufficient and may explain these behaviors.
Our formalization may be used to design experiments that test these hypotheses.
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1.6.3 Significance for Other Fields

Reinforcement Learning. The action trajectories planned by our agent produce positive examples
with a much higher frequency than random motions. These initial successes can be provided as
scaffolding to efficiently train a reinforcement learner to this level of performance. Further training
could optimize the trajectories into a smooth, skilled motion.

Symbolic Action Planning. We have demonstrated an autonomous learning sequence that pro-
duces a pick-and-place action. Symbolic planners often treat pick-and-place as a primitive action,
and our work provides a concrete justification for its use without assuming it will be innate or
require guidance.

1.7 Outline of Dissertation Chapters

We present related works in Chapter 2. Chapter 3 provides the formalization for our model,
including the general PPS Graph representation and a summary of all features that are learned by
the agent to make each action reliable. Chapters 4 through 7 present experimental methods and
results, some of which have already appeared in our published works [22, 23, 24]. Chapter 4 focuses
on learning to move joints and the arm, and the creation of the Explored PPS Graph, the current
implementation of the general model. Chapter 5 involves the observation of the bump unusual event
and learning the reach action to repeat it. Chapter 6 describes the process of learning to grasp and the
implications of moving the robot to a new environment. Chapter 7 presents experiments for learning
to ungrasp and place, as well as sequencing grasping and placing to form a pick-and-place action
that is the final demonstration of the agent’s capabilities in this work. Chapter 8 concludes with a
discussion of the contributions and importance of this work, as well as next steps and opportunities
for future work.
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CHAPTER 2

Related Work

2.1 The Human Model from Developmental Psychology

To discuss how an autonomous agent can learn about peripersonal space and to perform manip-
ulation actions it is helpful to draw from the concrete and well-studied example of humans, who
typically undergo these learning stages as infants. We can draw on the extensive literature of the
field of Developmental Psychology, which documents decades of observations and experiments
concerning the process infants take to learn specific actions like reaching and grasping. While indi-
vidual infants exhibit varied onset times for the actions and may employ different early techniques,
the order of the milestones and the qualitative advancements that mark arrival at a new learning
stage are well understood [5]. For typically developing infants, the “pre-reaching” phase begins
at birth and lasts for 15 weeks on average. During this time infants can move in response to the
stimulus of a visual target, but these motions do not generally bring the hand in contact with the
target. Reach onset typically occurs at about 15 weeks, when the infant can first use intentional
reaching motions to make contact with the target with some reliability. Over the period from 15
weeks to 8 months the infant becomes more successful. This early reaching improves primarily in
the frequency of achieving the goal state, with the trajectory for the reach remaining primitive and
inefficient. Instead of a skilled technique of a single smooth motion, the early reaches are executed
with a jerky sequence of submotions. The current literature provides multiple explanations for
these submotions, and some may be corrective submovements [56], and some may be the result
of underdamped oscillations as the infant moves to an equilibrium point near the goal using its
minimally tuned motor control system [49].

Following the work of Piaget (1952) [36], there was a decades-long consensus that early reaching
required vision of both the target object and the hand, and that the reach was performed as a visual
survoing process to incrementally bring the images of the hand and the object together. However,
this was challenged when Clifton et al. (1993) [11] showed that the movement pattern and success
rate of early reaches is unchanged when the infant is denied vision of the hand. This study showed
that when infants were in a dark room where the hand would not be visible, and then were presented

19



with a glowing target object, reaches could be performed in the same manner with the same degree
of success.

A follow-up work by Clifton et al. (1994) found that not only were infants capable of reaching
equally successfully for a lit target in a dark room as with normal lighting conditions, but that the
reaches were also performed with the same kinematics [13]. They propose that visual guidance
of the hand may be a late development rather than an early one, and that it remains useful into
adulthood for difficult and precise manipulations. They also conduct experiments with sounding
objects in dark rooms, and find evidence that the infants can differentiate the noise of objects
that are in reach or not. However, auditory information does not appear to allow for the same
precise infant reaching, and most attempts missed the target completely [13]. A further study on
7-month old infants found that the visibility of the target does not appear to affect the timing of
reach onset, and that infants will reach and grasp objects presented to them even if they are only
glowing or sounding [12]. They also conduct an experiment where infants are presented with an
object in normal lighting at most six times before being presented with the same object in the dark.
They conclude that the infants are capable of quickly constructing the representations necessary
to perform the reach in the dark successfully. However, they do acknowledge that their claim was
not universally accepted, primarily due to objects that the success may be memory-based, due to
the reach trials in the dark room being conducted just after the lights went out. Adolph and Berger
(2005) [2] provide a thorough survey of significant observations of infant behaviors, including the
presence of “balletic” and cyclical motions and timelines for when infants tend to exhibit reflexive
and goal-directed behaviors. This survey includes an overview of other new studies in response
to the findings of Clifton et al. [11, 13, 12]. Corbetta et al. (2014) present the result as a new
clear consensus: “from their earliest attempts, infants can reach in the dark toward a glowing target
without seeing their hand [11].” [14, p.1]

While the results of Clifton et al. [11, 13, 12] supported a new theory that vision of the hand is
not important during early reaching, when infants are approximately one year old, vision is believed
to become important again so that the hand can be configured and oriented to produce the desired
interaction with the reach target once contact occurs [5]. By the age of eight months, the infant’s
reach motion becomes smoother and more similar to a typical adult reach, which can be described
as “a single motor command with inflight corrective movements as needed” [5]. Many aspects of
the evolution of reaching motion control can be explained by dynamical systems theory [49] and by
optimal control and reinforcement learning [7].

While early reaching does not rely on having a current visual feed of the hand and visual servoing,
vision does appear to be important for much of the process of learning and then using manipulation
actions, especially for building spatial mappings before reaching and later in development for
maintaining smooth motions and preshaping the hand for complex tasks later in development [5].
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A theoretical branch of the literature discusses that it is necessary for the agent to build a useful
mapping between the two- or three-dimensional visual space and the configuration space of the arm
(which has a dimensionality determined by the number of degrees of freedom of the arm) before
reach onset can occur. The agent’s spatial model must also be able to represent additional features
of itself, objects, and the environment before grasping can occur. The questions surrounding the
mapping are well summarized by Corbetta et al. (2014) [14, p.2]: “What remains unclear is how

looking at the object and bringing the hand to that location occurs at first when infants perform

their initial intentional attempts to hit the target. What visuo-motor mapping process allows this

to happen?” Several theories have been suggested for the nature of this mapping and how it is
constructed by human infants.

The creation of such a mapping is described as multisensory integration by Bremner et al.
(2008) [8], who focus on the sensory modalities of touch, proprioception, and vision. Their proposal
includes two distinct neural mechanisms. One uses an egocentric frame of reference for object
positions, and assumes a fixed initial body posture and arm configuration. The second is used with
a world-centered frame of reference for object positions, and includes the ability to factor changes
in the body and arm into its spatial relation mappings to remain effective with fewer assumptions.

Other studies on learning to reach highlight the importance of an agent understanding the
relationship between its sensory percepts of the environment, including proprioception (“the feel
of the arm”) and vision (“the sight of the object”). This relationship is the focus of Corbetta et al.
(2014) [14], where they describe and evaluate three theories of how this relationship is established.
These are vision first, proprioception first, or vision and proprioception together. Their experiments
provide weak support for the proprioception-first theory, but their results demonstrate strengths and
weaknesses of all three alternatives.

Thomas et al. (2015)[50] made close observations of the spontaneous self-touching behavior
that can be observed in infants during their first six months. Analysis of this behavior provides
evidence for the existence of two separately-developing neural pathways. One pathway corresponds
to the task of reaching, the act of moving the hand to contact the target object. The second is for
grasping, and is responsible for shaping the hand to gain successful control of the object.

The contributions of these and many other researchers provide valuable insights towards an
answer to the question of the nature of the mapping that allows reaching and grasping to be possible.
However, the different distinctions made by each investigator have led to a number of different
theoretical answers. It is difficult to determine which differences imply theories are competing, and
which differences are simply the result of different settings and methods, and remain compatible.
By subjecting theories of a behavior of interest (in this case, learning from unguided experience to
perform reaches, grasps, and other manipulation actions) to additional evaluations it is possible to
identify the most important distinctions and aspects of each theory that can work together to explain
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the phenomenon. This evaluation can be carried out with a carefully defined and implemented
computational model that is capable of performing the behavior of interest. We present our model
for use in such an evaluation in Section 2.3.1 and Chapter 3.

2.2 Robot Learning of Manipulation Actions

Expert researchers in the fields of computer vision [16] and robot manipulation [46] have
demonstrated that methods that provide detailed knowledge to a robotic agent can lead to impressive
results. In particular, these models incorporate precise prior knowledge of the physical properties
of the robot and that allows the agent to reconstruct the geometry of the environment and its
manipulators. These methods contribute highly reliable and skilled actions, but they do little to
illuminate how an intelligent action with minimal externally provided knowledge can acquire these
skills. The behavior of newborn infants highlights the differences in starting capabilities, as the
baby begins with seemingly random and poorly controlled motions but can purposefully interact
with its environment after a few months of experience. To develop methods with more resemblance
to the infant’s circumstances, robotics researchers have employed a variety of approaches to allow
the robot to rely on learned information rather than assumed prior knowledge.

2.2.1 Robotic Models

One of these approaches still involves a model of the robot and its environmental physics that
could be used for traditional motion planning with forward and inverse kinematics, but has this
model be learned with suitable accuracy instead of provided. Hersch et al. (2008) [17] propose a
model where a body schema is learned for a humanoid robot. This method assumes that the robot is
given the topology of the network of joints and segments of the body and that the 3D position of
each end-effector can be tracked reliably. Given these assumptions, the model can be constructed as
a tree-structured hierarchy of frames of reference. Sturm et al. (2008) [47] provide their learning
agent with a pre-specified set of variables and a fully-connected Bayesian network model. The
learning process uses visual images taken while the robot motor babbles with the arm. Their image
processing method requires visual markers on the robot to satisfy an assumption that the 6D pose
of each joint can be determined from these images. Bayesian inference completes the model by
eliminating unnecessary links and learning probability distributions over the values of the provided
variables. In our work, weaker assumptions are made about the variables and constraints included
in the model and visual perception provides much weaker information to the agent.
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2.2.2 Deep Reinforcement Learning Models

Advancements in deep neural networks and processing have been utilized by researchers using
deep learning and very large scale datasets. These powerful learning networks can be trained
to encode the information necessary for reliable actions. In [38], the high number of unlabeled
training examples (50,000) gathered over 700 robot-hours allows the model to avoiding biasing and
overfitting from a smaller number of human-labelled examples. They use a convolutional neural
network (CNN) to predict grasp points and achieve reliable grasp results. Levine et al. (2016, 2018)
[31, 30] use a CNN to predict from input monocular images if a motion will produce a successful
grasp. This model can be used in real time to perform successful grasps through servoing that
relies on the direction of the motion associated with the most confident prediction of success. This
model has an even larger dataset of 800,000 grasp attempts observed over the course of two months
with up to 14 manipulators at a time. While these learning models are powerful and encode salient
concepts such as grasp points and hand-eye coordination, the encoding of the learned features in
network weights causes the learned features to be less easily interpreted than those of our model.
These models demonstrate successful grasp learning, but it is unclear if they could be used to model
the learning of natural agents, given that this number of clearly observed examples may not be
consistent with infant learning. Our agent learns from significantly less examples to meet our time
and resource constraints.

2.2.3 Neural Models

Another approach focuses on hypotheses about the neural control of reaching and grasping, with
model structures determined by these hypotheses. The constraints of these models are represented
by neural networks that are trained from experience. Some of these models are motivated by
empirical data from the literature on human infants, including the computational model ILGM,
proposed by Oztop et al. (2004) [35]. This model consists of neural networks representing the
probability distributions of joint angle velocities. The model is specific to grasp learning and uses
an assumption that the knowledge of how to reach is provided. Their focus is on the learning of
an open-loop controller that is likely to terminate in a successful grasp, and the performance is
evaluated using a simulated robot arm and hand with a Palmar reflex.

Chinellato et al. (2011) [10] proposed another architecture consists of two radial basis function
networks linking retinotopic information with eye movements and arm movements through a shared
head/body representation. Their network’s weights are trained through experience with an arm with
two degrees of freedom in a simulated 2D environment. Experiments demonstrated the behaviors
produced had appropriate qualitative properties.

The embodied computational model proposed by Savastano et al. (2013) [41] is implemented
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as a recurrent neural network and uses a simulated iCub robot for evaluation. They demonstrate
multiple phases of reaching with different levels of skill, corresponding to pre-reaching, gross-
reaching, and fine-reaching of human infants. These phases also exhibit qualitative matches with
observed behaviors of children, with a diminished use of vision in the first two phases and a
proximal to distal bias in the degrees of freedom of the arm that are selected for use. In order
to cause the transition between stages, the experimenters manually add specific links and change
certain parameters in the network. While this produces desirable results, it leaves a question about
how and why these changes would take place during development.

Roncone et al. (2016) [40] also evaluate a model of peripersonal space with an iCub robot with
artificial skin. This model incorporates proprioceptive, visual, and tactile modalities and allows
the agent to perform reaching and avoidance tasks. They conduct experiments with double-touch
(touching two parts of the self together to produce a tactile sensation in both) with and without vision,
and with a stimulus from an independently moving object that relies on vision. The resulting learned
representations are used by a velocity controller to produce avoidance behavior that maintains a
margin of safety around the robot and reaching behaviors to move toward the greatest activation.
While the stimuli and sensors are biologically inspired, the controller relies on detailed kinematics
of the iCub robot and formulas for frame of reference changes, as well as the high-resolution tactile
information from the 4,000 skin taxels that many robots do not have access to, including the Baxter
robot used in our work.

Serino (2019) [43] proposes a model of peripersonal space that allows the extent and shape
of the space to vary with experience and the external state of the environment. The sources of
variation supported by the model include physical restraints on the body, extended reach with tool
use, and social interactions. This model also incorporates visual, tactile, and proprioceptive percepts
to create representations. Rather than experimenting with action learning, Serino focuses on the
importance of the peripersonal space representation for the safety of the agent as well as its influence
on recognizing ownership of parts of the self, self-consciousness, and social considerations.

The computational model of reach learning presented by Caligiore et al. (2014) [9] is based on
reinforcement learning, equilibrium point control, and minimizing the speed of the hand at contact.
This model is implemented with a simulated planar arm with two degrees of freedom, and generates
predictions that are compared with longitudinal observations of reaching by infants between ages of
100 and 600 days recorded in Berthier et al. (2006) [6]. The comparison demonstrates qualitative
similarities between the predictions and the experimental data in the evolution of performance
variables over developmental time. The quality they focus on is the irregular, jerky trajectories of
early reaching documented in Berthier et al. (2011) [5], which they attribute to sensor and process
noise, corrective motions, and underdamped dynamics as suggested in Thelen et al. (1993) [49].
In our PPS Graph model, we suggest the irregularity of motion along graph paths is at least a
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partial cause of the irregular motions observed in infant behavior (and that the irregular motions are
not the result of real-time detection and correction of errors in the trajectory, as this explanation
would be inconsistent with Clifton et al. (1993) [11]). We accept that another component of the
irregularity may be due to process noise and underdamped dynamics during motion along individual
PPS Graph edges. While we show that it is possible to produce underdamped motions with our
robot by adjusting the control mode and parameters, we have not yet evaluated these motions within
our model. Our work also demonstrates that our model supports learning for a physical embodied
robotic agent with a humanoid arm and corresponding higher number of degrees of freedom.

2.2.4 Sensorimotor Learning

Several more recent results have been produced by an approach that is more similar to ours as it
focuses on sensorimotor learning without explicitly programmed-in skills, exploration guidance,
or supervision through labeled training examples. Each work using this approach, including ours,
requires the task or environment to be simplified via assumptions to allow the learner to make
progress that can be observed and evaluated in a reasonable time given the current state of the art.
While these methods speak most directly to their simplified problems, each contributes an important
component of the solution to the problem of learning manipulation actions in the full complexity
real-world setting and advances the discussion of how such learning may take place.

The developmental robotics results of Law et al. (2014a,b) [28, 29] are closely related to our
work. In both cases, a graph-structured mapping is learned between proprioceptive and visual
sensors, and therefore between the configuration space and a work space or image space observed
with those sensors. Both our method and theirs also rely on an application of a form of intrinsic
motivation that encourages learning from unusual events, which the agent can identify and learn to
repeat reliably. In the case of our work, the theoretical model we present has no externally-imposed
guidance or schedule for the order of learning tasks. In this case, the learning process would only
be sequenced developmentally in terms of prerequisite actions, such as reaching being learned
before grasping since a grasp includes a reach to approach the target. Our works differ significantly
in their simplifications from this ideal model. Law et al. (2014a,b) [28, 29] provide an explicit
schedule of “constraint release” times that are designed to follow the observed stages identified
in developmental psychology literature, whereas we make assumptions about the agent’s intrinsic
motivation to determine if the agent will advance to the learning stage for the next action or continue
to practice the current action of interest with a new feature considered.

The Reachable Space Map proposed by Jamone et al. (2012, 2014) [21, 20] is defined in terms
of gaze coordinates (head yaw and pitch, plus eye vergence to encode depth) during fixation. The
control system moves the head and eyes to place the target object at the center of both camera
images, and the required configuration maps to the point in space that must be reached to. Aspects
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of this relationship between retinal, gaze, and reach spaces were previously investigated by Hülse
et al. (2010) [19]. The Reachable Space Map assigns a value R ∈ [0, 1] reflecting the ease of
reaching targets. R = 0 indicates that a target is unreachable, R = 1 indicates that the target
may be reached with all joints having significant range in both directions before reaching the joint
limits, and fractional values of R indicate that the object is reachable but only with some joints
close to their limits. These intermediate R values are used as error values to motivate the use of
other degrees of freedom determining the pose of the body (for example, the waist and the legs) to
increase the reachability of target objects. The Reachable Space Map would be a valuable future
addition to our framework, but each implementation of the PPS Graph [22, 23, 24] is learned at a
developmentally earlier stage of knowledge before goal-directed reaching has a meaningful chance
of success. The Explored PPS Graph [23, 24] is learned as the agent visits poses generated by
non-goal-directed motor babbling. As each pose is visited, the agent records the set of joint angles
and the image(s) of the arm, producing a discrete mapping between configuration and visual spaces
at the points sampled with exploration. Only after the PPS Graph is completed is this information
applied to the task of learning to reach reliably. Our work also differs in that we assume that all
degrees of freedom other than those of the arm (including those to control the gaze and position of
the head and body degrees of freedom our Baxter Research Robot does not have) are fixed.

Ugur et al. (2015) [51] demonstrate autonomous learning of behavioral primitives and object
affordances, leading up to imitation learning of complex actions. However, they start with much
stronger assumptions about peripersonal space than our model. Their model includes a 3D Euclidean
spatial representation, and assumes that motions will be specified with the starting, midpoint, and
endpoint coordinates of the hand in that 3D space. Our agent is only provided with the raw vector
of joint angles sensed with proprioception and perceives coordinates of the hand in image space
from the perspective of a fixed-position RGB-D camera. The PPS Graph represents a learned
mapping between those spaces, and does not provide information about the 3D Euclidean space.
The egocentric Reachable Space Map [20] could be a step toward an alternative 3D model of
peripersonal space.

Other works rely on senses other than vision, such as Hoffman et al. (2017) [18]. They present
a computational model that includes haptic and proprioceptive sensing, but not vision. Their model
integrates empirical data from infant experiments and was evaluated on a physical iCub robot
with artificial tactile-sensing skin. They model a process where infants are prompted to learn
to reach to different parts of their bodies with buzzers placed on the skin. The results reported
for the experiments with infants are used to derive constraints for the computational model. The
authors present the work as only a partial success due to the disparities between the empirical
data, conceptual framework, and robotic modeling. As a result of the limited integration of these
aspects of the work, they describe their model as closer to traditional robot programming than the
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sensorimotor learning model they aspire to.
Luo et al. (2018) [32] create a three-phase model inspired by the first four months of human

infant learning to reach and that is closely related to our work. The first phase corresponds to
pre-reaching with motor babbling during an infant’s first two months, and as suggested by Corbetta
et al. (2014) [14] the agent first learns to guide the arm with proprioception. Their robot is given
simulated proprioception that is represented with an autoencoder that was trained during the motor
babbling motions. The second phase corresponds to learning to fixate visual attention on objects
during the third month of infancy, and relies on haptic feedback from the environment. The third
phase combines the movement of the arm with visual fixation on the target object to produce
reaching. This model is also compatible with the finding by Clifton et al. (1993) [11] that reaching
does not rely on current vision of the hand. The model is evaluated with a physical PKU-HR6.011
(a small humanoid robot) and two simulated robots. Their method is shown to produce very reliable
actions in the PKU-HR6.011 evaluation, where the agent performs 99% successful reaching, 98%
successful grasping, and 94% successful placing of one cuboid object onto another.

The results of Luo et al. (2018) [32] are highly impressive, especially when noting that they
obtained a grasp action that is almost fully reliable, while the grasp action produced in our related
method remains only semi-reliable. We believe that the higher performance is possible due to
key differences from the assumptions of our method and in the information available to the agent.
In particular, their agent is provided with knowledge of the mathematical structure of the robot’s
kinematics chains, and learns the appropriate tuning of coefficients for these matrix functions and
the neural models that use them for forward and inverse kinematic reasoning. By contrast, our
agent does not attempt to learn a general forward or inverse kinematics model, nor is it assumed to
have an implicit understanding of the structures of the kinematics chains. Their agent is given the
capability to extract the 3D position and orientation of the targets of its actions from its vision by
exploiting knowledge that each target is a cuboid with color-coded faces. While our model does
rely on distinctive colors to simplify image segmentation and processing, our agent is only allowed
to produce less informative representations of the hand and other objects, such as binary image
masks and depth ranges. In future work, we expect that the consideration of additional features or a
reinforcement learning approach for late action learning could increase the reliability of our agent’s
grasp action without adopting stronger assumptions.

Developmental robotics with sensorimotor approaches inspired by infant learning remains an
active field of research. Kumar et al. presented the Dev-PSchema model in 2018 [27]. This model
performs bootstrap learning from simple action primitives with proprioception of the hand up
to increasingly complex new actions based on intrinsic motivation principles. The selection of
a task and target object are based on excitation rewards calculated from the similarity, novelty,
and habituation of each choice. Adjusting the weight given to each excitation parameter allows
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variations in behavior similar to those between individual infants. Evaluations are performed
with a physical and simulated iCub robot. Adjustments to the weights are also shown to produce
preferences for novel or familiar objects (or novel objects with more or less properties in common
with familiar objects), and equal weightings allow the agent to swap between actions quickly and
combine novel action chains. We believe this approach may be applicable for our future work to
allow the agent to produce its own learning sequence, removing the necessity of guidance from
learning phases or specific actions to focus on. In very recent work in 2021, Kumar et al. presented
continued development of the Dev-PSchema model [26]. The model is extended to be even more
open-ended, with the agent creating general skills that were not observed or practiced in its learning
experience in order to accomplish new user-defined goals. The sequencing of high-level actions to
produce these solutions is expected to be a step toward learning tool use. These results also inspire
opportunities for future work to evaluate our agent’s learning and performance of high-level actions,
including those that depend on the component actions learned in this dissertation.

2.3 Our Representation for Peripersonal Space

Our work with peripersonal space is inspired by prior works completed by members of our
lab that considered learning problems in other spaces. In those previous works, a process was
described that allows a mobile robot with uninterpreted sensors and end-effectors to construct
a useful model of its own sensorimotor system [37]. The agent can use this type of model to
distinguish mobile or quasi-static objects from the static background environment. Simple and
human-understandable models of actions that can transform the states of objects can also be learned
through this framework [33]. Mugan and Kuipers (2012) took the initial steps of investigating
how an autonomously exploring agent could construct its own hierarchical models of actions for a
manipulating robot [34].

2.3.1 The Peripersonal Space Graph

We present a graph-based model for representing peripersonal space. The nodes store configura-
tions of visited poses as a set of arm joint angles and corresponding visual features for the hand
in each pose, and the edges connect nodes if motion between their poses is feasible. As is typical
with sensorimotor model approaches, in order to decrease the scope of the learning problem, our
current model adds assumptions to simplify the environment, objects, and images. This allows a
more restricted focus on specific questions which can be modeled in greater detail, and from these
models insights and improvements can be seen. These results can be combined with future work
that considers factors that are over-simplified at this time. Because our model is implemented and
evaluated on a specific robot (a Baxter Research Robot in our works to date), the current model
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also reflects aspects of this robot’s specific perceptual and motor systems that are not realistic for a
human infant.

We have presented multiple implementations of the Peripersonal Space (PPS) Graph. In our
work published in Humanoids 2016 [22], we manually construct a small Learning PPS Graph
where the agent learns to reach, and show that this reach action performs well in the large Sampled
PPS Graph which has configurations randomly sampled throughout the range of each joint. This
is also where we first develop our algorithm for learning from unusual events based on intrinsic
motivation [3]. When the results of a known action qualitatively differ from the observed typical
results, the agent defines an action, and then identifies the features and feature values that allow it to
plan to repeat the unusual event reliably. In this case of our Humanoids 2016 work [22], the agent
observes that in rare cases random motions bump into blocks and change their position, and learns
features to reliably reach and bump the blocks. At this time, we simplify the high level process
with assumptions about the actions the agent will be intrinsically motivated to study and assume
the results of searches over the set of possible features in some cases where the search has not yet
been performed. In the ideal model we propose, the agent will be entirely responsible for feature
generation and selection, and will autonomously direct its attention to actions in any order when
they show the greatest expected intrinsic reward for being ready to learn.

The Explored PPS Graph is constructed and used in our works published in IROS 2018 and
Frontiers in Neurorobotics 2019 [23, 24]. Instead of independently sampled configurations from the
full configuration space, the poses for the nodes are generated using a motor babbling method that
appears random, but with biases toward keeping the hand visible, as in von Hofsten (1982, 1984)
and van der Meer (1995, 1997) [54, 55, 53, 52]. This bias can be enforced with rejection sampling,
and generating a new next pose if the currently proposed pose is predicted to fall outside the view
of the robot’s camera. Due to the use of a new vision system, we assumed the agent began with a
reliable reach action to focus on learning only the grasp action. Successful grasping requires two
low-probability events to occur simultaneously. First, the direction of the hand’s motion and the
orientation of the hand must allow the object inside the hand, and second, the hand must be closed
to create a firm connection with the object. These events occurring together by chance is too rare
for the agent to observe a usable number of accidental grasps as an unusual event to repeat. We
simulate the Palmar reflex, a reflex found in human infants that causes the hand to firmly grasp an
object that is pressed into the palm [15], in order to remove one of the rare conditions for this event.
The agent is then able to observe some accidental grasps, and learns to grasp semi-reliably. The
agent’s actions are also improved in this work with the introduction of local Jacobian estimates, to
extend the PPS Graph from a discrete mapping between configuration space and image space to
a locally continuous mapping centered at each observed pose. Modifications to trajectories using
these estimates can interpolate between nodes to more precisely match the image-space position
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of the target, improving the reliability of the action. In our Frontiers 2019 work [24], we show
that reaching and grasping can be learned in the same framework with two applications of the
learning from unusual events procedure, and also that learning to reach does not require a smaller
Learning PPS Graph (the number of bumps that can be observed in the larger randomly explored
space covered by the Explored PPS Graph is sufficient).

In order to extend the set of learned actions to include placing, we define visually distinct
qualitative locations that the object may be placed into. Our final demonstration of the agent’s
learned skill in this work is to combine a grasp and a place in sequence to perform a pick-and-place
with a target object. In situations where the shape and orientation of the object allow it to be grasped
again after the placement, this allows the agent to generate additional tasks to practice for itself.
This gives the potential to learn from self-directed repetitive play, as in Schmidhuber (2011) [42].

We observe important qualitative consistencies between the trajectories for the move and reach
actions learned by our model and the documented behaviors of human infants. In particular, the
granularity of motions possible with the relatively sparse set of nodes and existence of only relatively
short edges causes the trajectory to exhibit the jerky motions documented by von Hofsten (1991)
[56], and offers support for a potential explanation for their cause. The agent’s use of only stored
visual percepts of the hand (and a current percept of the target object) while planning is consistent
with the finding of Clifton et al. (1993) [11], where infants were observed to be equally capable of
reaching for a lit object in a dark room, and thus were not reliant on current vision of the hand. Our
model and its results are intended to be suitable for use as scaffolding for other agents that learn
to perform smooth, skilled actions from the starting point of reliable but infant-like early action
policies. A form of apprenticeship learning [1] could use demonstrations of our agent’s actions to
direct the attention of a reinforcement learner to a neighborhood of the action space that produces
reliable actions, and should converge to skilled actions much more quickly.

2.3.2 Probabilistic Road Maps

As our PPS Graph is built with random motions and defines nodes with points in the robot’s
configuration space, it can be considered to be a type of Probabilistic Road Map (PRM), a method
for robotic motion planning first introduced by Kavraki et al. (1996) [25]. The PRM method finds
nodes near the desired start and goal positions and can efficiently find a path between them using
a graph search, a process similar to our agent’s procedure of choosing a reliable final node and
travelling to it along graph edges. Reducing the problem of learning to move by using the graph
to guide most of the motion between these start and end nodes allowed the learning phase to be
shortened to approximately one minute, and the planning phase for each subsequent move could be
completed in well under one second [25].

The PPS Graph is especially inspired by a variant of the PRM, the Visual Road Map (VRM)
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developed by Ramaiah et al. (2015) [39]. In the VRM, each node is annotated with images
taken from different perspectives of the robot in the pose the node’s configuration yields. In our
Humanoids 2016 work [22], our agent’s visual sensor used 3 webcams to gather a similar set of
vectors of images to annotate each node. Both the VRM [39] and our Sampled PPS Graph [22]
created the set of nodes by sampling points in the configuration space, though in our more recent
work [23, 24], PPS Graph nodes are instead generated by a random walk, with small deltas added
to each joint angle to arrive at the configuration for the next node. This approach has a stronger
resemblance to the motor babbling and cyclical motions of young infants documented by Adolph
and Berger (2005) [2]. In Ramaiah et al. (2015) [39], the robot is given expert knowledge in the
form of a procedure for ruling out nodes and edges where collisions will occur, and significant focus
is given to visualizations and analysis of the space based on the graph without these components. In
our work, the agent is not given any pre-defined selection criteria for nodes or edges and must learn
to use the information stored in the PPS Graph.
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CHAPTER 3

Defining a Model of Peripersonal Space

3.1 What Spaces are We Modelling?

In order to discuss our model, we must first clarify the types of space we represent in this work,
and which of many possible definitions we use. The scope of our work is also described by spaces
that we do not focus on. Those spaces are important to other branches of literature, but differ from
those in our model and our research question in significant ways.

Our agent learns to reach, grasp, and place objects with its end-effector. As a result, our main
focus is on peripersonal space, the near surroundings of the agent including objects that are in
arm’s reach for the robot and that can be manipulated with the hand. Our Baxter Research Robot
is stationary, and the range of its reach for defining what is within peripersonal space is measured
from a single position. For simplicity, we also consider only a single arm that will be used for all
motions and all action learning. The limited size and lack of locomotion differentiate the agent’s
peripersonal space environment from large scale and navigational spaces. In our experiments, the
agent can observe its entire environment (albeit through limited sensors) at any time step, while
the large scale spaces have at least some of the environment beyond the sensory horizon, requiring
adjustments to the agent’s position or gaze to observe additional regions.

As the set of reachable positions in space, the agent’s peripersonal space will be primarily
defined by the set of all possible points in configuration space of the robot’s arm and hand. This is a
continuous 8-dimensional space with values corresponding to the angular positions of 7 arm joints
and the percent openness of the parallel gripper fingers. The Peripersonal Space Graph Model uses
a sparse, discrete sampling of the set of feasible configurations to approximate the full continuous
configuration space. This approximation is improved to a locally continuous model by calculating
the local Jacobian in the neighborhood of each sampled point and using it to interpolate between
those points.

Peripersonal space is also observed visually by the agent. We have shown that the number and
type of cameras is not critical to our model, as the learning process succeeds in producing reliable
actions with 2D RGB images from three webcams in [22] and with images from a single RGB-D
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camera in [23, 24]. However, our model does assume that the one or more cameras used will
have fixed viewing angles and focuses, differentiating this space from those with gaze coordinates,
such as in [20, 21] where the perspective can be changed with degrees of freedom in the neck,
head, and eyes, as well as from visual space in studies using selective focus or foveated vision.
While our approach is likely to support use of other sensors (perhaps laser range finders), we have
used RGB or RGB-D cameras to create an image-space representation of the agent’s peripersonal
space as it would sense visually. It is important to note that any points, vectors, or binary masks
defined with image-space coordinates will not correspond with the standard 3D coordinates of the
robot’s environment, and that the agent will not be provided with or compute a transformation from
image-space to the 3D metrical workspace.

Our agent is best able to understand peripersonal space and perform actions in it by considering
the relationship between its configuration space and vision, in particular focusing on the relationship
between the configuration of the arm and the position and other features of the hand in the visual
percepts taken at the same point in time. In order to preserve the relationship between an observed
configuration and observed image, the agent will define a graph node using the set of joint angles
and annotate the node with the image(s) taken at that time, which can be analyzed further to find the
portion corresponding to the hand and the values of any features derived from it. By recording a
large number of these paired observations in a set of nodes for the Peripersonal Space Graph, the
agent learns a discrete mapping between the proprioceptive and visual descriptors of its peripersonal
space. This model is expanded to a locally continuous approximation of the full space by computing
a local Jacobian for each node, calculated as a best fit for the recorded changes in joint angles and
resulting changes in hand position in image-space between the node and each of its neighbors.

The agent can also visually observe points in its workspace that are not associated with a known
arm configuration. The agent uses a static background assumption to locate the arm in the image.
This also allows for the observation of nonself foreground objects, which (in our experiments)
are distinctively colored rectangular prism blocks within this work. (This simplifies the image
processing required and leaves the determination of grasp points on objects with more complex
shapes for future work, when the agent would be learning late grasping and become able to account
for those features.) The agent can estimate the configuration space coordinates of an object by
searching for a node where the stored image of the hand appears in an overlapping position with
the object in image-space, and retrieving the joint angles stored for that node. The estimate can be
improved using that node’s local Jacobian to account for the displacement between the hand’s center
and the object’s center in image space. Note that this process is distinct from inverse kinematics, as
it uses a relationship between configuration space and image space rather than a 3D metrical space
or six-dimensional pose. Further, the mapping uses the PPS Graph that the agent has built from
experience, rather than the globally continuous mapping of an inverse kinematics function provided
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by prior knowledge.
A rectangular table is placed in the agent’s environment centered in front of the robot. The

table is centered with the agent, and the entire tabletop is within the agent’s peripersonal space -
though as our agent only uses its left hand, reaching to the far right side requires the arm to be more
extended, which can be achieved only with a somewhat narrower range of joint angle combinations.
For safety and to preserve the robot’s relatively fragile arm, we prevent motions that would cause
the arm to collide with the table, limiting the agent’s peripersonal space. We also constrain the
agent’s motor babbling movements to points in space where the hand will be observable by the
fixed camera. These constraints give the agent the same set of experiences as it would have if it did
attempt these motions and chose not to preserve the positions it failed to reach without a collision
(which would cause pain for a natural agent and would not be desirable to repeat) or that were
not observable, and would not be able to appear desirable for manipulation actions. These safety
measures are implemented using forward kinematics and the planned next configuration, though
this formula and technique are not visible to the agent, and the checks are only performed as the
agent learns to move the arm and explores the space, and do not limit its options as it plans other
actions (for example, the agent will never need to attempt to plan a reach to an object that is beneath
the surface of the table or that is not in a visible region of space).

The table’s surface provides the agent with a workspace where it will interact with other objects
in the foreground. As is the case with those smaller objects, the agent will not have a geometric
model of the table or its coordinates or dimensions in three-dimensional space. The agent will
primarily observe the table visually, and can describe the workspace as a region in image-space,
or with features derived from this region, such as its center in image-space coordinates. As with
objects, the agent can use the discrete mapping available from the nodes of the PPS Graph to
approximate the configuration-space coordinates of a point in the workspace as the joint angles of
the arm stored in a node where the stored image of the hand overlaps that point in image space.

As the table is present for the entire duration of the agent’s learning, it is observed in each visual
percept and is typically treated as part of the static background. However, qualitatively different
locations in this workspace can be identified. In a real-world setting, these locations may have
various properties or relationships with objects in the environment that would provide utility for
objects being inside or outside these locations. In our experiments, the locations are manually
defined regions on the tabletop with distinctive colors so that they may be easily identified by the
agent using simple image processing methods to identify contiguous pixels with RGB values in a
pre-programmed range around the expected color. These locations afford the same descriptions as
the full tabletop and general points in the workspace - after being observed visually an estimate of
their position in configuration space can be made from the PPS Graph. It should be noted that the
locations used are relatively large, both to preserve the similarity to regions with a desired quality
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in natural scenarios, and also to fit the sensory and motor capabilities of the agent in early action
learning, when the motors cannot produce and the sensors cannot verify exact poses. For an object
to be considered in a location, it does not need to be in a specific position or orientation. Within the
scope of this work, an object will be considered to be in a location if the object’s visual percept
(specifically its binary mask based on the RGB image) has any overlap with the percept of the
location. In future works as the agent moves towards late actions and becomes more skilled, the
locations will require more precise positions and orientations, and once locations are small enough,
they could include positions on top of other objects to facilitate stacking.

3.2 Representing Peripersonal Space

The agent’s peripersonal space is the space within its arm’s reach, and where any object within
that space can be interacted with using the robot’s manipulators. Since the space is defined as the
part of the environment within reach, it can be best described as a continuous set of six-dimensional
poses p of the hand. However, like a human infant, our agent cannot measure p. Instead, the agent
observes the hand with its two sensory modalities, proprioception and vision.

For each feasible pose p, there exists one or more configurations of the arm q that produce it.
One such configuration is given by the inverse kinematics function

f−1(p) = q (3.1)

While this method is effective in contemporary robotics works for producing desired poses,
f−1 is defined using expert knowledge of the structure of the arm, and would not be known to an
infant. The function would also be prohibitively difficult for the infant to learn. Along with the
mathematical complexity, the infant would not have a method for precisely measuring the geometry
of the arm and the interactions of the joints, and would also be hindered by the changing size and
strength of the arm and the changes in its vision. To retain similarity to the learning and behavior
of infants that are limited in this way, our agent is not given and does not attempt to learn inverse
kinematics.

However, the current configuration q of the arm is available to the agent at any time through
proprioception. The arm’s configuration is detected as a vector of the arm’s seven joint angles

q = 〈q1, q2..., q7〉 (3.2)

where qj reports the current angular position of the jth joint in radians. This vector is always
reported with a consistent ordering that matches the proximal to distal ordering of the joints1,

1The vector contains shoulder (s), elbow (e), and wrist (w) joints, ordered s0, s1, e0, e1, w0, w1, w2. All of
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but the agent does not use any assumption that this ordering describes the structure of the arm.
Proprioception also allows the agent to sense the aperture of the gripper fingers a on a linear scale
from 0 when closed as narrowly as the hardware allows to 100 when fully open to the maximum
width. The arm has eight degrees of freedom, and the combination of {q, a} describes the full
internal state of the arm at a given time.

Many contemporary robotics works also make use of forward kinematics to map from a potential
set of joint angles to the pose it would produce with the equation

f(q) = p. (3.3)

However, like its inverse f−1 for inverse kinematics, f is a highly complex function and relies
on information that would not be available or consistent as a natural agent grows and learns to
move. Our agent will also not use forward kinematics, and will instead use external senses to gather
information about the arm’s position and interactions in the environment. For our agent, the only
external sense will be vision. Typical human infants would also be able to observe and describe the
relationship between the hand and the environment with additional modalities, notably auditory and
tactile senses, which can provide additional information about location and contacts with objects.

While the arm is sensed at a current arm configuration q, the agent can make a concurrent visual
observation, an image or set of images Iq. The appearance of Iq, including key features like the
position of the hand in the image(s), will depend on the setting of the eight degrees of freedom
in {q, a}, as well as a set of environmental factors, Et, present at time t, such as the presence of
novel or moving objects in the background or the lighting conditions. This suggests a function g1 to
predict Iq,

Iq = g1(q, a, Et). (3.4)

We can consider a function ε1 that describes the effect of the factors in Et on Iq, which is
dependent on the current time t, and can be assumed to be independent of the agent’s actions. This
suggests a new function g2 that describes the agent’s contribution to the appearance of Iq that it
makes by setting q and a, such that

Iq = g2(q, a) + ε1(t). (3.5)

Our agent does not model the types of environmental factors in Et or their consequences given

the Baxter Research Robot’s joints are rotational, and this vector contains the four twist joints s0, e0, w0, and w2
and the three bend joints s1, e1, and w1. The full hardware specifications of the arm and joints can be found here:
http://sdk.rethinkrobotics.com/wiki/Hardware Specifications. Note that the vector of joints is one-indexed due for
convenience when recording and looking up joint angles in MATLAB.
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by ε1(t). For the simplicity of our experiments and the infant-like learning agent, the agent uses
a static background model, which assumes that as the time t varies, the factors in Et produce a
near-constant contribution ε1, that is,

∀t, ε1(t) ≈ ε1. (3.6)

We have taken steps to ensure that the agent’s use of a static background assumption can be
reasonably justified. All of the visible background is as simple as possible, and visually distinct (i.e.
differently colored) from the robot’s arm and hand to eliminate the need for sophisticated image
processing methods. As much as possible, the background was kept static and the lighting was kept
consistent. Later, when the agent wishes to interact with non-self quasi-static foreground objects,
these will also have to be observed visually, but we simplify the agent’s first visual experiences with
the assumption that no foreground objects are present until the agent begins to observe that it can
bump them and then learns to reach for them. These early observations of Iq are the only ones that
are stored for long term use in our current implementation, and none of them are complicated with
foreground objects, which are only brought into the agent’s field of view later.

These measures keep the variance of the environmental factors sufficiently low so that their
impact can be treated as a constant ε1. This also provides a convenient initialization for ε1, as it
can be set to the value of ε1(t) observed for time t = 0, the first observation made. In this work
our agent is not provided with and does not learn the functions g2 and ε1 to attribute parts of the
appearance of Iq to its own actions or the environment, but the combination of equations 3.5 and
3.6 into

Iq ≈ g2(q, a) + ε1 (3.7)

is used to justify a more theoretical assumption that whenever the agent returns to the same settings
of q and a, it will expect to see the same image(s) Iq.

This assumption can still be used even in cases where there is a significant change to the
environment, as the agent does not need to explicitly model states or transitions for parts of Iq that
do not correspond with the dynamic self (the hand and arm). Since changes to Et primarily change
the appearance of the background of the image(s) and the agent has assumed this background is
static, the same information and utility are available with an approximation of Iq that only depends
on q and a, as long as the approximation is accurate in the region of Iq that corresponds with the
self. Along with foreground object regions in later learning phases, these self-regions are the only
parts of Iq that any features will be extracted from.

The agent will also use the assumption that changes to the gripper aperture a do not significantly
change the appearance of Iq, even though any change that does exist will be localized in the region
of the hand. This can be shown empirically when changing each degree of freedom, changes to a
will change the size and center of the hand region less per unit than changes to any joint angle in
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q. While in practice this allows the contribution of a to be dropped, this suggests a new formula
using a function g3 for the effect of the arm configuration when separated from the unmodeled
contributions of the gripper aperture and background environment,

Iq = g3(q) + ε1(t) + ε2(a). (3.8)

Our image processing algorithm for recording Iq for long-term storage requires having the
grippers fully open with the the gripper aperture setting a = 100, so the agent will use this setting
whenever it first moves to a new configuration q. For this reason, any contribution of the grippers
can be approximated as a constant ε2 = ε2(1). This allows new approximations for Iq that vary only
with q, justifying the use of q only as a subscript for the visual percepts:

Iq ≈ g3(q) + ε1 + ε2 (3.9)

Iq ≈ g3(q) + ε1(0) + ε2(1). (3.10)

Recalling that the terms ε1 and ε2 are either small or affect only irrelevant portions of Iq, we can
define a similarity between images that requires only their hand regions to be approximately equal
(and thus yielding similar values of features extracted or calculated from those regions). When an
arm configuration is repeated, the resulting image will be similar to the original image,

q1 = q2 =⇒ Iq1 ∼ Iq2 , (3.11)

as g3(q) itself will be similar to Iq,

Iq ∼ g3(q), (3.12)

using the same metric that compares only the region corresponding to the agent’s self.
The next subsection describes how the agent will represent what it learns about g3 as it builds

a peripersonal space graph, a process that samples (qi, Iqi
) pairs and stores them in graph nodes.

Once the graph is completed, the agent will possess a discrete approximation of g3. Since the agent
does not attempt image generation, its model will be limited to the sampled values for the images
themselves, but for simpler features such as the center of the hand region in an image, it will also
have the ability to linearly extend the approximation to be locally continuous around each node.
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3.2.1 The Peripersonal Space Graph

3.2.1.1 Overview

The Peripersonal Space (PPS) graph P is a collection of nodes and edges, representing a state
of knowledge about the mapping g3.2 A node n ∈ P represents an observation (q, Ip). An edge
(ni, nj) = eij ∈ P represents an affordance (i.e., an opportunity) for safe motion between q(ni)

and q(nj). In our approach, the learning agent uses its unguided experience to define the PPS graph.
We will first focus on the graph used for the latest iteration of our experiments, the Explored PPS
Graph.

3.2.1.2 Nodes

Each node ni of the PPS graph represents a state of the arm, defined in terms of its joint
angles qi, so it represents a point in configuration space. The stored configuration qi includes the
angular position of each of the seven arm joint angles in a vector 〈q1i , q2i , . . . , q7i 〉, as reported by
proprioception when the node was recorded. Our current implementation does not use the gripper
aperture a in the definition of a node, as it is required to be 100 during the process of building the
PPS Graph for visual processing and the agent will assume changes to that degree of freedom do
not significantly change the position or appearance of the hand. Keeping a out of the definition
of the node will allow the agent to later freely set the gripper aperture degree of freedom to make
grasps more reliable but still plan its motion through recorded nodes. The same will apply after a
grasp for the return trajectory, when the aperture has changed but it will be convenient for the agent
to consider itself to be revisiting the same nodes, so that it can track the target object’s motion along
with the motion of the hand to confirm the grasp.

The physical structure of the robot and its perceptual system also define a mapping from the
pose of the hand to the visual percept, and the nodes will record observed configuration-image pairs,
a discrete point in the mapping g3. In order to do this, in addition to storing the configuration qi

that defines it, each node is also annotated with the perceptual image(s) of the hand and arm in the
otherwise empty workspace. This involves storing the raw image(s) of Iqi

that were captured as the
robot first visited the configuration qi, which for the Explored PPS Graph consist of two images, an
RGB image with the standard range of 0-255 for the three color values of each pixel, and a depth
image of disparity values from 0 to 80. Each image has dimensions of 640x480 pixels, and are taken
at the same time and from the same perspective using a Kinect RGB-D camera mounted above the
Baxter Research Robot’s head screen.

Along with the raw images, the annotation includes processed images and measurements that

2Strictly speaking, a graph P = 〈N , E〉 consists of two sets, one for nodes and one for edges. For notational
simplicity, we will use ni ∈ P and eij ∈ P as abbreviations for ni ∈ N (P) and eij ∈ E(P).
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provide a more abstract and usable representation of the agent’s pose in the environment. While these
will be primarily used by the agent instead of the raw images Iq, they act as a lower-dimensionality
manifold for the full image space, allowing the agent to still learn about the relationship between
the configuration of the arm and its visual appearance. The relationships that will be the agent’s
focus will not be precisely g3, but will be a simpler mapping to the manifold spaces and abstractions
and should preserve the agents ability to learn the consequences of changes to the joint angles in
terms of features that could also be observed from the raw image.

The first type of manifold used is a binary image, or mask, where a pixel is valued 1 if it is
part of a region of interest, determined by whether the pixel at the same row and column in the
raw image Iq is part of the segment for that object or region. The largest of these will be R(Iq),
corresponding to the agent’s whole visible self, including every pixel of the image that is part of
the robot. It is assumed that the agent will be able to identify each of these pixels, either with
knowledge of the colors that appear on the robot’s hand and arm, or by comparison with an image
taken of the environment with no part of the self visible. This binary image will be referred to as the
robot mask, and the robot mask that is the result from processing a specific stored image Iqi

will
be denoted as ri = R(Iqi

). The robot mask generally indicates a large region that is a significant
portion of the image, and it will primarily be useful for conservatively planning trajectories to
achieve obstacle avoidance when additional objects are present and serve as obstacles, as was the
case in [22]. Smaller masks focused on the region near the end effector will typically be more
helpful for reaching and grasping tasks where more precision is required.

The agent will also segment the “palm” of the hand, the space between the grippers. While this
region does not structurally resemble a human palm, we refer to it as the palm since it is the interior
region of the hand most relevant for grasping, and is the site of the Palmar reflex[15]. To aid in this
segmentation, a colored block of the same size as the space between the grippers while fully open
is placed in the robot’s hand, and is held for the duration of the creation of the PPS Graph. The
RGB image in Iq is processed to find the largest segment of this distinctive color, and this segment
becomes the binary image for the palm, or palm mask, P (Iq). The palm mask for the image Iqi

stored in a specific node ni may be referred to as pi = P (Iqi
).

A third binary image can be extracted from each Iqi
, the hand mask, or hi = H(Iqi

). The hand
mask includes the palm as well as the portions of the base of the hand and both gripper fingers that
are in view with the current pose of the hand. The hand is all parts of the agent’s self near the palm,
so our image processing calculates this region from the intersection of the robot mask and a dilation
of the palm mask with a 20 pixel radius,

hi = ri ∩ Dilation(pi,Disk20) (3.13)

The hand mask will be useful for confirming successful grasps, as the smaller palm mask may be
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fully covered by the grasped object instead of showing intersection or adjacency. The slightly larger
size also makes the hand mask a candidate as a predictive feature for learning to reach and bump
objects. Most bumps occur with the end-effector, and the smaller size allows the agent to better
understand the region swept through along an edge, so this mask can also be used while reaching
for obstacle avoidance considerations that will be less restrictive than those based on the full robot
mask.

Since Iq only has a single perspective, the agent must also use the depth image to act reliably in
a 3D environment. The agent will have the ability to find the disparity value at each pixel within
a region of interest determined by a segment in the RGB image. D(ri), D(hi), and D(pi) will be
the range of depths occupied by the robot, the hand, and the palm, respectively. Using a mask and
the depth range for the depth mask, for example pi and D(pi), together provides the agent with a
conservative overestimate of the space occupied, as the agent can assume the entire range of depths
is occupied across the entire mask, forming a type of hull. The combination of 2D coordinates
(u, v) in the RGB image and the disparity value d from the depth image will give the agent a 3D
coordinate system (u, v, d) for its visually-observed environment. While the image space defined
by these coordinates is three-dimensional, it is important to note it is distinct from the standard
3D Euclidean space of the workspace environment. Along with the different axes, the units are
different, as distances in image space would be measured in pixels by pixels by disparity.

The agent will derive additional features from these binary images and depth ranges, including
the center of mass and vectors indicating direction. These will be introduced in section 3.4 as they
become relevant to specific actions which will be learned in chapters 4, 5, 6, and 7.

Our current graph, the Explored Peripersonal Space Graph, contains 3,000 nodes. Even with this
number, the nodes provide a sparse set of discrete observations of the mapping between configuration
space and image space. Since the configuration space in which nodes are defined is 7-dimensional
(one per joint), we can compare this number of nodes to an evenly spread 7-dimensional grid of
nodes. Since 7

√
3000 ≈ 3.14, the agent would only have about 3 settings of each joint angle in the

grid. Even with a similarly sparse explored set of nodes, in this dissertation we show that this set of
nodes is sufficient to facilitate learning a number of early manipulation actions.

3.2.1.3 Edges

An edge is defined by the nodes at its endpoints, such that ei,j is an edge connecting ni and
nj . The PPS Graph is not complete, or fully connected, and an edge ei,j exists if and only if the
motion from ni to nj is safe and feasible using linear interpolation between the configurations of
the nodes. This feasibility is either determined by construction, as the agent has moved along the
edge and observed it to be safe, or by assumption, with the agent treating edges as safe if they are
shorter or similar in length to an edge known to be safe by construction. The length of an edge is
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the Euclidean distance between the configurations at its endpoint nodes, considered in joint space.

||eij|| = d(ni, nj) = ||qi − qj||2 (3.14)

Edges of the PPS Graph are directed, as some implementations of the graph and representations
of learned actions may use a video percept of the motion, where the video for ei,j would be roughly
the reverse of the video for ej,i. More generally, due to the actuation of the robot and physics of the
arm, the region the arm moves through is significantly different for some ei,j and ej,i. While the
edges are directed, the current Explored PPS Graph implementation is symmetric, so ei,j exists if
and only if ej,i does.
E(P) will denote the set of all edges in a specific PPS Graph P , and E will be used for a general

set of edges, or as shorthand for E(P) when the graph the set belongs to is clear. The Explored PPS
Graph has 111,717 edges, that is, |E(Explored PPS Graph)| = 111, 717. While this is a seemingly
large number of edges, note that it is only about 2% of the 4,448,500 edges a complete graph with
3,000 nodes would have.

3.2.1.4 Neighborhoods

Nodes of the PPS Graph are considered to be neighbors if an edge exists between them, allowing
the agent to plan a move between them with path length one. The neighborhood N(ni) of a node ni

is the set of all neighbors of ni,

N(ni) ≡ {nj | ∃ei,j}. (3.15)

The data recorded for neighborhoods in the PPS Graph can be used to extend the relationship
between q and Iq (or processed images and features derived from Iq) beyond the discrete observa-
tions stored in the nodes. This allows the agent to model peripersonal space with locally continuous
estimates around each node. This technique will be used in section 3.4.2 and Chapter 4 as the agent
learns to more precisely move the hand and predict its position, which will also be important in the
later actions for reaching and grasping.

In this context of the locally continuous estimates, N(ni) will also be said to include the region
in configuration space around qi, where these estimates will not require error-prone extrapolations.
These points will include all of the configurations stored by the neighbor nodes, and any less
distant configurations, providing an alternative definition of a neighborhood around ni in continuous
configuration space,

Nq(ni) ≡ {q 6= qi | {∃nj ∈ N(ni) | ||q− qi||2 ≤ ||qj − qi||2}} (3.16)
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When the appropriate definition is clear from context, so both may be referred to as the neighborhood
of ni, and when the difference must be specified the presence or absence of the subscript q will
indicate the type of neighborhood.

3.2.2 Alternative Graph Models

Throughout this work, Peripersonal Space Graphs were created with four different methodolo-
gies. Most of the experimental results reported in this dissertation were gathered while the agent
built and used the Explored Peripersonal Space Graph that has been described up to this point in
the section. Before this method, the agent constructed the Sampled PPS Graph and the Learning
PPS Graph, and we have designed and constructed the Improved Explored PPS Graph, which was
created using additional assumptions so that the images recorded would allow new features to be
observed and existing feature values to be observed more accurately, which should improve action
reliability in future work. These other methods are described in the remainder of the section. It
should also be noted that more than four graphs were created during this work, with additional
graphs created for some of the methodologies as needed to account for changed camera positions or
new environments, such as a new location for the robot or a table with different dimensions being
used for the surface in its workspace.

3.2.2.1 The Sampled PPS Graph

The first large-scale PPS Graph created for this dissertation work, It is shown in Figure 3.1 and
fully discussed in [22], where the figure also appears. This graph had two primary differences from
the Explored PPS Graph. First, at the time the vision system was based on three independently-
placed webcams with fixed viewing angles, instead of a single RGB-D camera. As a result,
Iq consisted of a vector of three two-dimensional images. The agent relied on color threshold
assumptions to identify the self and the foreground objects, but used a different set of extracted
features for this version of Iq. While these images arguably provided more information and are
simpler to use than RGB-D, the independently placed cameras had low biological feasibility. We
changed to an RGB-D camera in our newer works as this system more closely resembles stereo
vision of natural agents (particularly of typically developing human infants) and allows a more
straightforward discussion of how such an agent might learn from its visual experiences.

Second, the configurations for each node of the graph was generated by sampling an angle
qj for each joint j, with the sample drawn uniformly from the entire range of the joint3, rather
than sampling a small delta to keep each joint near its previous angular position. For the safety

3We artificially reduced the range from the absolute limits set by the hardware to reduce strain on the robot that may
occur with repeated motion near the extreme values.
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(a) (b)

(c) (d)

Figure 3.1: (a) The Sampled PPS Graph with 1001 nodes and 6460 directed edges, with nodes
plotted according to the 3D positon of the end-effector. The agent only has access to a topological
abstraction of this structure. (b)-(d) 2D projections of the Sampled PPS Graph. Note that the
random configuration space sampling procedure has produced a dense, well-covering structure,
especially in the region most natural to sweep the arm through.

of our experimental robot while making these larger motions, we used an oracle (not accessible
to the learning agent) to detect and reject collisions and other hazardous states. The oracle was
implemented using the MoveIt! motion planner [48].

The original Sampled PPS Graph used in [22] contained 1001 nodes. Edges of the graph were
created after all nodes were sampled, with edges added so that each node was connected to its
five nearest neighbors in configuration space (the five connections that would result in the shortest
edge lengths). Since the edges are directed, additional edges were added to ensure the graph was
symmetrical even when the nearest neighbor relationship was not, for a total of 6400 edges.

The Sampled PPS Graph was used for evaluation of reaching and obstacle avoidance after the
agent learned these actions using the Learning PPS Graph. The agent attempted to find a trajectory
to reach a target object and avoid bumping an obstacle object for 50 trials. Completing the reach was
weighted as the more important goal, and the agent reached the target in 45 trials (90%), avoided
the obstacle in 37 trials (74%), and was successful at both goals in 34 trials (68%).
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(a) (b)

Figure 3.2: The Learning PPS Graph: (a) The topology of the abstract model used by the agent.
(b) The metrical structure of the graph, illustrated by plotting the 3D end-effector positions at each
node. This structure is not available to the agent.

3.2.2.2 The Learning PPS Graph

The Learning PPS Graph was the first graph we constructed and was small in size, serving as
both a proof of concept and providing a highly constrained learning environment for the agent. It is
discussed in more detail in the first publication related to this dissertation work [22]. Figure 3.2,
which also appeared in [22], provides a visualization of the graph’s topology (that was available to
the agent), and a more standard metrical visualization in Euclidean space (that was not available to
the agent).

The graph contained only nine nodes, each of which was recorded after the arm was manually
positioned by the experimenter in a desirable pose. These poses were chosen to facilitate learning,
with each a short distance above the table’s surface to make interactions with blocks in the workspace
more frequent. They were also arranged so that the end-effector positions were in a grid, and where
the change in position was mostly achieved with straightforward adjustments of the proximal joints,
so that the motion between the nodes would not be complicated by additional rotations and any
resulting bumps would be easily anticipated by human observers. The vision system and features
gathered for each node were the same as for the Sampled PPS Graph.

The graph contained 40 directed edges, connecting adjacent nodes in the 3x3 grid, including
diagonal adjacency. The existence of these edges was defined for the agent. Due to the small number
of edges, the agent could record a video of motion along the path and derive a binary mask for
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the entire region travelled through. In the Sampled PPS Graph, the much higher number of edges
required this mask to be approximated by a convex hull of the binary masks for the nodes. The more
accurate edge masks and simplified motions within the single-layer grid of poses were particularly
helpful for obstacle avoidance. After the learning phases were complete, the agent evaluated its
performance in the Learning PPS Graph before moving on to the evaluations with the Sampled PPS
Graph. On 50 trials with the same goals, the agent reached the target in 45 trials (90%), avoided the
obstacle in 43 trials (86%), and completed both goals successfully in 38 trials (76%).

Later, we demonstrated that the entire process of learning to reach and then to grasp could
be carried out within the larger scale and more complex Explored PPS Graph (Section 3.2.1 and
[24]), contradicting our intuition that this may be impossible or prohibitively inefficient without
first learning at least some features in a small, expert-designed graph, and making future Learning
PPS Graphs unnecessary.

3.2.2.3 Improvements to the Explored PPS Graph

Since the Explored PPS Graph that was built for [23] and also used in [24], we have generated
ideas to improve the theory and implementation of the PPS Graph. One that we have begun to work
with uses the observation that like the gripper aperture a, changes to the degree of freedom for the
most distal joint w2 (represented as q7 in the joint angle vector) also have very low impact per unit
on the image Iq, significantly lower than the effect per unit of change to any of the other joints.
This can be observed by the experimenter and treated as an assumption for the agent, or learned
autonomously by the agent as it calculates Jacobian estimates and identifies the low coefficients for
w2.

In our previous work [23, 24], the agent identified that the orientation of the hand must be
correctly aligned for the target object to reliably grasp it. The agent also learned to adjust only the
orientation of the hand by rotating w2 rather than any other degree of freedom. While the hand
orientation is dependent on all of the joint angles, this is justified by observing that it is best to adjust
the orientation with only w2, as it has very little effect on the overall position of the hand. Altering
any of the other joints to orient the hand would have a side effect of moving the hand, but the change
in hand position for w2 is negligible. In [24], we assume that the agent performs the analysis that
leads to the preference for rotating the hand with w2 just in time for the final iteration of attempting
to make the grasp action more reliable by adding a new feature. The Improved Explored PPS Graph
is differentiated from the Explored PPS Graph by using this assumption during the construction of
the graph.

As the agent builds the Explored PPS Graph, w2 is treated like every other joint, so the agent
only observes the hand with only one setting of w2 at each node ni, q7i , and has little information
about how the hand would be oriented if q7 was changed. The agent was able to make a rough
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prediction of the value necessary for reliable grasping, using the q7 setting from the nearest neighbor
position with a successful grasp. For the Improved Explored PPS Graph, the agent instead collects
six observations of the hand with values of q7 spread evenly throughout the range. These additional
images provide much more accurate information about how rotating the wrist with the hand in
the same position will affect the orientation of the grippers. When these images are processed to
compute binary images, the agent is also able to more finely segment the hand. While the images
for the graph were collected, the robot’s grippers were wrapped with distinctively colored materials,
allowing them to be distinguished from each other and from the rest of the hand using additional
assumptions about the segments that should be located and the range of colors their pixels should
consist of. Instead of only a full hand mask hi and palm mask pi, the agent creates separate binary
images for each gripper, the base of the hand, and the “palm” as the space between them. It is
important that the agent differentiate between the grippers and separately track them so that it can
attempt to avoid unnecessary half-turns of the hand between the penultimate and final nodes of a
trajectory. Such a motion would leave the hand with a similar overall mask, but it could disrupt
grasp attempts if the interaction with the target occurs during the rotation. We hypothesize that
these changes will improve the reliability of the grasp by allowing the agent to better predict when
the grippers will be correctly aligned, but we have not yet conducted an experiment to verify this
hypothesis.

We also propose additional changes that have not yet been implemented for a constructed
graph. If the need for visual simplicity while building the graph can be removed, along with the
corresponding assumptions that no foreground objects will be present while the graph images are
being recorded, the graph can made with more sophisticated techniques. Human infants show a
tendency to direct their motion toward visible objects [4]. While these motions seldom result in
contact with the object, this pre-reaching behavior during otherwise random, near-cyclic motions
[2] biases the agent to visit poses closer to the object, with higher likelihood to be useful for later
reach attempts for objects in the same region. With the capability of building the graph with objects
present, the agent could have a similar bias towards an object instead of motor babbling with deltas
drawn randomly from a uniform distribution.

Allowing for nodes to be recorded even with objects present could also allow the graph to
continue growing in later learning stages. In our current implementation, the graph grows until
a chosen number of nodes (3000 for the Explored PPS Graph) and then is fixed in that state for
all future learning stages. Regardless of the presence of objects, it would be possible to identify
relatively sparse regions of the graph, or ”holes” in configuration space where the distance from a
point to the nearest node is significantly more than average. Action performance tends to drop in
these sparse regions of the graph, as the agent has a lack of observations within the regions, and
must extrapolate further from its past experiences to plan motions into unexplored spaces. The
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agent could choose to continue motor babbling in these regions, or use use any technique that adds
nodes to increase the density of the graph where it is most sparse. Considering any objects present,
and estimating their position in configuration space, the agent could also use such a technique to
add nodes near these objects, making the assumption that the regions containing the foreground
objects will be most likely to contain target objects in the future, so nodes in those regions will
be especially valuable. Having the highest density in these action-relevant regions gives the agent
information from more observations, and also provides more choices for motion along the graph
edges, both of which should make the motions near the object more precise. Finally, the agent can
determine if the success rates of its reach action are high enough to imply the graph is dense enough
of average, and if it covers enough of the total peripersonal space. This may allow for the agent to
initially collect a smaller amount of nodes, and add more until the learned reach action is reliable.

3.3 Locations in Workspace

To move the hand and to complete reaching and grasping tasks, the agent does not need to
represent the specific appearance of the background of its environment. The assumption that each
node stores the configuration for a feasible pose and that edges only exist when the motion between
the endpoint nodes is safe allows the agent to avoid any permanent environmental obstacles as it
moves the hand. We have also shown that it is possible, at least for some PPS Graph implementations,
to temporarily remove nodes and edges where the agent would collide with foreground obstacles
[22]. To reach and grasp objects, the agent only relies on current vision of the target, and does not
use vision of the background or even current vision of the self.

This is also the case when the agent learns to ungrasp, releasing it from its control without
regard for where it comes to rest. This action relies only on adjusting the gripper aperture a to
sufficiently open the hand, which will not vary with the hand’s position or relationship to anything
else in the environment. The agent can use vision to track the object as it moves along with the
hand to verify it is grasped, but it will also be aware that the grasp was initiated by the Palmar reflex
and the restriction on how far the grippers could close. The knowledge that the object is currently
grasped provides the affordance for an ungrasp. Vision of the object no longer moving with the
hand can be used to verify that the ungrasp was successful.

However, once the agent is interested in placing, it must represent locations in the environment
to determine if the object’s position has particular properties, and if those are desirable. This extends
to the case of the pick-and-place action, when the agent assesses where an object is currently
located and decides to move it to a new location. Our agent will define locations as relatively large,
qualitative regions, as many alternative representations for the location of an object would not be
reasonable for our agent. The agent is not provided with the prior knowledge necessary to describe
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the object and its relationship with the table with geometric models. Without a model or more
precise visual sensors, the agent is not capable of reliably finding the object’s true six-dimensional
pose in the workspace, and while this could be described in the agent’s image space instead by
using the object’s binary mask and depth range, the agent’s sensors are too prone to noise to work at
this level of detail. More importantly, the agent’s motors and motor skills would not be capable of
recreating an exact position, even if it could be verified visually. The level of detail in our agent’s
representation is also not sufficient to determine an exact pose, and until the agent reaches a later
stage where it is stacking, inserting, or building objects from smaller component objects, there is no
additional utility to be gained by adding such details, so it will not be motivated to.

Instead of an exact pose, the agent will consider qualitative locations, which will better match
the capabilities of the agent’s sensors, motors, and knowledge. A qualitative region should be
distinguishable and have utility based on properties of the environment. Some examples of locations
could be to one side of an object, between objects, or inside a bin. In our experiments, we will
define locations with colored patches on the table’s surface, which simplify the agent’s visual tasks,
and are also flat on table so that the agent does not have to add obstacle avoidance like it would to
place objects in relation to another object, or to avoid the walls of a bin while placing the object
inside.

At a theoretical level, each location is a subset of the workspace surfaceW , which is itself a
specific subset of the agent’s environment. W is a subset of the intersection of two spaces in the
environment. The first is R, the set of all reachable spaces, our agent’s peripersonal space when
reaching with its left arm. The second is V , the set of all visible spaces from the agent’s single, fixed
perspective. All of the nodes of the PPS Graph exist at points inR∩ V . By construction, each PPS
Graph node must be insideR, since the node was recorded while that pose was held, and revisiting
the stored configuration q will reach the same pose. All nodes are inside of V due to rejection
sampling that prevented the agent from travelling to nodes outside of the field of view. In practice
this was done to ensure the motion to the pose was safe, as it cannot be verified that the agent would
not collide with an unseen object. There are theoretical explanations for this as well, as an unseen
pose cannot have desirable image properties, so the agent would never choose to revisit the node.
Storing the node would therefore have no utility, so the agent would be motivated to instead use its
memory to store a node where the hand is visible. Whether by our rejection sampling approach or
travelling to a node and then ruling it out for storage due to not being visible, the will be no nodes
outside of V . As a result, the peripersonal space graphs we construct will be sparse approximations
ofR∩ V , rather than the full reachable spaceR. The workspace surfaceW ⊂ R∩ V is the subset
of this space, given the specific setup of the environment, where objects may come to rest in a
stable, quasi-static position, and where there are sufficiently nearby nodes so that an object at any
point inW can still be reached and interacted with using the agent’s end-effector. In our agent’s
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Figure 3.3: The location L1 defined by the green patch on the table and the location L2 defined by the
blue patch on the table. Each location is shown with the boundary of its mask and center highlighted.
The location L3 corresponds to the rest of the table’s surface, the grey region surrounding and
between the colored patches.

environment,W includes the surface of the table in front of the robot and the space just above it that
objects placed on the table will occupy. Note that it is not the case that nodes cover the full extent
of this space, notably, by rejection sampling for safety there are no nodes where the hand would
intersect with or touch the table. Also note thatW will not include the floor of the environment
where objects could also be in visible, quasi-static locations, as they would be too far from any PPS
Graph nodes to remain reachable, and would hold these positions until an experimenter intervenes.

In practice, we define three qualitative locations within the tabletop workspace surfaceW . The
locations will be identified visually by the agent, and we place colored patches on the table to assist
with this, as seen in Figure 3.3. L1 ⊂ W will be defined by a binary mask for a distinctive green
patch in the RGB image of I , and L2 ⊂ W will be defined by a similar binary mask for a distinctive
blue patch. Since the agent’s perspective is fixed, these masks will also be constant up to occlusion
by the agent’s arm. When the location is not occluded, the agent will record an authoritative binary
image for the location, and this will be be assumed to be the location’s position in image space even
if occlusions or environmental factors like lighting change the identified mask.

Objects will be considered to be in L1 or L2 if their binary image mask has a nonempty
intersection with the location’s. We also considered requiring the object’s mask to be fully inside
the location as a subset of its mask, but this would create false negatives when the top of an object
that only touches the table within the colored patch could extend outside the mask for the patch.
The agent would not be able to identify such cases with its typical representations of depth (as either
a mean value or a range over the entire mask). We intended these locations to be relatively lenient
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and suitable for early placing actions, so we chose not to require the agent to add detail to its object
representations and complexity to its reasoning. As a result, we chose this more inclusive definition
for being “in” a location. This definition also does not require the object to be upright, or in any
other particular orientation. Finally, to allow for more interesting pick and place actions, L1 and
L2 will not be adjacent, and will be sufficiently far apart such that no foreground objects the agent
works with could ever be in both locations.

The third location L3 will correspond to the rest of the table’s surface,W − (L1 ∪ L2). This
location will primarily be used to describe failures to place an object into L1 or L2, though it could
also describe the initial position of an object to move. The agent could also learn a rule to place
into L3, but the rule would be more complex due to the “holes” in this location where L1 and L2

are, and the agent would have to avoid placing into them. This would also be a less natural task,
of moving an object out of a location but to anywhere else, without a specific relationship to the
old position. To avoid cases where an object could be in both L3 and one of the other locations,
placement in L3 will not use the same inclusive definition. Instead, an object is in L3 if and only if
it is not in L1 and it is not in L2.

3.4 Features used for Action Learning

3.4.1 Feature Generation Assumptions

In this section, we will discuss the additional features and methods that will be used as the agent
learns to move the arm, reach to a target object, grasp a target object, ungrasp a grasped object, and
perform ungrasps so that an object is placed into a desired location. For each feature, we will state
if it is assumed innate and provided to the agent, if the agent is provided with a measure and learns
a threshold or desirable values, or if the feature is selected from a set of possible features as the best
predictor of a reliable action.

In an ideal version of the model in this work, the agent would be fully unguided, and would
generate all features independently and continue to use those that were useful in predicting and
planning successful actions, rejecting others. The ideal agent would also be autonomous, and would
introduce new features as it was intrinsically motivated to do so, without the need for learning
phases where the experimenters signal to add a feature or to switch to learning a new action.

This ideal model is not achievable within the scope of this dissertation, as it would generate
a larger number of features and with less guidance would take a longer amount of time to learn
the necessary information for each action. To keep the learning methods feasible and guarantee
results within the time frame of this work, it has been necessary to generate fewer features to choose
from, and sometimes to partially or fully provide the measure the agent should use. One group of
assumptions that could be retained with the ideal model is those that deal with processing the images
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and identifying objects and relevant properties. We consider this to be an interesting computer
vision problem, but separate from the focus of our work, and also a problem where many existing
solutions would be satisfactory for our needs.

The following chapters will describe the learning methods in more detail, and provide evidence
that this work does contribute to the goal of working towards learning the actions from fully
unguided experience. In future work, the agent could become closer to the theoretical ideal by
generating larger sets of features to choose from for each phase, including identifying unusual
events, learning to reliably repeat them with actions, and learning to verify that the action was
successful.

3.4.2 Features for Moving the Arm

Learning to move the arm is primarily reliant on the assumed capabilities of the agent to use
its sensors. The agent is assumed to be able to use proprioception to record the set of joint angles
in a consistent order in the configuration vector q. The agent is also assumed to be able to record
the RGB and depth images of I(q) concurrently with holding the configuration q, and to perfectly
recall these images for extracting features. Within these images, the agent is also assumed to be
capable of identifying the regions corresponding to itself and important portions of itself, like the
hand and palm. The agent is capable of creating binary image masks and depth ranges for these
regions of interest, and can describe them with centers of mass (as derived from the pixels in the
binary mask and the range of depths at the same positions - not a true center of the object, which
along with its accurate geometry will remain unknown).

Before the agent can move the arm to a configuration q to motor babble and build the PPS
Graph, it must be able to move all of the joints to set points. We demonstrate with experimental
results that parameters for angular velocity-based control can be found that bring a single joint to
a desired set point with either underdamped, overdamped, or critically damped motion. We then
assume that the agent is capable of combining the controllers for the move joint actions together in
parallel to form a reliable move arm action where all joints are brought to their set points in the
same motion.

After the agent constructs the PPS Graph, the agent can calculate a local Jacobian estimate
around each node ni, using its neighborhood N(ni). This involves domain-general math to measure
the change in configuration space and image space coordinates between the node and each neighbor,
and then solving for the best fit. We assume the agent is capable of performing these operations,
and is also capable of inverting the solution Matrix to determine the change in configuration needed
to move to a position in the image that is nearby, but not represented by any node. Since the math
to relate the seven dimensional configuration to the 3D image coordinates - even when done as a
locally linear approximation - seems unreasonably complex for an agent similar to a human infant, it
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could be assumed to be performed by a subconscious, innate process of the brain. We also consider
some simplifications to the relationship in Chapter 4, if the agent requires simpler math until a later
stage.

3.4.3 Features for Reaching

Reaching also relies on the assumption that the agent can extract features of the hand and palm
from the stored images, and adds the assumption that the agent can identify a target foreground
object in the current visual percept to begin planning a reach. We currently assume that the
knowledge objects exist and will be a useful abstraction from pixel-level data, but an experiment
could show that it is possible for the agent to initially treat these as connected components of distinct
pixels and define objects and their behavior upon seeing correlated changes to the pixels when the
object is bumped.

The center of the hand in an image stored in a node will be given by ch = (uh, vh, dh), where
uh and vh are the coordinates of the center of mass of the binary mask of the hand based on the
RGB image, and dh is the mean disparity value over the pixels in the depth image specified by the
binary mask. The same can be derived for the center of the palm cp = (up, vp, dp). It is important
to remember that these are always derived from stored images, and will not use current percepts of
the hand. A target object t also has a center ct = (ut, vt, dt), but this will be taken from the current
percept before planning a move in the presence of the object, or a reach for that object.

The agent is also assumed to be capable of taking the intersection and union of binary images,
whether they are masks for the same object at different times or masks for different objects, such as
the stored mask for the palm and the current mask of the target object. The agent is also innately
capable of measuring the size of a binary image mask as the number of pixels in the region. The
agent can similarly find the intersection, union, and size of depth ranges.

The agent can identify a short list of candidate final nodes to move to for a reach by looking for
nonzero size intersections between the stored hand or palm mask and depth range and the current
mask and depth range of the object before beginning the reach. The agent will learn that using the
palm mask is more reliable than the larger hand mask.

The agent is provided with the ability to use the intersection over union ratio of two masks.
When used on the same object’s mask before and after completing a move trajectory, the agent will
learn a threshold for this measure that identifies bumps as an unusual event. This threshold can later
be used when attempting the reach action to check for success in causing a bump.

The agent’s reaches will not be sufficiently reliable when choosing from the set of candidate final
nodes randomly, so the agent will be provided with four features to attempt to rank the candidates
and choose the most reliable option. These features will measure the difference between the center
of the palm and the center of the target, either in one coordinate or in Euclidean distance. These
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features will be fu = |ut − up|, fv = |vt − vp|, fd = |dt − dp|, and fc = ||ct − cp||. The agent will
examine its past experience to learn that fc is the best predictor, and to learn that minimizing this
measure allows bumps to be produced most reliably.

3.4.4 Features for Grasping

In Chapter 6, the agent learns to grasp semi-reliably, and even reaching that 50% success rate
involves a large number of features due to the high complexity of the action. A grasp approach is a
specific reach trajectory, so all of the previously discussed features will still be relevant.

In addition to moving to the right position, the orientation of the hand is also important for
grasping. The agent will be instructed to extract a set of five vectors from the stored images of the
hand and current image of the target object. Two will describe the orientation of the hand in terms of
the direction the grippers are pointing at the final and penultimate nodes of the trajectory (~gf and ~gp,
respectively). The other three vectors will describe the direction of motion between the image-space
centers of relevant regions. ~mpf gives the direction from the penultimate node to the final node, ~mpt

gives the direction of motion from the penultimate node to the target, and ~mft gives the direction
from the final node to the target. Formulas for the five vectors are given in equation 6.1, where
they are used in Section 6.3. The current percept of the target object while planning also allows
extraction of a vector parallel to the object’s major axis, ~o. The agent will be instructed to consider
which cosine similarity between each pair of vectors has been observed in successful grasps. The
agent will conclude that for the most reliable grasp trajectories, the relationship between ~o and any
other vector should be approximately 0 so that the approach and orientation of the hand are near
perpendicular to the object’s major axis, and that all other cosine similarities should be 1, so that the
other five vectors - two describing hand orientation and three describing direction of motion before
local Jacobian adjustments - will be aligned. In practice, the agent will attempt to minimize the
cosine similarity of any vector with ~o and use well positioned and oriented nodes and local Jacobian
adjustments to maximize the alignment of the other vectors.

At this time, we also provide the rule for an agent to verify a grasp has occurred. Intuitively,
when a grasp is successful, the grasped object moves along with the hand, and should be seen at
a similar position in the image at each node visited in the trajectory after the grasp. The agent is
instructed to verify grasps by checking if for each node in the trajectory, the stored hand mask has a
nonzero intersection with the current object mask. This rule is simpler than those we have had the
agent learn, but it is also possible to separate into grasp and nongrasp clusters using other metrics.
A pair of metrics that was learned in another implementation was to compare the cosine similarity
and distance travelled by the object and hand for each edge in the trajectory.

Grasping will also require the agent to correctly use the gripper aperture a, a degree of freedom
that did not have a significant role for moving or reaching. The agent is assumed able to recognize
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that the Palmar reflex has been activated when a suddenly decreases without a conscious command.
An experiment will be conducted where grasps are attempted with varied initial values of a, from
which the agent will learn that a = 100 will be most reliable for grasping, and equally reliable for
reaching.

Finally, the agent must also orient the grippers so that they will close around the target object.
While this does not require a new feature, it does use special attention to the w2 joint that is best
suited for rotating the hand at the wrist. In order to freely set w2, it must no longer be considered to
be part of the definition of the nodes being travelled to, or important to setting the arm to the nearby
configurations displaced from the node’s according to its inverse local Jacobian estimate. When
using the Explored PPS Graph, the agent can use the local Jacobian information and observe that
the image space coordinates of the center of the hand do not change significantly as the angle of w2
changes. This justifies the use of w2 for other purposes, such as controlling the orientation of the
hand and grippers. Alternatively, in the Improved Explored PPS Graph, the agent simply assumes
that w2, like a, is not part of the definition of the nodes. With this earlier justification, the agent can
add to the graph observations with multiple w2 settings at each node, and better understands how
rotating it will affect the pose of the hand and grippers.

3.4.5 Features for Placing

The place action requires a different set of prerequisites - primarily that an object is currently
grasped - and is performed with a specific move and then an ungrasp, but not a reach or grasp
trajectory. Despite these differences, few new features need to be considered for placing.

In order to ungrasp, the agent explores changes to each degree of freedom and learns that
increasing the gripper aperture a is the only change that reliably ends a grasp. While the agent is
instructed to do so, it performs an exhaustive search of all possible pairs of degrees of freedom and
directions of change, and would with sufficient time find the same solution in any manner that it
was motivated to experiment with options, or if it did so randomly. The ungrasp is verified with
the same test – whether the object moves with the hand – that verifies grasps, but with the opposite
success condition (the object should no longer follow the hand).

As discussed in section 3.3, the locations where objects can be placed will be defined by binary
image masks. The depth image values of these pixels can also be used to give the location a
depth range, and the mean of these depths can be used to give the location an image-space center,
cLi

= (uLi
, vLi

, dLi
). While checking for an intersection of the location’s mask and an object’s mask

is enough to verify that a placement has occurred, the agent will be provided with several potential
measures, and learns through experimentation that a short euclidean distance to the location’s center
best predicts that a node will be reliable for ungrasping an object and placing into that location.
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3.5 Conclusion

Within this chapter, we have discussed peripersonal space and the representation for it used by
our embodied robotic agent. In particular, we described the agent’s visual and proprioceptive senses,
and the agent’s ability to record simultaneous observations in both modalities. We describe how the
agent will create a set of peripersonal space graph nodes as it explores its space by motor babbling.
In this case these motions are performed by adjusting the seven joints of the arm according to small
angular deltas randomly sampled from a uniform distribution, and at each configuration visited,
a node can be created to store the configuration held and the resulting visual percept. Using the
paired data in all of the nodes together, the agent will possess a sparse, discrete mapping between
configuration space and image space, which can be extended to a locally continuous mapping using
each node’s relationship to its neighbors.

In addition to representing the peripersonal space, a constructed PPS graph allows the agent to
move the hand, with known affordances for safe motion between nodes denoted by edges. Using the
mapping between joint angles and images stored in the nodes, the agent can learn to move the hand
and predict its position and appearance, which will be examined further in Chapter 4. Extracting
the additional features discussed in this chapter will allow the agent to learn to plan movement
trajectories with well chosen final nodes (or motions) for successful reach and grasp actions in
Chapters 5 and 6, respectively. We have also provided a definition for relatively large, qualitative
locations as a subset of the workspace surface in the agent’s environment. In Chapter 7, the PPS
graph will also facilitate learning to move the hand to a suitable pose before ungrasping an object to
place it in a desirable location. Chapter 7 will also show experimental results to support that the
learned actions can be combined in sequence to allow the agent to pick and place objects.

Along with the demonstration that the PPS Graph and this set of actions could be learned from
experience with minimal guidance, the representation described in this chapter is a contribution to
three areas. First, the PPS Graph is suitable for suggesting and testing theories in developmental
psychology. Second, the PPS Graph provides an efficient way to gather successful but unoptimal
examples of the actions learned using it to plan motions, making it suitable as a starting point for
reinforcement learning or scaffolding for other methods that are limited by sample complexity.
Third, the PPS Graph allows actions up to pick and place to be learned with minimal assumptions,
which is useful for symbolic action planners and motion planners that wish to justify the use of pick
and place as an action primitive in the agent’s prior knowledge. With the context of the learning
processes from Chapters 4-7, each of these contributions will be discussed in further detail in the
dissertation’s conclusion in Chapter 8.
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CHAPTER 4

Learning to Move the Arm

4.1 Introduction

In this chapter, we discuss the first stages of the agent’s learning up to gaining the ability to
move the all of the arm joints in parallel to bring the arm to a desired point in configuration space or
the hand approximately to a desired point in image space. Beginning with a modest set of assumed
prior knowledge and capabilities, the agent first learns to move individual joints in section 4.2. An
experiment performing motions while using a range of parameters for a proportional controller for
the angular velocity reveals a value that allows near critically-damped motion to a set point defined
as an angular position. Once this has been demonstrated, we assume that the agent is capable of
using these abilities in parallel to command all of the joints of the arm to set points at once, allowing
it to bring each joint to a desired angle in a single motion.

The key result of this chapter is the construction of the Explored Peripersonal Space Graph, an
instance of the theoretical PPS Graph representation described in Chapter 3. The Explored PPS
Graph has all of the properties of the general PPS Graph model, and is built with a particular set
of methods described in section 4.3. Once completed, the agent will have stored experiences of
a large number of poses it has moved to while motor babbling, and the sum of this information
acts as a sparse, discrete model of peripersonal space and a mapping between the configuration
space of the arm and the appearance of the hand in image space at those recorded points. While the
agent was able to command the arm to any set point without the graph, having the graph allows
the agent to make motions with predictable results, as moving back to a previous configuration
will produce a pose with a similar appearance and hand location in image space. The edges of
the graph also provide an improvement over motion with the velocity controller to an arbitrary set
point. In particular, the information stored in the edges can be used to perform motion planning of
early - potentially inefficient and jerky, but safe - trajectories, while interpolating a straight path in
configuration space between the from and to points does not rule out collisions with the environment
or the self.

After the graph is completed, the agent can address one of the initial model’s notable short-
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comings - if only the nodes are considered as potential destinations, the sparseness of the graph
makes some poses impossible to achieve. While motion to the nearest configuration stored in a node
may be sufficient for some actions, such as semi-reliable reaching to bump objects, this method
will lack the precision necessary for making reaching fully reliable, or for any significant level
of success with the more difficult grasp action. In order to address this, the agent can extend the
graph’s discrete model to a locally continuous model. Observing the changes in configuration and
image space between a node and each of its neighbors allows the agent to compute a local Jacobian
estimate of the affects of small changes to the joint angles from those stored in that node on the
palm’s location in image space. While the local Jacobian allows the agent to predict the image
space coordinates for any configuration near a node, the inverse of the local Jacobian will allow the
agent to estimate the configuration necessary to place the palm at a desired position in the image.
This will have applications that increase the reliability of the reach and grasp actions in Chapters 4
and 5, and allows for additional considerations while learning to move that we discuss at the end of
section 4.4.

4.2 Learning to Move Joints to Set Points

4.2.1 Selecting a Control Mode

The Baxter Research Robot interface provides four built-in control modes, Joint Position Control,
Joint Velocity Control, Joint Torque Control, and “Raw” Joint Position Control. It is important
to note that all of these control modes give commands to the joints in terms of angular positions,
velocities, or torques, and that no control mode allows specifying a desired 3D or 6D pose in the
environment or makes use of inverse kinematics. Figure 4.1 shows flowcharts of the steps performed
by each control mode to transform the issued motor command into the motor command executed by
the joint control boards in the robot’s hardware.

4.2.1.1 Justification and Limitations of Use of Joint Position Control Mode

We initially chose to use the Joint Position Control mode as it is the default and most widely
used setting for the Baxter Research Robot. We continued to use this mode for the experiments in
this work except for comparisons between modes in this chapter. As the primary control mode, it
has the most support from the developers and the community, and has also had the most attention to
ensure that the motions produced will be consistent and safe. In addition to this prevalence, Joint
Position Control has advantages for efficiently performing the learning experiments we conducted.
In particular, this control mode provides additional processing steps that act as layers of abstraction
between the high level motion planning decisions that we demonstrate our agent has learned in this
work (such as where to move to reliably reach a target object) and the low level control decisions
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Joint Position Control Joint Velocity Control

Joint Torque Control “Raw” Joint Position Control
Figure 4.1: These flowcharts describe the control modes of the Baxter Research Robot, and were
posted by Kyle Maroney of Rethink Robotics, Inc. on May 20, 2014. As of the date of access (April
15, 2021), they can be found at https://sdk.rethinkrobotics.com/ wiki/Arm Control Modes, which
provides additional information on each mode. In Section 4.2 we discuss the performance of each
control mode at bringing a joint to a set point angle. We concluded that Joint Torque Control mode
is unreliable for our particular robot. We consider the trade off between the simplicity of using
Joint Position Control, which performs additional steps that allow the lowest level control to be
abstracted away, and Joint Velocity Control which is flexible enough to facilitate custom control
laws to compute the velocity commands and a process where the agent could autonomously learn
to perform low-level control. We demonstrate how the flexibility of Joint Velocity Control allows
additional experimentation in Section 4.2.1.3, and will continue hypothesis testing in future work.
Outside of this section, we use Joint Position Control for all experiments in this work.
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that are not a focus of this work (such as which motor commands and resulting torques to use to
rotate the joints in a particular way while considering their current angle and compensating for
gravity). Abstracting away the concerns for low level control by relying on the built-in processing
of Joint Position Control mode allowed the agent to learn high level actions and demonstrate results
before we had designed and completed experiments where the agent could be provided with a simple
control law and learn the parameters necessary for the agent to reliably use a different control mode.

However, there are limitations to working with the Joint Position Control mode. One is that it
constrains how low level of motions and component actions can be included in the autonomous
learning process, as the steps built in to the control mode can be argued to be knowledge provided
an expert designer, and these steps produce motor signals that include a high degree of fine-tuning
that a natural agent would not have at this point. While we accepted an assumption that these
capabilities would be innate for our learning agent while using this control mode - and this enabled
us to focus sooner on the reaching, grasping, and placing actions learned in Chapters 5, 6, and 7 -
cases could be made for different sets of assumptions to facilitate different start and end points for
the agent’s learning, or different learning methods. While no single assumption was particularly
problematic, Joint Position Control can be limiting for the experiments because it forces a fairly
large and specific set of assumptions and methods for the motion of the arm. The assumptions
cannot be relaxed and some qualities of the motion cannot be changed because of the large number
of built-in steps and the sometimes significant impact they can have on the final version of the
commands sent to the joint control boards and resulting motions. While these assumptions were
acceptable for our experiments, the lack of flexibility is a potential issue for other users. The case
can also be made that the agent learns more autonomously in a different control mode, where less is
built in and the agent must learn to compensate for these “missing” steps. We plan to change away
from Joint Position Control mode for our experiments in future work. This decision is partially
motivated by a desire to increase the flexibility of assumptions, and so that more qualities of the
agent’s behaviors even in low level motions are determined more by the agent’s experiences and
learning from them, and determined less by expert design.

Our plan to transition away from Joint Position Control mode is also made in order to better
answer specific questions we are interested in investigating in future work. A peculiar quality of
infant motions during pre-reaching and early reaching is the use of a series of jerky submotions
instead of a single smooth trajectory, as would be used by more skilled older children and adults. The
PPS Graph model (discussed in chapter 3 and instantiated in section 4.3) provides one theoretical
explanation for these submotions as the result of the agent moving along edges of the graph using
the PPS Graph and Joint Position Control mode. Since the agent moves along graph edges to
previously visited positions, the motion converges to the set point configuration of each node along
the trajectory and then switches to move along the next edge, potentially changing the direction
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of each joint’s motion, producing a jerk. However, it is unclear how what portion of this behavior
is caused by using the PPS Graph trajectories and the limited set of nodes and edges. In future
work, we would like to evaluate if other explanations could be theorized and determined to better
fit the observed behavior or explain additional portions that are not well explained by properties
of the PPS Graph model alone. In order to evaluate these alternative theories, we would need to
implement them in the agent’s control law or motion planner and observe the resulting behavior to
determine its consistency with infant motion. However, adjusting these parameters, such as those
that control the amount of damping for the motion, is not possible while using Joint Position Control
mode because of the high number of built-in steps and required default settings. While less steps
are taken to improve the expected quality of the motion with “Raw” Joint Position Control mode,
it produces a similarly fixed response for each commanded set point and displacement from the
current joint angle positions. Therefore, future work should use either Joint Velocity Control mode
or Joint Torque Control mode to facilitate these experiments. The following sections justify Joint
Velocity Control mode as the ideal choice for future work and demonstrate that it can be used to
produce qualitatively different motions. We have also observed that it can produce a PPS Graph
with the same of nodes as one built using Joint Position Control, supporting a claim that the same
action learning could take place in a graph using either mode and that this change in future work
will not require the actions to be relearned.

4.2.1.2 Demonstrating that our Robot’s Torque Control is Unreliable

When using the built-in Joint Position Control and Joint Velocity Control modes for our robot,
any joint can be commanded to a set point and reliably reach within a small threshold of that
angle, regardless of the starting position of that joint and if the motion is concurrent with other
joints. For Joint Position Control, the default error tolerance was 0.0087 radians, though observed
errors were significantly smaller in practice, and this threshold could be set lower (0.005 for some
implementations of the PPS Graph model) without altering the appearance of the robot’s motion or
the time required to complete the motion to an angle within this tolerated range around the set point.
For Joint Velocity Control there was no default stopping condition for the motion, and tolerance was
set to 0.01. When both the angular positional error from the set point and the velocity where less
than this tolerance, the controller set the velocity to zero and the motion was considered complete.
We found that the errors produced were similar in magnitude to those produced using Joint Position
Control. We also determined that error does not propagate for either control mode over a large set
of moves, so attempts to move to a sequence of set points will continue to converge to each set
point in order. A specific example where the nodes of the Explored PPS Graph were revisited using
Joint Position Control to retake the images and where the nodes were revisited using Joint Velocity
Control to produce the Improved Explored PPS Graph (Section 3.2.2.3) showed that both modes
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could reliably visit the same set of configurations, within the tolerated error. In general, revisiting
each node with Joint Velocity control did not produce significantly different deviations from the
original node configurations than when the nodes were revisited with Joint Position Control, which
the original set was gathered with. These observations support our claim that the control mode may
be changed independent of the rest of the learning process, and without additional changes being
required.

In contrast, for our robot the built-in Joint Torque Control was inconsistent and had behaviors that
could not be accounted for, producing orders of magnitude larger errors. While many experiments
were performed to investigate the issue and attempt to isolate the cause and correct for it, none were
completely successful. Perhaps the best illustration of the agent’s errant behavior is the one found
in Figures 4.2-4.4. In these experiments, the agent is using a control law where the commanded
torque is calculated with kp = 6 and kD = 2, that is, the torque was set to negative six times the
current angular positional error minus a damping term of two times the current angular velocity.
The initial error was e = −0.4 for this experiment. This experiment was part of a larger set that
used a grid search over different kp, kD, and initial e values, and each combination of settings
produced similar results to those shown. In this experiment, the agent calculated and commanded
torques for a single joint to bring it within the tolerated 0.01 error of the set point angle and zero
velocity at the same time. In this experiment, the agent only achieves this goal in trials where s0
is being commanded, and that joint is brought to the desired state. When commanding e0, the
joint converges to an angle slightly outside the tolerated range, and trials are even less successful
for all other joints. Furthermore, despite no commands being sent to the other joints while one is
commanded, all other joints moved unpredictably, ending up quite displaced from the original angle
that was intended be held constant (the error values shown for the joints that were not commanded
treat the initial position as the set point). As can be seen from Figures 4.2-4.4, this is the case when
any joint is the commanded joint, and motion of joints without commanded torques occurs whether
those joints are more proximal or more distal than the commanded joint.

We hypothesized that there may be an undesirable default or time-out behavior when a joint is
not commanded a torque. To test this, we repeated the experiment so that one joint in each trial still
received a torque calculated by the control law and all other joints were constantly commanded with
zero torque. These results were qualitatively the same as when the joints intended to be held steady
were sent no commands at all. We also ensured that a zero command was not being treated as no
command and leading to a time-out behavior by testing again with each joint that should be held
steady being commanded with a small constant nonzero torque, such as 0.01. This torque should
not be enough to overcome the innate friction and damping of the arm, so should be a possible way
to command joints to hold a fixed angle if commands of zero are not allowed. Again, we saw the
same type of errant behavior.
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Figure 4.2: Data observed while the robot was commanded in Joint Torque Control Mode to move
a single joint (shown with red plots) to its set point, which was 0.4 radians from the initial joint
angle. All other joints (shown with blue plots) were sent no torque command. All plots in the same
column display data for a single joint, and all plots in the same row are of the same type. The results
from trials that command a shoulder joint are featured in this figure, and are unique because of their
positional error over time plots in the first row. For s0, the error is successfully reduced below the
tolerance threshold of 0.01, and after a small overshoot the joint angle converges near the set point.
For s1, the error also approaches zero, but then converges to -0.2 instead. In addition to this failure
to converge to the set point, for both shoulder joint trials note the problematic movement of the
other joints that were not commanded (as seen by the constant 0 commanded torque over time),
which is caused by joint efforts that are spontaneously applied without a known cause.
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Figure 4.3: Analogous to Figure 4.2, except with a focus on the trials where the elbow joints e0 and
e1 are commanded with torques intended to bring the joint to a set point angle. In this case both e0
and e1 are nearly moved to the set point, but fail to reduce the final error below the threshold of
0.01. Also note that these trials include the unexpected motion of all other joints, even though they
were not commanded to apply any torque.
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Figure 4.4: Analogous to Figure 4.2, except with a focus on the trials where the wrist joints w0, w1,
and w2 are commanded. In each case the robot fails to bring the commanded joint to the desired set
point angle, and the other joints exhibit undesired motions away from their positions that should
have been held constant.
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In further experiments, multiple joints were commanded at a time to resolve nonzero errors
from set point angles. In these cases, some joints would control as desired and arrive at the tolerated
range, while others would increase in error or fail to converge to the set point. Perhaps the most
alarming result was observed in a set of experiments where every joint was commanded to apply
zero torque and had a goal of maintaining the initial angle for the duration of the trial. Without
being commanded to move any of the joints, the robot would apply significant efforts and cause
large displacements, especially with the shoulder, and high velocities, especially with the smaller
wrist joints. This drastic failure to maintain a position along with the issues that arise when moving
one or more joints to a set point demonstrate that at least on our particular robot, the Joint Torque
Control mode will be insufficient for learning and performing the manipulation actions in this work.

Before ruling out Joint Torque Control completely, we examined the relationship between values
reported by functions in the ROS interface. The actual joint effort reported is often different from
the sum of all reported efforts, which is itself different from the commanded torque. Another
controller uses a gravity model with preset parameters to provide a gravity compensation effort,
which by default is applied continuously to maintain the current position. There is also a hysteresis
model that in the case of the s1 joint provides a nonzero effort to compensate for the large external
spring. As seen in Figure 4.5, the actual effort does not always match up well with either the effort
commanded according to our control law or the sum of this commanded effort and all other efforts
being applied. This suggests either that there are problems in the reporting of these values, or that
an unreported effort is the cause of the undesired motions that have been observed. In either case,
further debugging of the issue was not feasible. We do not believe these problems to be universal
for all torque-based controllers or for all Baxter Research Robots, but just for our particular robot,
where there may be an issue with the calibration or hardware, or another unknown factor that
prevents the Joint Torque Control mode from working as intended.

Given the problems our robot displays when Joint Torque Control mode is used, we choose
the Joint Velocity Control mode as the more flexible option that will allow us to incorporate new
parameters and test additional hypotheses about early actions. These tests are largely left for later
work, but the ability to observe motions with different damping qualities is demonstrated in the
following section. After this demonstration, we have opted to use the Joint Position Control mode
for the remainder of this work due to its simplicity and better documentation from popular use.

4.2.1.3 Producing Qualitatively Different Motions with Joint Velocity Control Mode

When using Joint Position Control mode, the agent can command a desired position (an angle)
for each joint and a built-in controller with fixed parameters moves the arm until each joint’s set
point is reached. This abstracts away the task of low-level control and leaves to the agent the
decision of which joint angles are desired. This abstraction is not always desirable, since it requires
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Figure 4.5: Effort values reported while the w1 joint was commanded torques over a period of six
seconds. The error magnitude started at 0.1, but the joint overshot the set point and ended with an
error magnitude of 0.35 on the opposite side. The angular position of w1 did not change after the
first 2 seconds of the trial, even though some efforts continue to change after that point. This figure
demonstrates the disparity between the sum of all efforts reported and the actual effort produced
by the motors as broadcast in the robot’s status. The actual effort does not appear to exclude the
background processes such as gravity compensation or the hysteresis model, since it does not match
the commanded effort alone either. We found that the difference between these values was not
consistent between trials, and also varied depending on the joint or joints in use and their starting
positions. The data available does not allow us to determine how the actual effort of each motor
is produced, as there may be unreported components or these component values may be incorrect.
The breakdown of efforts fails to provide insight on how the joints could move significantly without
any torque commanded, and we conclude that Joint Torque Control mode cannot be used reliably
with our robot for the experiments in this work.
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assuming the low-level control is innate and functions in a way that was programmed in with expert
knowledge, rather than a way which the agent autonomously learns. This assumption is minor
compared to other common assumptions that may involve kinematics or geometric models, and
influence both the low-level control and high-level decision making tasks.

While we accept the assumptions of Joint Position Control for this work, we demonstrate
an additional advantage of Joint Velocity Control to be explored further in future work, which
is the flexibility of a custom control law. In our case, the velocity to command is calculated as
−kp · e− kD · v. In our testing, we found that the innate damping of the arm was strong enough that
adding additional damping with a positive value of the coefficient kD always produced divergent
motion. We then set kD = 0 for all remaining trials, where kp could still be altered to determine the
proportionality between the error from the set point and the velocity to command.

In Figure 4.6, we display an example motion between two random joint angle vectors q and
q′ while using four different values of kp in the control law. These four settings were found as
part of a larger search over kp values, and were selected for presentation due to their exhibition of
four qualitatively different motions. kp = 0.5 produces overdamped motion, kp = 1.25 produces
near critically damped motion, kp = 3.0 produces underdamped motion, and kp = 6.0 produces
divergent motion. In future work, the most significant of these are likely to be the efficient near
critically damped motion that resembles a skilled agent’s movement, and the underdamped motion
with overshooting that resembles the movement of an unskilled agent, such as an infant learning
early move and reach actions. The motion of s0 provides the clearest example of the four qualities
achieved with these settings, and the plots for s0 are presented in larger size in Figure 4.7 for more
detailed viewing. These can also be compared to the plots in Figure 4.8 where Joint Position Control
is used to perform the same motion with s0. The added flexibility of Joint Velocity Control that
makes it desirable for future work is on display in this comparison, since the fixed settings of Joint
Position Control can only produce a single behavior during this move. However, this behavior is
sufficient for the learning performed in this work, allowing us to continue at this time with the
simpler mode, Joint Position Control.

4.2.1.4 Note on Relation to Autonomous Learning

It should be noted that the process of selecting between the available control modes is experimenter-
driven and that the results evaluated may vary for different robots. However, we do not consider
this to interfere with the independence of our learning agent or its autonomy as it learns to move the
arm or to reach, grasp, and place objects. Our justification is that a natural agent does not appear
to have multiple control modes available, so it is acceptable for the agent’s autonomous learning
to begin after the experimenters have already gathered the data necessary and selected a control
mode that will be used in the remaining experiments as the agent moves and gathers experience.
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Figure 4.6: Plots displaying the positional error over time, velocity over time, and phase diagram
for moves of each joint performed with Joint Velocity Control and varied parameters for the control
law. The robot’s built-in Joint Velocity Control mode is more flexible than its Joint Position Control
mode, since it can be used with a custom control law with variable parameters instead of a single
default. We found that the innate friction and damping of the robot’s arm was sufficient, and that
performance was best when the damping term kD was set to zero. Then varying the coefficient
proportional to the error kp allowed the robot to produce qualitatively different motion behaviors.
When kp = 1.25, the motion is nearly critically damped, and converges to the set point relatively
quickly without overshooting. When kp = 3.0, underdamped motion can be observed, where the
joint angle arrives at the set point angle with too much velocity remaining and overshoots one
or more times, but eventually slows and converges. This is an important behavior to be able to
observe, as it resembles the motion of infants performing pre-reaching motions and early reaches.
Underdamping has been proposed as one possible cause of infants’ jerky submotions, and the
ability to adjust a parameter to introduce or remove underdamping and compare the qualities of the
resulting motion to those of infants can be valuable for showing consistency or inconsistency with
that theory. Our PPS Graph model also suggests another plausible explanation, that the agent may
exhibit jerky submotions as it moves between familiar poses. The motions produced by executing
trajectories in this manner can also be compared to infant motions to determine if either theory
or a combination is best supported by consistency with our implementation. It is also possible
with kp = 0.5 to observe overdamped motion where the joint converges too slowly to the set point
angle. Finally, divergent motion can be achieved with kp = 6.0 or greater, where the oscillations
from overshooting the set point continue to grow over time. If this result is replicated, take care to
have a clear space and a short timeout period to ensure safety as the motion will grow larger until
it is stopped. While all joints exhibit the four qualitatively different behaviors, the example with
s0 shows the characteristics most clearly, and these are presented in larger size in Figure 4.7 and
compared with the corresponding figures for Joint Position Control in Figure 4.8.
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Figure 4.7: Larger views of the error, velocity, and phase portrait for the s0 joint that appeared
alongside the other joints in Figure 4.6. By using Joint Velocity Control adjusting the control law
parameter kp and relying on the innate damping of the arm, overdamped, near-critically damped,
underdamped, and divergent motion can all be produced with our robot. The ability to produce
these qualitatively different behaviors is important for checking the consistency of our model with
observed infant behaviors and theories for the causes of those behaviors. This is not possible to
the same extent with the less flexible Joint Position Control mode, which has results shown for the
same motion in Figure 4.8.
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Figure 4.8: Plots of the error, velocity, and phase portrait for the same motion with s0 as performed
in Figure 4.7, but using Joint Position Control. Joint Position Control only allows customization of
the error tolerance and timeout length for a motion, and requires only an input of the set point angle
for each move. All other parameters are set internally to defaults, and the motion is processed to
have standard desirable qualities with the steps in Figure 4.1. With the limited options, only a single
qualitative motion behavior can be observed. Typically, the controller for Joint Position Control is
near-critically damped, but in the case of this large initial displacement there is a slight overshot
before converging, and the motion appears slightly underdamped. While Joint Position Control
lacks flexibility that would allow for additional hypothesis testing, we use it for all remaining
experiments in this work due to its straightforward usage and high reliability.71



In this way, the agent is presented with a single control mode to use, but is not given additional
information on how to use it, therefore maintaining autonomy in the learning stages. Further, it is
also reasonable to assume the experimenter’s selection of the control mode because the remaining
steps are not dependent on any specific mode being used. In particular, we have determined that the
same graph could be constructed with either Joint Position Control or Joint Velocity Control. Since
the experience gained would be taken from events taking place at the same set of graph nodes, the
learning should also be similar and analogous reach, grasp, and place actions could be found if a
different control mode was chosen.

4.3 Building the Peripersonal Space Graph

4.3.1 A Move Arm Action using Move Joint Actions in Parallel

By the end of the previous section, the agent has two usable methods for moving the joints of
the arm. One is the Baxter Research Robot’s built-in angular position control mode, called “Joint
Position Control” in the robot’s documentation. This method can be assumed to be capable of taking
a joint to a set point (a specified angle) without any additional learning. The second is the Baxter
Research Robot’s built-in angular velocity control mode, Joint Velocity Control, which required
the learning of suitable parameters for a proportional derivative (PD) controller to move any of its
joints to a set angle.

The experiments completed in the previous section narrowed the options for methods from
the four control modes available for the Baxter Research Robot to either Joint Position Control or
Joint Velocity Control. As we discussed in the previous section, Joint Velocity Control gives the
highest number of areas where the agent can learn autonomously. It also allows further evaluation of
theoretical explanations for motion qualities observed in infants, as it gives the ability to control the
properties of the motor commands, such as damping and other properties of the motor commands
and the resulting motion. In contrast, in Joint Position Control mode these properties all have
assumed default values. However, giving the agent the responsibility for setting these parameters
requires additional learning before the steps where learning from unusual events is demonstrated.
Further, the learned parameters allow the agent to reach the same end positions, but the motion
between can be less refined than the motion guided by the built-in controller for Joint Position
Control. This means using Joint Velocity Control introduces the possibility that unreliability in the
learned actions could come from imperfections in the action policy or from imperfections in the
underlying control laws, which would require additional steps to determine the quality of only the
learned action policies independently. For these reasons, we have only used Joint Velocity Control
mode in this chapter to evaluate its performance, and we leave the completion of all following
experiments using Joint Velocity Control for future work.
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At this time, we have only completed the full set of experiments with Joint Position Control
mode. This control method requires the simplest inputs and handles the most underlying mechanics
for the user, and was used to simplify the control portion of this work, especially beneficial in the
early experiments. When using Joint Position Control, the agent performs linear interpolation in
configuration space to move from one position to another, and adjusts the torques applied so that the
motion is critically damped and all joints arrive at the same time. Again note that similar motions
can be achieved with Joint Velocity Control mode and enough tuning of the parameters, and we
assume that when the action learning experiments are repeated with velocity control in future works
the results will agree with the results of these first experiments and the claims they support. To
begin supporting the validity of this assumption, in the upcoming analysis of the Peripersonal Space
(PPS) Graph built with Joint Position Control, we show that the set of configurations stored in the
nodes of a PPS Graph built with Joint Velocity Control is the same within a small margin of error.

As the underlying control for the robot handles gravity compensation and other factors that
depend on the motion of other joints, the motor signals necessary to move each joint can be consid-
ered independent. We also assume that since motion of one joint does not affect the prerequisites
of the motion of another, the agent can combine the move joint actions in parallel, bringing all the
joints to their set point angles in the same motion instead of a sequence of one-joint motions. The
act of performing the move joint actions, where each joint is brought to a desired set point angle, in
parallel will define the earliest version of the move arm action, sufficient for bringing the arm to a
nearby configuration and performing motor babbling.

4.3.2 Motivation for Additional Learning to Move

At first, the capability to move all of the joints to set points in unison may seem like all that
is required for a satisfactory move arm action. However, there are two key shortcomings that the
agent will need to address by gaining additional experience that will be recorded in the PPS Graph.
First, the agent has no guarantee of the safety and feasibility of the motion. Especially for motions
where the initial configuration and set points are distant from each other, the agent cannot guarantee
no portion of the arm will collide with the environment without assuming significantly higher
information and capabilities, such as a 3D point cloud of the obstacles and a motion planner to
adjust the trajectory around them. One should note that while the path will be linear in configuration
space, it will very seldom be linear in image space or standard 3D axes for the workspace, and
the area swept through for a long trajectory is difficult to predict as the arm rotates at multiple
degrees of freedom. The risk is lessened for the Baxter Research Robot since the position control
mode places caps on the velocity and torque applied to each joint, so a command for a large change
will not result in potential damage to the hardware or danger to those nearby. Further, Baxter has
compliant actuation, and does not attempt to force its way past obstructions. Still, given the relative
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fragility of any robot when compared to natural agents that can respond to minimize pain and heal
afterwards, moves should only be executed if there is a demonstration or justified assumption that
they will be collision free.

The second reason that the ability to move the joints to set points needs to be combined with
additional knowledge is that the agent has only used proprioception up to this point to monitor the
angular position and velocity of each joint. While this gives the agent the capability of moving to
a desired configuration by learning to use the velocity controller (or if the capability is assumed
due to use of the position controller), the agent would not have a model for how the hand and arm
move in the environment and could interact with other objects. While the mechanics of moving
the arm will not change by creating the PPS Graph, the data contained by the graph will allow the
agent to select its destinations to perform actions that influence the environment in desirable ways.
In particular, because the PPS Graph provides a discrete mapping between points in configuration
space and image space, the agent can now plan and make moves to desirable positions in the image
by moving to the configuration that best corresponds to the desired position in the image, such as a
position matching the center of an object that is the target of a reach or grasp.

4.3.3 Experiment 4.1: Creating the Peripersonal Space Graph

Keeping with the general goal of being consistent with natural agents, the method by which our
agent builds the PPS Graph is inspired by the early motions of human infants. A baby begins to
explore its environment and the range of motion of its arms with seemingly random movements and
no clear external goal.

Our embodied robot agent will perform motor babbling to observe similar exploratory motions.
Recall that we use a Baxter Research Robot, and in this work focus exclusively on motions made with
its left arm and grippers. The state of this arm can be given by eight degrees of freedom: a vector of
seven joint angles, q = 〈q1, . . . , q7〉 corresponding to the vector of joints 〈s0, s1, e0, e1, w0, w1, w2〉,
and the aperture a between the gripper fingers, described as a fraction of its maximum width.

The robot learning agent creates a PPS graph P of N nodes by sampling the configuration
space of its arm. From an initial pose q0 in an empty environment, the robot samples a sequence of
perturbations ∆q from a distribution D to generate a sequence of poses:

qi+1 = qi + ∆qi while i ∈ [0, N − 1] (4.1)

For our experiment, the agent begins with an empty PPS Graph P . We place the robot’s left arm
so that the hand is at an arbitrary position near the middle of field of view above the table, and the
agent records the configuration that holds the arm at that position in the first node, as q0 = q(n0).
After the special case of q0, each configuration qi+1 is found using the random motor babbling search
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Joint Name Index in q Hardware (Radians) Software (Radians)
Min Max Range σk Min Max Range

s0 1 -1.7016 1.7016 3.4033 0.34033 -0.5 1.5 2.0
s1 2 -2.147 1.047 3.194 0.3194 -0.65 0.5 1.15
e0 3 -3.0541 3.0541 6.1083 0.61083 -1.5 1.5 3.0
e1 4 -0.05 2.618 2.67 0.267 0.5 2.0 1.5
w0 5 -3.059 3.059 6.117 0.6117 -1.5 1.5 3.0
w1 6 -1.5707 2.094 3.6647 0.36647 - 1 1.5 2.5
w2 7 -3.059 3.059 6.117 0.6117 -2.8 2.8 5.6

Table 4.1: The joints of the Baxter Research Robot in proximal to distal order, which matches the
order of their appearance in the configuration vector q. This table gives the allowed angles of each
joint in terms of the physical limitations of the hardware and the more restrictive bounds imposed in
the software for conducting the motor babbling to build the PPS Graph. The value listed for σ is
10% of the joint’s hardware range, and was used as the standard deviation when sampling deltas for
that joint from a normal distribution.

described in equation (4.1) from the previous configuration qi and a straightforward instantiation
for D that contains appropriate ∆qi for our robot. For each joint angle k, the displacement to add is
sampled from a normal distribution with a standard deviation σk equal to a tenth of the full range of
that joint. That is, D = N(0, σk), and the proposed next angle for each joint k can be calculated as

qki+1 = qki + ∆qk where ∆qk ∼ N(0, σk) and σk = 0.1 · range(qk). (4.2)

Additional information on the the ranges of angles that each joint can hold given the constraints of
the robot’s hardware and the value of each σk can be found in Table 4.1. Note that the table also
contains a smaller “software” range of allowed angles for each joint defined by the code for motor
babbling written for this experiment. Every joint has a software range that trims to extremes of the
hardware ranges to avoid additional strain on the robot from motions at or near the rotational limits
of the joints. Some joints, especially around the robot’s elbow, have additional limitations put in
place, which narrows the range of motion of the agent’s robot arm to more closely resemble the
range of motion in a typical human arm. If any qki+1 falls outside the allowed range, a new ∆qk is
sampled until the resulting qki+1 = qki + ∆qk is permitted, without recording the rejected angles or
subtracting from the number of remaining nodes to generate.

We also use a form of rejection sampling to impose biases similar to those observed in infant
behaviors. While the motor babbling of human infants may appear random, it does exhibit biases
toward moving objects and toward keeping the hand visible [54, 55, 53, 52]. Therefore, we require
that the resulting end-effector pose must fall within the field of view. Human infants are also soft
and robust, so they can detect and avoid collisions with minimal damage. Since this is not the case

75



for the robot, each new configuration proposed by adding the sampled deltas must be evaluated
for safety before executing the motion. To prevent damage to our Baxter Research Robot, the
configuration must not cause the hand to collide either with the table or with the robot’s own body,
and must result in a hand position that will have a measurable depth in order to be recorded in
the graph. We implement these checks using a manufacturer-provided forward kinematics model
that is below the level of detail of our model, and is used nowhere else in its implementation. The
exact criteria used are given in Table 4.2. If any of these conditions are violated, the proposed
configuration is rejected and a new qi+1 is sampled (in this case a new ∆qk is sampled for each
joint k, rather than for a single joint when a proposed angle qki+1 is rejected for falling outside of the
allowed range). In future work, we will considering additionally biasing the sampling to resemble
human infants’ pre-reaching motions toward objects, or to move in a cyclic fashion, often returning
to the center of the field of view.

After all checks and any necessary resamplings are completed, the arm is physically moved
from its current configuration qi to the new configuration qi+1. After each new pose has been
safely reached by physical motion of the arm, the robot pauses and collects a perceptual image Iqi+1

that corresponds to qi+1. Each visual percept Iqi+1
is taken by a fixed-viewpoint RGB-D camera

mounted above the robot’s head. This camera provides an RGB image IRGB and a depth-registered
image ID as shown in (Figure 4.9). Section 3.2.1.2 provides additional information on the stored raw
camera images and the processed image manifolds that allow salient portions to be represented more
concisely, such as the binary image mask for the robot’s palm, pi+1. After the image processing
is complete (or after the raw images are saved and prepared for processing if the processing
will be run in a batch at the end of motor babbling, as in our current implementation), the node
ni+1 = (qi+1, Iqi+1

) is added to the set of all nodes N and the undirected edge ei,i+1 = (ni, ni+1)

is added to the set of all edges E , building onto the PPS Graph P = 〈N , E〉.
This experiment continues until the total number of nodes added to P is |N | = 3000. In this

work the agent is instructed to stop adding nodes at this set stopping point, but future work may
evaluate the effects of different values of |N | or methods the agent could use to determine the best
final size of N . When the agent reaches |N | = 3000 and stops motor babbling, the graph that has
been built so far is a linear chain. As a result there is only a single path between any two nodes,
and this path is typically very long since it must visit each consecutively numbered node between
the starting and ending nodes. In addition to inefficiency, having a single path through the graph
does not provide options for avoiding obstacles or selecting the most reliable approach for a learned
action. The graph needs much higher connectivity, which can be obtained by adding new edges
linking existing nodes in P .

It is not feasible to test every pair of unconnected nodes, so we apply a heuristic. Recall from
Section 3.2.1.3, which provides additional details on PPS Graph edges, that the length of an edge be
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Allowed Range Rejection Criterion Reason for Rejection

0.46 < x < 0.92
x ≤ 0.46 The hand must be at least a

minimum distance in front of
the robot’s body to avoid trig-
gering measures for avoiding
self collisions.

x ≥ 0.92 Positions further forward than
this will collide with a bar-
rier used to provide a simpler
background in some example
photos.

−0.4 < y < 0.4
y ≤ −0.4 Hand positions further past

the left edge of the table will
have lower utility and may be
out of view.

y ≥ 0.4 Hand positions further past
the right edge of the table will
have lower utility and may be
out of view.

0 < z < 0.3
z ≤ 0 The hand must not be below

the table’s surface.
z ≥ 0.3 The hand must not be so far

above the table that it is above
the field of view.

||(x, y, z)− (0.38, 0.12, 0.81)|| < 0.36 Positions too close to
the Kinect’s location,
(0.38, 0.12, 0.81), will have
an invalid depth reading.

Table 4.2: For safety, the agent performed rejection sampling while motor babbling, using a built-in
forward kinematics function to check each proposed node configuration before moving to it. The
rejection criteria used are explained above. These were used in addition to enforcing that each joint
angle was within the ranges shown in Table 4.1. It is important to note that the agent is not aware of
these safety checks and that neither forward or inverse kinematics are used in any other experiment
in this work.
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the Euclidean distance between the configurations at its endpoint nodes, considered in joint space.

||eij|| = d(ni, nj) = ||qi − qj||2 (4.3)

Also let |̃|e|| denote the median length of all the edges in the current (linear) graph. This is the
average1 length of edges known from exploration to be safe. The heuristic is that when two nodes
ni and nj could be connected with an edge shorter than |̃|e||, that is, when d(ni, nj) < |̃|e||, then the
edge eij is predicted to also be safe and can be added to P , if it is not already present. Once an edge
eij has been added, the agent can safely move along it from ni to nj . In practice, the heuristic has
performed well, and no significant collisions have been caused by moving along these added edges.
In all motions performed for this work, some minor glancing contacts with the table did occur along
a select few edges, but not often enough or severe enough to suggest the heuristic failed to identify
affordances for safe motion between nodes. If desired, the problematic edges can be removed by the
experimenter as they are found as an added precaution, to ensure it will not be considered for use
again. Since the current implementation for this motion relies on the built-in Joint Position Control
mode, the agent uses linear interpolation to bring each joint angle qk from its value in qi to its value
in qj .

With the inclusion of all edges that satisfy the safe motion heuristic condition, we expect that P
will support planning of multiple trajectories between any given pair of nodes. Because P is still a
sparse approximation to the configuration space, trajectories across the environment will tend to be
jerky. As a final step of building the Explored PPS Graph, the the agent designates a home node, nh,
where the arm rests naturally and that allows relatively unoccluded observation of the environment.
The concept of a home node has also been observed in some infants in [49], as some of their infant
subjects appeared to move the hand to an out of the way position and better observe the environment
before reaching, and some infants displayed cyclic motions, returning back to familiar positions
before extending further. For a consistent behavior, we set the convention for our agent that all
actions will be planned while at nh, and all trajectories begin at nh, and eventually return there, too.
We will also define the terms nf for the final node of a trajectory, and np for the penultimate node.

4.3.4 Experiment 4.1 Results: Analysis of the Explored PPS Graph

The agent successfully followed the motor babbling algorithm to make 2999 moves and record
3000 nodes. To see a demonstration of the positions visited and the space covered by the Explored

1We chose to use the median |̃|e|| rather than the mean µe for the heuristic as it is slightly lower and provides
a more conservative prediction of the set of safe edges to add. µe > |̃|e|| because of the sampling of deltas from a
normal distribution, which produced a small number of long outlier length edges that bias the mean upwards. Another
parameter that could be examined in future work is the effect on the connectivity of the graph and resulting motions of
the agent if a different percentile threshold was used instead of the median’s 50th percentile.
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Figure 4.9: An example of the agent’s visual percept and stored representation for a node ni. (a) A
single RGB image IRGB, scaled down to 120× 160 resolution, taken while the arm configuration
is set to qi = q(ni). (b) The registered depth image ID taken at the same time. Note that the
depth values are a measure of disparity, so smaller values are further from the camera. (c) The full
representation the agent stores for the node ni. Aided by the yellow block held between the gripper
fingers, the agent segments the palm mask, corresponding to the grasping region of the hand. The
larger hand mask includes the palm mask (shown in yellow) and parts of the robot image segment
near the block, typically the gripper fingers and lower wrist (shown in red). The range of depth
image values within each mask is also stored, as are the center of mass and mean depth value for
each mask. Finally, to estimate the direction the grippers are pointing, a vector is drawn from the
hand mask center through the palm mask center.

PPS Graph, the reader may wish to view one or both 5-minute video summaries of the motor babbling
process that we have prepared. The video at https://www.youtube.com/watch?v=EsGCTS2vx1s
displays the nodes and edges added to the graph in sequence, showing each in terms of the standard
(x,y,z) coordinates of the end-effector in the 3D environment around the robot. The same representa-
tion of the graph being built edge by edge (not including the heuristic edges that are added in a step
after motor babbling) is shown in the video at https://www.youtube.com/watch?v=7rAPpjFpNZw,
but it also displays the corresponding IRGB image recorded for each node as it was visited. When
the process is complete, the Peripersonal Space Graph P is a sparse approximation of the configu-
ration space of the robot arm (Figure 4.10). It is evident that random sampling through unguided
exploration has distributed |N | = 3000 nodes reasonably well throughout the workspace, with
some localized sparse patches and a region in the far right corner that is generally out of reach of
the robot’s left hand.

With most workstation computer setups, this experiment should produce an instance of the
Explored PPS Graph in approximately 5-10 hours. In our case, the initial motor babbling to
record the 3000 nodes took place over 5 hours. This runtime included built-in pauses between
motions to capture images while the robot was at a complete stop, which may need to be adjusted
in length depending on the delay of the camera and the time required to write the image to disk.
We chose to record only the raw RGB and disparity images during motor babbling and perform
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Figure 4.10: Two visualizations of the Peripersonal Space (PPS) Graph P , with size |N | = 3000.
Each visualization shows wide coverage that facilitates movement throughout the environment,
with a few sparse patches. (a) An example RGB percept of the empty environment, overlayed with
the (u, v) center of mass locations for all |N | nodes. The dot for each node is colored and sized
according to its mean disparity value d (see key along right edge). Nodes with higher disparity
(closer to the camera) appear larger and more red, while nodes with lower disparity (farther from
the camera) appear smaller and closer to blue. The information in this display is stored in the
individual node representations and is available to the agent. (b) The nodes of P displayed in the
true world (x, y, z) coordinates of the Baxter Research Robot’s default frame of reference. The
gray plane represents the surface of the table. Nodes are plotted as blue points. The 2999 edges
in the original chain from motor babbling are shown as dotted red lines. Not shown are the edges
added according to the safe motion heuristic. The information in this display, or anything involving
(x, y, z) coordinates, is not available to the agent.
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the image processing to produce the binary image masks and other manifolds for all nodes in a
batch afterwards. The distance-based safe motion heuristic must also be evaluated for each pair of
nodes in the graph to determine which edges to add to finish building the graph. On our system, all
additional processing was completed in MATLAB and representations were saved to disk for future
use in about 3 hours.

Due to the arbitrary choice of q0 and the randomness introduced when sampling each ∆qk, each
time this experiment is repeated it will produce a different Explored PPS Graph. However, this
should not affect the remaining experiments, as none of our results suggest that the performance of
the agent is dependent on specifics of our graph instance that would differ in another random graph
instance. If desired, it is possible to recreate a graph that is effectively identical to our graph by
sending the arm to each qi and recording Iqi

for your robot and environment. We have performed
this successfully to account for changes to the camera’s position relative to the robot and to update
the appearance of the background in the stored images to be consistent with the current environment
of the robot.

In the remainder of this section, we examine the numerical statistics of the Explored PPS Graph
and discuss the significance of the graph for the agent’s ability to move the arm and to represent its
peripersonal space.

4.3.4.1 Quantitative Analysis

Random exploration of the configuration space with a stopping point target of |N | = 3000

creates 3000 nodes, connected in a chain with 2999 edges. The distribution of the lengths of the
explored edges is given in Figure 4.11. As expected, the distribution is skewed to the right, with a few
long edges that skew the mean length, µe = 0.96, to be greater than the median length, |̃|e|| = 0.92.
Since these lengths are calculated in terms of configuration-space distance, the Euclidean distance
between joint angle vectors as in Equation 4.3, these numbers can be unintuitive on their own.
However, these numbers, and the maximum explored edge length of 2.3 can be compared with
the maximum possible move length to show that they are relatively small moves. This maximum
possible move length can be found as the distance between extremes of the configuration space,
such as from a position with every joint at its minimum angle to a position with every joint at its
maximum angle. This length is 12.4 using the ranges with respect to the hardware limits, and this
length is 7.9 with respect to the more restricted joint angle ranges in our software.

Of the original 2999 edges, 1499 are shorter than the median edge length |̃|e|| and 1614 are
shorter than the mean edge length µe. Using the assumption that moves of about the same distance as
the lengths of the already-traversed edges will be equally safe allowed the application of a heuristic
test for safe motion. In particular, for any two nodes ni, nj ∈ N , if d(ni, nj) < |̃|e||, then eij is
added to E . 108,718 edges were added by this method, bringing the total to |E| = 111, 717. Since
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Figure 4.11: A histogram of the distribution of distances traversed with motor babbling motions that
defined the first 2999 edges of the graph. Each edge length was calculated according to Equation 4.3,
using the distance between the endpoint nodes in configuration space rather than in image space or
standard 3D coordinates. The mean and median edge lengths are superimposed at the correct value
on the plot’s horizontal scale. The median edge length is used in a heuristic to evaluate all pairs of
nodes to determine if an edge should be added between them. This heuristic allows 108,718 new
edges with lengths less than this median to be added, producing the final state of the Explored PPS
Graph.
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the vast majority of edges are added due to the heuristic rather than proven to be safe by traversal, a
majority of motions will be expected to be performed along these new edges too. Therefore, it is
important that the heuristic test is sufficiently strict to keep these edges safe. This helps to justify
the use of the median rather than the larger mean or maximum length of the explored edges. In
practice, this has been enough to ensure that the edges truly do represent affordances for feasible
and safe motions between the stored node positions.

We were initially surprised by the scale of 117,717 edges, but a helpful perspective comes
from comparison to the complete graph of 3000 nodes, where each node ni is connected to every
other node nj . This complete graph has 3000C2 = 4, 448, 500 edges, meaning that the Explored
PPS Graph P has the same number of nodes and only about 2% as many edges as the complete,
fully-connected graph.

We can also provide a similar perspective in support of the choice of |N | = 3000, an apparently
large number of nodes, in a graph that serves as a sparse representation of the agent’s peripersonal
space. Since the configuration space is seven dimensional (without counting the gripper aperture a,
which wasn’t changed during the construction of the graph), if the graph had a set of nodes storing
configurations q in an equally-spaced grid instead, each joint would have only 7

√
3000 ≈ 3.14

different angle settings available.
There are several additional statistics describing the connectivity of P that can be examined at

this point where N and E have been finalized. Specifically, we can create histograms that show the
distributions of: the degrees of the nodes (Figure 4.12), the shortest path length between any pair of
nodes (Figure 4.13), and the shortest path length between the home node nh and any other node
(Figure 4.14). Each figure’s caption gives additional statistics and discussion on the distribution
shown.

4.3.4.2 Affordances and Significance

The significance of the PPS Graph can be summarized in two points. First, the graph serves
as a general representation of peripersonal space. The characteristics of the graph representation,
including the types of information stored in its component nodes and edges, provide one example of
a knowledge base sufficient for learning and acting in the agent’s nearby environment. The PPS
Graph representation can be constructed autonomously by the agent by recording its percepts during
motor babbling. Each node of the graph stores an observed pair of a configuration and its associated
visual features, and the set of nodes as a whole serves as a discrete mapping between two modalities
that describe the agent’s peripersonal space (or in this work, a region of the peripersonal space that
has been prioritized because it is in view and near or above the workspace surface where objects
may be interacted with). While not explored in this work, he ability to visit familiar positions and
observe the consistent position of the arm may help to identify it as the self, and by revisiting the
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Figure 4.12: A histogram of the distribution of the degrees of each node in the Explored PPS Graph
P . The degree of a node is defined by the number of edges connected to the node, and each edge
connects a distinct pair of nodes, the degree also indicates the number of neighbors a graph node has.
The minimum degree is 1 and the maximum degree is 110. The average degree can be represented
with the mean of 36.8, median of 34, and mode of 25. The distribution is skewed to the right, with
most node degrees between 10 and 55. Nodes with especially low degrees tend to be near the edges
of the graph and only have neighbors on one side, while nodes with especially high degrees tend to
be near the center where they can be surrounded with neighbors and where the random walk may
have passed nearby many times. As nodes generally have more than one neighbor, the agent has
multiple options for moving to almost every node and these can help with obstacle avoidance and
alignment of the hand for actions like grasps. Additionally, the maximum degree of 110 is still low
enough that it is feasible in time complexity to evaluate properties of every neighbor or incoming
edge, which is also important for grasping and any other action that does not always use the shortest
graph path trajectory.
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Figure 4.13: A histogram showing the distribution of shortest path lengths, in terms of number of
edges between all pairs of distinct nodes ni and nj . Note that this is not necessarily the lowest sum
of configuration-space edge lengths along the path, and often does not minimize the total movement
during the trajectory in image-space or the 3D environment. The mean, median, and mode length
for shortest paths are 4.8, 5, and 4, respectively. As expected, the number of length one paths
matches the number of edges, 117,717. This distribution is also skewed to the right, with very few
exceptionally long paths. The maximum path length is 14, so the diameter of this Explored PPS
Graph is also 14.
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Figure 4.14: A histogram showing the distribution of shortest path lengths between the home
node nh and any other node ni. The lengths of these paths are generally more influential than the
shortest path lengths between pairs of arbitrary nodes shown in Figure 4.13, as the agent begins and
ends each pre-reaching move, reach, and grasp trajectory at the home node. Short paths from the
home node are beneficial so that the arm can be moved along the path with less pauses for visual
observations at each node traveled through, and so that a higher share of the observations that must
be processed to check for unusual events like bumps will be the observation at the final node of the
trajectory, where the event is more likely to occur once the action is more reliable at producing the
event than random motion. The distribution of shortest path lengths from the home node nh to any
other node ni can be described by the range of 1 to 8 edges in the trajectory, as well as the mean of
4.3, median of 4, and mode of 4.

86



same familiar position the agent may identify changes in the background that can best be modeled by
introducing the concept of nonself objects. Given the ability to recall the visual state for each node,
the agent may identify nodes with a desirable feature, such as an occupying a region of space or an
intersection with an object to reach or grasp. Because each node may be used to map its desirable
visual state to the configuration recorded when the node was first observed, the agent may generate
a set of configurations that will reliably produce the desired outcome. When this set includes the
configurations from multiple nodes, additional visual features may be used to devise a function
to select the one that will be most reliable. The PPS Graph may then be used as “scaffolding” to
learn increasingly expert ways to perform actions. In future work, an agent may may be initialized
efficiently with the early action policies that can accomplish the goal based on the information in
the PPS Graph and learned criteria, and then modify the policy by any method to produce more
precise, smooth, and skillful late actions.

The second significance of the completed PPS Graph is the affordance for safe and feasible
motions along the edges. While the mechanics of the move arm action remain the same and use
the same Joint Position Control mode, the agent can predict the results of moving the joints to a
vector of angles that has already been visited, and can verify that this can be performed without
the risks of a single large linearly interpolated motion from the starting configuration to the desired
set point. Moves that are too large or involve too large of rotation of one or more joints are at
risk of being disrupted by the robot’s built-in measures to avoid self-collisions, or of causing a
collision with the table or other nonself objects in the environment, which would typically require a
more sophisticated motion planner and a point cloud or similar model of these obstacles. However,
without those requirements, any path 〈n1, . . . , nm〉 in a PPS graph P corresponds with a safe
trajectory 〈q1, . . . ,qm〉 of the arm. In addition to the feasibility of these trajectories, they also
have the desirable quality of resembling early infant behavior with the arm. In particular, as the
agent moves along each edge and changes direction upon reaching each node in the trajectory, it
produces an infant-like sequence of jerky submotions, examples of which can be seen in Figure 4.15.
While the set of individual nodes in the graph only provides the information necessary to return
to previously visited configurations with predictable results, in the following section we describe
how local Jacobian estimates in the neighborhood of each node may be used to extend the graph
model from a discrete mapping to a locally linear and continuous mapping. Using these local
Jacobian estimates, the agent is able to model the effects of changes in configuration away from
any stored configuration, and with the inverse of the local Jacobian estimates the agent may predict
the configuration change needed to produce a visual state that was similar to the state for some
node, but not observed at any node. These predictions tend to be highly accurate as long as the
intended change in configuration and visual state is relatively small, similar in magnitude to the
change between a node and one of its neighbors.
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Figure 4.15: An illustration of trajectories along PPS graph edges which feature jerky submotions,
and where the direction may change significantly at each node. The trajectories are plotted using the
position of each node visited in standard 3D Euclidean coordinates for the environment, calculated
from the nodes’ stored configurations and the robot’s default forward kinematics software that the
agent does not have access to. The green plane matches the location of the table’s surface and is
provided for context. In each plot, the trajectories begin at the agent’s home node and end at a
randomly selected other node. The red trajectory is the shortest graph path from the home node to
the final node when measured in configuration space (which the agent uses) and the blue trajectory
is the shortest graph path between the same nodes in terms of distance in image space. Neither of
these is necessarily the shortest path in standard coordinates for the environment, which the agent
cannot measure or use. As a result, the paths tend to be inefficient, and can be improved to produce
smoother and more skilled late action forms of the early actions learned in this work.
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4.4 Extending the Graph to a Locally Continuous Model

The PPS graph P is a discrete, sampled approximation to a continuous mapping between the
continuous configuration space of the arm, and a continuous space of perceptual images. The
full Jacobian model J(q) relating joint angle changes ∆q to changes in hand center image-space
coordinates ∆c is a nonlinear mapping, dependent on the current state of the arm q, a seven-
dimensional vector. The full Jacobian is therefore prohibitively difficult for the agent to learn and
use. However, P does contain sufficient data for making linear approximations of the relationship
between ∆q and ∆c local to a particular qi = Q(ni). This estimate is most accurate near the
configuration qi, with increasing error as the distance from qi increases.

The linear approximation at a node ni is derived using the neighborhood N(ni) ≡ {ni′ |∃ei,i′},
the set of all nodes ni′ connected to ni by an edge for feasible motion. The local Jacobian estimate
Ĵ(ni) considers all edges ei,i′ such that ni′ ∈ N(ni). Each edge provides an example pair of
changes ∆q = qi′ −qi and ∆c = cpi′ − c

p
i . If there are m neighbors, and thus m edges, these can be

combined as an m× 7 matrix ∆Q and an m× 3 matrix ∆C, respectively. Ĵ(ni) is the least squares
solution of

∆Q Ĵ(ni) = ∆C. (4.4)

For a given change ∆q in arm configuration, ∆q Ĵ(ni) = ∆c gives a local linear estimate of the
resulting change ∆c in the appearance of the hand. Conversely, given a desired change ∆c in the
appearance of the hand, the pseudo-inverse Ĵ+(ni) provides a straightforward computation for the
change ∆q in arm configuration that is predicted to produce that result.

Figure 4.16 shows an example graph neighborhood and a visualization of the information
contained in each edge. The resulting Ĵ(ni) is a 7× 3 matrix where the element at [row, col] gives
the rate of change for ccol (either the u, v, or d coordinate of the palm’s center of mass) for each unit
change to qrow. A possible adjustment ∆q to qi may be evaluated by determining if the predicted
new palm center, calculated as

ĉ′
p

i ≡ cpi + ∆qĴ(ni) (4.5)

and the palm mask pi translated by ∆qĴ(ni) have desirable features. Rotations and shape changes
of pi that will occur during this motion are not modeled, but are typically small.

The remainder of this section evaluates the accuracy of predictions made with these estimates.
We evaluate the accuracy when calculated as described thus far in Experiment 4.2. In Experiment 4.3,
we vary the size of the neighborhood (both for where examples are drawn from and for how distant
the points to predict can be) and determine the effect on prediction accuracy. These results will
support the use of radius one neighborhoods. Experiment 4.4 evaluates the accuracy of local
Jacobian estimates that are formed with only subsets of the joints, and these results suggest a
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Figure 4.16: (a) The agent considers the graph neighborhood around a node ni to estimate the
change in appearance for small changes in configuration near ni. The predictions will be made
by a local Jacobian estimate Ĵ(ni) (see equation (4.4)). ni is near the center of P and has a large
number of neighbors. Each edge is relatively short in configuration space, where edge feasibility is
measured, even though some neighbors appear distant in image space. The furthest neighbors tend
to be those where most of the edge length comes from a difference in proximal joint angles that
have a larger effect on workspace position. (b) The images of the node ni and one of its neighbors
are superimposed with a representation of the edge, drawn between their centers of mass. This
example illustrates a change in configuration ∆q and the resulting change in center locations ∆c
along one edge.
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possible explanation for the proximal to distal bias in joint usage by infants.

4.4.1 Experiment 4.2: Evaluating the Accuracy of the Local Jacobian Estimates

Each ĉ′
p

i predicted with a Local Jacobian estimate Ĵ(ni) according to Equation 4.5 can be
checked for accuracy by finding the error between this prediction and the true c′pi reached when the
agent moves from the configuration qi by ∆q. This error can be calculated in a straightforward
manner by

||ĉ′pi − c′
p
i ||2. (4.6)

Since the errors are distances between predicted and actual image-space centers, they are measured
in pixels by pixels by disparity units, though the agent is not aware of these units. The agent treats
the error as a 3D vector with unspecified units, and finds the magnitude without consideration for
the different units and scales.

In order to evaluate the accuracy of the Local Jacobian estimates computed by the agent, it is
necessary to determine the error between the image-space coordinates predicted using an estimate
and the actual coordinates reached after performing a move. One option is if for each node ni,
several perturbations ∆q are generated, and the resulting ĉ′

p

i is predicted. Then the agent could
apply the perturbation ∆q to the joints and capture a new image, determining the actual new center
position c′pi so that the error can be calculated as in Equation 4.6. However, because it will be
necessary to test multiple perturbed configurations for all 3000 nodes ni ∈ N in order to evaluate
the general accuracy of these predictions, the additional motions would require an undesirable
amount of time.

Fortunately, the information stored in the PPS Graph provides an alternative source of perturbed
configurations. Instead of sampling small ∆q to produce q′ ∈ Nq(ni), the continuous configuration
space near qi defined as

Nq(ni) ≡ {q | {∃nj ∈ N(ni) | ||q− qi||2 ≤ ||qj − qi||2}} (4.7)

the agent can use qj from each nj ∈ N(ni), the alternative neighborhood definition that contains
only the configurations stored in nodes connected to ni with edges,

N(ni) ≡ {nj | ∃ei,j}. (4.8)

Since nj ∈ N(ni) =⇒ qj = Q(nj) ∈ Nq(ni), each qj can be used instead of a randomly
sampled q′. Since the predictions will be made without considering the stored cpj , and simply by
substituting ∆q = qj − qi into Experiment 4.5, the use of a previously visited configuration instead
of a random new configuration does not affect the evaluation of the mean prediction accuracy. Using
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the neighboring nodes’ configurations also has the key benefit that the error can be calculated with
Equation 4.6 without additional motion, since cpj has already been observed.

4.4.2 Experiment 4.2 Results

Local Jacobian estimates Ĵ(ni) were calculated for all nodes ni that have defined palm centers
cpi and that have at least seven neighbors, which allows the least squares solution to be computed. In
this implementation of the Explored PPS Graph, there are 2946 such nodes.

Individual predictions ĉpj have an error given by ||ĉpj − c
p
j ||2, a version of Equation 4.6 that has

been customized for the context of using stored nearby configurations instead of random ones. To
express the quality of a specific local Jacobian estimate Ĵ(ni), we take the mean of these errors for
all nj with defined palm centers (poses where the palm was visible and has at least one valid depth
reading),

1

|N(ni)|
∑

j|nj∈N(ni)

||ĉpj − c
p
j ||2. (4.9)

In addition to reporting the mean for the predictions made in the neighborhood of individual
nodes, we can aggregate these mean errors to determine the distribution of prediction qualities
overall when local Jacobian estimates calculated in this way are used. In this case, the range of
mean errors was [1.27 × 10−14, 14.49]. The minimum mean error comes from a node that was
extremely close to predicting the correct palm center position for every node in its neighborhood,
while the maximum mean error was almost three times larger than average. The full distribution of
mean errors had a mean of 5.306 and a standard deviation of 1.50. While the d component of the
error is a difference in disparity and less intuitive, thinking of this error in terms of a distance in
pixels, as it is in the u and v dimensions, demonstrates that the predictions are quite close to the
actual positions. When the agent is attempting to move the hand to desired positions or regions,
including for use in reaching or grasping actions where the desired region is determined by a target
object, this error tends to be small compared to the size of the desired region. It is important to
remember though that each Ĵ(ni) is a linear approximation, and only intended to be used to predict
coordinates close to ni, and will become more inaccurate quickly with extrapolation beyond the
local region where the tangent is close to the true Jacobian surface near ni.

4.4.3 Experiment 4.3: Estimating the Local Jacobian with Different Neighborhood Sizes

The definition of the neighborhood N(ni) above assumes that neighborhoods have a radius of
one, meaning that neighbors of ni are only those nodes nj that can be reached within a shortest path
length of at most one, requiring an edge ei,j to exist. However, it is also possible to determine if this
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is the optimal neighborhood size, or if a different size produces local Jacobian estimates that allow
more accurate predictions ĉpj .

In order to evaluate different neighborhood sizes, we use a more general definition of the set
of nodes included in the neighborhood of ni to allow the radius to change. Assuming s(ni, nj)

evaluates to the length of the shortest graph path from ni to nj (measured in the number of edges,
not in total configuration space or image space distance traveled), let the neighborhood of radius R
for ni be determined by

NR(ni) ≡ {nj 6= ni | s(ni, nj) ≤ R}. (4.10)

Note that N1(ni) is equivalent to the existing definition of N(ni) from Equation 4.8.
Neighborhoods NR(ni) have two roles in this experiment. First, all nodes nj ∈ NR(ni) provide

an observed example of a perturbation ∆q from the node’s configuration qi and the corresponding
∆c, the change in image-space coordinates of the hand’s center. In this way NR(ni) serves as the
training neighborhood that allows the local Jacobian estimate Ĵ(ni) to be computed. Second, the
agent makes a prediction ĉpj for the center of each node nj ∈ NR(ni) based on the difference qj−qi

and Ĵ(ni), and determines the mean error of all predictions made for each node ni. In this way
NR(ni) serves as the evaluation neighborhood, and as its size changes the range of distances at
which the accuracy of the locally linear estimate Ĵ(ni) is evaluated.

When experimenting with different neighborhood sizes, the size of the training neighborhood
and evaluation neighborhood can be modified separately. That is, the training neighborhood
may be defined as NRtrain

(ni) and the evaluation neighborhood as NReval
(ni), with Rtrain not

necessarily equal to Reval. We evaluate the mean accuracy with all combinations of (Rtrain, Reval)

for Rtrain, Reval ∈ [1, 14]. This range contains all meaningful radius values, as the minimum radius
that allows nodes to have any neighbors is R = 1, and once the radius is equal to the diameter
of the graph at R = 14, all 2999 other nodes are already part of each node’s neighborhood, and
further increases in R will have no effect. This evaluation was also carried out entirely without
further motion, as all necessary information on configurations q, image-space palm centers cp, and
adjacency is stored in the nodes and edges of the PPS Graph.

4.4.4 Experiment 4.3 Results

The mean errors produced by each local Jacobian estimate Ĵ(ni), which are themselves means
of the error of each prediction ĉpj made using the estimate, are shown in Figure 4.17. These values
are presented in a heatmap to better visualize the effects of changing Rtrain and Reval. We observe
the minimum average error when Rtrain = Reval = 1, supporting our definition of N(ni) and initial
method of calculating Ĵ(ni) as they provide the most accurate model of the relationship between
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configuration space and image space around the observed (qi, c
p
i ) pair of a node ni.

We can draw additional conclusions from Figure 4.17 by comparing the values when different
radii are used. Increasing only the size of the training neighborhood slowly increases the error
magnitudes. All training data is still valid and centered around the same node, so it provides useful,
but slightly less specific information. Surprisingly, even global training data with Rtrain = 14

so that all other nodes are used as examples can be used to produce relatively accurate linear
approximations for local use. While less than triple the error of the best case with Rtrain = 1, this
will be less desirable as an error of this magnitude in image space may cause the agent to fail to
reach a desired region or object.

Increasing only the size of the evaluation neighborhood increases the error magnitudes quickly,
as the agent is asked to extrapolate further and further past the distance where the examples it was
trained on can be found. The highest mean error is associated with Rtrain = 1 and Reval = 14. The
extrapolation error is more pronounced for the worst case node than the average, with several nodes
with more than an order of magnitude higher error than the mean. Given the 120× 160 size of the
stored images, these worst predictions are of center positions that would fall well out of view of the
camera.

When both the training and evaluation neighborhood sizes are increased together, the mean error
has a moderate increase. If the predictions will need to be over a larger region of space, it is best to
take examples from that larger region as well. Still, the lesser fit of a linear approximation at longer
distances makes the errors higher than they are for the (1, 1) neighborhoods.

A final note should be made about the bottom right corner of the heatmap, where the same error
values are observed in multiple cells. While the diameter of the graph is 14, most nodes will have
all or very nearly all nodes in their neighborhood with a smaller radius. As seen in Figure 4.13, it is
very uncommon for the shortest path length s(ni, nj) to be greater than 10, so almost all nodes have
the same neighborhoods for training or evaluation once R > 10, and larger radii yield the same
predictions and errors.

4.4.5 Experiment 4.4: Investigation of Proximal to Distal Bias

One of the strengths of the PPS Graph model is its capability to facilitate the learning and
execution of actions that are consistent with observed infant behaviors and the hypothesized causes
of these behaviors. Notably, PPS Graph trajectories are composed of jerky submotions [49], and two
potential explanations - the visiting of stored configurations as set way points on the way to the goal
pose and underdamping of the arm - can be investigated using their implementation in the graph
model and the control law for Joint Velocity Control. We also have the example of the agent not
relying on current vision of the hand. This has been observed by developmental psychologists since
infants can reliably reach for lit objects in a dark room [11], and our agent’s trajectory planning

94



Figure 4.17: Each value shown in this heatmap is the mean over the local Jacobian estimates Ĵ(ni)
of all nodes ni of the mean error values calculated by Equation 4.9 in the predicted image-space
coordinates ĉpj . Each mean of mean errors shown is calculated using a particular combination
of training and evaluation neighborhood radii. The radius R of a neighborhood NR(ni) is the
maximum shortest path length (in number of edges) from ni to a node nj for nj to be included in
the neighborhood. The minimal mean of mean errors value observed with the (1,1) neighborhoods
justifies the use of radius one neighborhoods for all future calculation of local Jacobian estimates
and as a guideline for the region of space where the estimates can be used to produce reliable
predictions.
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has the same property because only stored visuals of the hand are needed to plan where it will be
moved.

The ability to compute local Jacobian estimates from neighborhoods in the PPS Graph allows
us to perform a preliminary investigation of a potential cause for the proximal to distal joint bias
observed for most typically developing infants[41]. Infants near reach onset tend to move the arm
primarily with the shoulder joint (or by leaning at the waist when this even more proximal degree of
freedom is unrestricted), with little utilization of the elbow or wrist to adjust the hand until later
stages. Our current model does not include this bias, but an analysis of the accuracy of modifiedd
local Jacobian estimates suggests a theoretical explanation for why it may be present.

While the linear approximation Ĵ(ni) is much less complex than the function for the true globally
applicable J(q), calculating it involves solving for the least squares solution in Equation 4.4. While
this calculation is domain-general, and could possibly be carried out by a neural process specially
suited to estimating trends from observed examples, it is still a large operation to be carried out
by an infant’s mind. If we hypothesize that computing the full 7 × 3 matrix of values for Ĵ(ni)

is prohibitively difficult, then an alternative would be for the agent to only consider the changes
in a subset of joints for the estimate it will construct and use for predictions. If only k joints are
considered and m is the number of neighboring nodes in N(ni), then ∆Q will be an m× k matrix
and ∆C will remain an m× 3 matrix. As long as k < 7, the computation of the k × 3 matrix Ĵ(ni)

will be less complex.
In this experiment, we evaluate the mean of all mean prediction error values from Equation 4.9

using the standard neighborhoods N(ni) = N1(ni) and all possible nonempty subsets of joints
considered. In particular, we will want to compare the magnitude of prediction errors made by local
Jacobian estimates that considered more proximal joints to the magnitude of prediction errors made
by local Jacobian estimates that considered the same number of joints or more, but more distal
joints. If predictions are more accurate when proximal joints are considered than when a same size
or larger set of distal joints are considered, this will support a hypothesis that a bias to carry out
motions with the proximal joints allows the motion to be more accurately modeled and performed.

4.4.6 Experiment 4.4 Results

The mean errors for predictions made with Ĵ(ni) calculated with all possible nonempty subsets
of joints considered are shown in Figure 4.18. We observe that for all numbers of joints k, the most
accurate local Jacobians all consider a set of joints including s0, the robot’s most proximal arm
joint. As k increases, the joints are added to the optimal considered set in roughly proximal to distal
order, with elbow joints being included before wrist joints. We also note from these results that the
order in which joints should be included is also consistent across k values. Once a joint is added to
consideration by the optimal set of size k1, it remains in all sets of size k2 ≥ k1. The order is not
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in perfect proximal to distal order, and we offer two explanations for the disparity. In particular,
after s0, we see that e1 and then e0 are added before the second shoulder joint s1, which should
come after s0 in proximal to distal order. The first explanation is that because the agent is predicting
the displacement of the center of the hand when all joint angles changed (not just the joint angles
considered by the particular local Jacobian estimate), the benefit of choosing a second shoulder
joint because it is more proximal and larger is outweighed by the benefit of selecting elbow joints
that provide more additional unique information about the motion made with the full arm. Of the
two elbow joints, e1 offers the most unique information as the second joint because in addition to
being an elbow joint instead of a shoulder joint, it is also a bend joint instead of a twist joint. While
this appears to be an important factor, the benefit of choosing more proximal joints with influence
over a larger portion of the arm is still considerable enough that all four shoulder and elbow joints
are added to the optimal set before any of the three wrist joints are added. The second explanation
is that for the particular joint angle ranges allowed for the motor babbling to build the graph and for
the camera perspective used, e1 may have had an unusually large influence on the position of the
hand, allowing it to be more valuable to consider than s1 and e0.

While we have observed a justification for a roughly proximal to distal ordering of joint usage for
the robot’s arm, we can also evaluate the results for sets of joints grouped in a manner that resembles
a human arm, with a shoulder, elbow, and wrist. For these experiments, rather than selecting
individual joints for consideration, a subset of the groups {shoulder, elbow, wrist} is considered.
When the shoulder group is included, the estimate will be calculated with a set of joints including
s0 and s1, and similarly the elbow group will have e0 and e1 and wrist group will have w0, w1, and
w2. Full results and analysis are given in Figure 4.19. With these joint groupings, the optimal order
for inclusion is perfectly proximal to distal, and supports our hypothesis about the potential role of
the local Jacobian estimate in producing motions carried out with a proximal to distal joint bias. In
future work, additional evaluations can be performed to continue the investigation of this theory.

4.5 Conclusion

The focus of this chapter has been to construct an instance of the PPS Graph model that was
formalized in Section 3.2.1, and then to use the knowledge stored in the completed graph as a
mapping between proprioceptive and visual states and to facilitate safe motion of the arm. We
present the procedure and statistics for the Explored PPS Graph rather than another variation as it
was the implementation used in Chapter 5 for reaching, Chapter 6 for grasping, and Chapter 7 for
placing.

As a precursor to the motion of the arm that allows the graph to be constructed, we consider
the Baxter Research Robot’s built in control modes in Section 4.2. We found that Joint Velocity
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Figure 4.18: A heatmap of the image-space prediction errors for all local Jacobian estimates Ĵ(ni),
when those estimates are calculated considering only a subset of joint values. Each error shown
is the mean of the mean prediction errors in the neighborhood of individual nodes (the mean of
Equation 4.9 over all nodes ni). To read this figure, the row of the heatmap indicates the number of
nodes considered when calculating the local Jacobian estimates and center position predictions, and
the column number can be converted to a binary representation of the specific joints included. For
example, column 74 corresponds to 10010102, which indicates s0 is included, s1 is not, e0 is not, e1
is, w0 is not, w1 is, and w2 is not, or the set of joints {s0,e1,w1}. This set contains three joints, so
column 74 has the mean error displayed in row 3, and NaN is displayed in all other rows because
the number of joints does not match the set. The joint sets that produce the local Jacobian estimates
with the most accurate predictions (lowest error) in each row are highlighted with a green border. In
increasing size and decreasing error, these optimal sets are {s0}, {s0, e1}, {s0, e0, e1}, {s0, s1, e0,
e1}, {s0, s1, e0, e1, w1}, {s0, s1, e0, e1, w0, w1}, and the complete set of joints {s0, s1, e0, e1, w0,
w1, w2}. The order in which the joints should be included to have the least error with the simplest
model is roughly proximal to distal, with shoulders tending to come before elbows and both of
those before wrists. At the extremes, the most proximal s0 should always be included and the most
distal w2 should only be included if all joints are being used. The joint sets that produce the highest
errors, and should be avoided if possible, are highlighted with a pink border. These sets have joints
added in nearly the opposite order, and are {w2}, {w0, w2}, {w0, w1, w2}, {s1, w0, w1, w2},
{s1, e1, w0, w1, w2}, {s1, e0, e1, w0, w1, w2}, and the full set of joints {s0, s1, e0, e1, w0, w1,
w2}. If the agent is not capable of modelling the relationship between all joint angle changes and
the change in image space position, the most accurate alternative is to use as many joints as it can
perform the calculation for, and for these joints to tend to be proximal. These results are consistent
with a hypothesis that proximal to distal bias in joint use may be an effort to perform motions with
only the subset of joints included in a simplified mapping between configuration space and image
space, such as, but not necessarily equal to, these local Jacobian estimates calculated with only a
subset of joints.
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Figure 4.19: The mean of the mean prediction errors of local Jacobian estimates that are computed
using only a subset of joints. In this case, joints are included or excluded as a set that resembles the
role (but not structure) of the shoulder, elbow, or wrist of the human arm. The optimal order for
inclusion of the groups is perfectly proximal to distal. When all groups are included, the estimate
matches the one from Experiment 4.2, and the mean error value is the same. This is the most
accurate model, but when only a subset of groups can be included, the shoulder should always be
chosen. It is also valuable for the agent to consider as many groups as it can perform the computation
with, as increasing the number of groups from one to two always improves the prediction accuracy,
even if it is {e,w} instead of {s}. Even though the wrist group includes information from three joints
instead of the two joints of the other groups, w should always be included last, and the estimate
based on only w is the least accurate.
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Control will be important for future work due to its flexibility to customize parameters that allow
additional theories to be modeled and evaluated. In particular, we have already demonstrated that
motion qualities with different levels of damping may be observed by changing the coefficients
for the control law that calculates velocities to command. However, the higher level of abstraction,
more detailed documentation, and simplicity of use led us to carry out all experiments in this work
after the control mode comparison with Joint Position Control, which only requires joint angle set
points to be specified. It is possible to construct graphs with sets of nodes that store nearly identical
configurations and visual states with either control mode, and we claim that consistent results will
be obtained if there is a switch to Joint Velocity Control after the experiments in this work or if all
experiments are repeated with Joint Velocity Control. Both of these control modes reliably bring
each joint angle to a goal position, and when the joints are moved in parallel the full arm can be
moved, as a first iteration of the move arm action.

In Section 4.3, we discuss how the capabilities of the built-in Joint Position Control mode alone
are insufficient for the move arm action. While the built-in controller handles low-level control
precisely and can linearly interpolate from one configuration to another, it cannot verify if this
motion will be safe, and it cannot predict the result of this motion and if it will be desirable for the
agent. This motivates the construction of the Explored PPS Graph, which is built by recording the
joint angle vectors sensed by proprioception and the image data from a camera at 3000 poses the
robot visits while motor babbling with the arm. In addition to providing the agent a guarantee of
safe, albeit infant-like motion, by moving along graph trajectories, the stored pairs of configuration
and visual features in each node will allow the agent to plan reliable moves for manipulation actions
in the following chapters.

In Section 4.4, we demonstrate a method by which the agent can extract information from a
node and its neighbors to estimate how changes in configuration space near the node will change a
property in image space, in this case the coordinates of the center of the palm region of the hand.
These local Jacobian estimates are linear approximations that are valid near each node, and allow the
mapping between configuration q and palm center cp near the node locally continuous. Compared
to the discrete and in some places sparse mapping provided by the stored pairs in the nodes, this is a
much fuller representation of the peripersonal space. The ability to model and use motions near but
not directly to the nodes of the PPS Graph will also grant the agent necessary precision for actions
that strongly require it, such as grasping in Chapter 6.

In Chapter 5, the agent will use the ability to move the arm to observe the typical result of
its appearance changing in a static background, and then an unusual result where a part of the
background also changes - because it is a foreground object that has been bumped. While these
bump events are rare, the graph supports repeated motions throughout the space, and enough will
eventually be observed to discover conditions shared between each case. The agent will also utilize

100



the knowledge gained from the building of the Explored PPS Graph to identify nodes with positions
in image space that will be reliable for reaching to objects to repeat these bump events. The nodes
will also provide the mapping to the configuration for this pose, and the edges that connect the PPS
Graph will provide a trajectory that can be used to move to that configuration. The ability to move
the arm and to use the information in the PPS Graph will continue to be used in Chapter 6 when
reaching is refined into a more specific grasping action, and in Chapter 7, when the hand must be
moved along with a grasped object to place it into a desired location with an ungrasp.
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CHAPTER 5

Learning a Reliable Reach Action

In our model, learning the reach action takes place in three stages. First, the agent must learn
to detect the unusual event of bumping a block, causing a quasi-static change in the environment,
against the background of typical arm motions that leave the environment unchanged. Second, the
agent learns criteria for selecting nodes from the PPS graph, such that moving to one of those nodes
increases the likelihood of bumping a specified block. Third, the agent learns how to interpolate in
continuous space between the nodes of the PPS graph to further increase the likelihood of bumping
a target block.

Since these three learning stages have different character, depend on different knowledge,
and apply different methods, we describe our research on each of them with its own Methods-
Experiments-Results description.

5.1 Observing the Unusual Event of a Bump

5.1.1 Methods

During the construction of the PPS Graph, the agent’s perceptual input can be easily factored
into a static background, and a highly variable foreground corresponding to the robot’s hand and
arm. This allows the nodes of the PPS Graph to be characterized by the perceptual image of the
robot’s hand. By detecting a correlation between “random” motor output and perceived hand motion,
the agent diagnoses that the hand is part of the agent’s “self”.

Once the PPS Graph has been completed, additional objects are placed into the workspace. The
objects used for this work are rectangular prism blocks with a single long dimension. The blocks
are placed upright at randomly generated coordinates on the table in front of the robot, with the
requirement that each placement leaves all blocks unoccluded and fully within the field of vision.
The objects have distinctive colors not present in the background, making it easy to create a binary
image mask for each object in the RGB image. This image mask can be applied to the depth image
to determine the range of depth values associated with the object.
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The agent creates binary image masks as more efficient representations of its own hand and of
foreground objects that may be targets of actions. Recall from Section 3.2.1.2, for each ni ∈ P ,
the agent finds the end effector in IRGB(ni) and records two binary masks that describe its location
in the image. The palm mask pi is defined to be the region between the gripper fingers, which
will be most relevant for grasping.1 The hand mask hi includes this region as well as the gripper
fingers and the wrist near the base of the hand. hi reflects the full space occupied by the hand,
which is most useful to identify and avoid nodes with hand positions that may collide with obstacles.
The state representation for a node also includes the range of depths the end effector is observed
to occupy. This range is found by indexing into ID(ni) with either mask, and determining the
minimum and maximum depth values over these pixels. That is, the depth range of the palm
D(pi) ≡ [min(ID(ni)[pi]),max(ID(ni)[pi])], and the depth range of the full hand D(hi) is defined
analogously. Edges can also be associated with a binary mask for the area swept through during
motion along it, si,i′ , approximated by a convex hull of the hand masks of the endpoint nodes, hi
and hi′ . While similar to the true path of the hand through the image, si,i′ will often be imperfect
due to the tendency of the rotational joints to create paths that appear curved in image space and
workspace, rather than straight as the convex hull suggests. The depth range of motion along
an edge is the full range between the minimum and maximum depths seen at either endpoint,
D(si,i′) ≡ [min(D(hi), D(hi′)),max(D(hi), D(hi′)]. It is possible for either the minimum or
maximum disparity value to occur in the middle of the middle of the edge rather than at the endpoint
nodes, so D(si,i′) may underestimate the full range of depths passed through during the motion.

Many (but not all) motions of the arm leave the other objects unaffected, so the new objects
typically behave as part of the static background model. However, occasionally the hand bumps
into one of the objects and knocks it over or shifts its position. This is defined as a bump event, and
is detected by the agent as a quasi-static change to the perceptual image of the object.

When an image of an object is characterized by a binary mask, the difference between two
images A and B can be measured by the Intersection Over Union measure:

IOU(A,B) = |A ∩B|/|A ∪B|. (5.1)

Comparing the images A of an object at times t1 and t2, when IOU(A(t1), A(t2)) ≈ 1 the object
has remained static. In case we observe IOU(A(t1), A(t2))� 1, the object may have moved, but
the object can only be definitively shown to have moved if care is taken to exclude the case of a
temporary occlusion of an object by the hand or arm. In this work, this is done by choosing t1 and t2
at the beginning and end of the motion, which are times when the hand is at the home node position
and will not occlude any position on the tabletop.

1We use the word “palm” for this region because of its functional (though not anatomical) similarity to the human
palm, especially as the site of the Palmar reflex [15].
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We define a reach as the action of following a trajectory resulting in a bump event with a target
object. While the agent does not yet know how to make a reach action reliable, the IOU criterion
will allow it to distinguish between successful and unsuccessful reach actions. In subsequent stages,
the agent will exploit features with different values for the success and failure cases to learn how to
reach reliably.

5.1.2 Experiments

The agent continues to practice its new capability to perform motions allowed by the PPS Graph
and observe the results of these motions. Note that the experiments in this chapter (and Chapters
6 and 7) were conducted using Joint Position Control, the robot’s built-in angular position-based
control mode, and the Explored PPS Graph model, though it would also be possible to use Joint
Velocity Control mode for the advantages considered in Section 4.2 and the improvements to
the PPS Graph suggested in Section 3.2.2.3. We consider the motion capabilities and resulting
PPS Graph with either control mode to be similar, and expect that these experiments would not
have qualitatively different results if repeated with angular velocity-based control. We leave this
repetition as a possibility for future work, as it should not affect the agent’s learning or performance.

Experiment 5.1: Exploration. The agent follows this procedure:

1. Observe the environment while at the home node nh, and find the initial mask for each of
three objects newly placed in the foreground.

2. Select a random final node nf in the PPS Graph.

3. Perform a graph search to determine the shortest path trajectory from the home node nh to nf .

4. Execute the trajectory, checking the visual percept at each node along the path for any
significant change to an object mask.

5. If a difference is detected between the current percept recorded at the completion of each
motion and the initial percept observed for an object, or the current node is nf , immediately
return to the home node along the shortest path.

6. Calculate the IOU values between the initial and final masks for each object.

• If an apparent change at intermediate node ni that triggered an immediate return is not
confirmed (i.e., IOU ≈ 1), then repeat the trajectory, continuing past ni, to search for a
subsequent bump event.

7. Cluster all IOU values seen so far into two clusters.
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8. Repeat until the smaller cluster contains at least 20 examples.

By clustering the results of the IOU criterion, the agent learns to discriminate between the
typical outcome of a trajectory (no change) and an unusual outcome (a bump event). These outcomes
are defined as the unsuccessful and successful results of a reach action, respectively. Subsequent
stages will identify features to allow increasingly reliable reach actions.

Experiment 5.2: Reach Reliability. To quantify the improvement in reliability in each stage, we
first establish a baseline level of performance for the policy of selecting a random final node nf and
then following the shortest path in the PPS Graph to nf . This experiment consists of 40 trials with a
single, randomly-placed target block.

5.1.3 Results

Following this procedure, with three new objects added to the environment, the agent moved
along 102 trajectories and gathered 306 IOU values between initial and final object masks. Figure 5.1
provides a histogram of all observed IOU values. Where t is the target object mask prior to the
motion, and t′ is the target object mask following the motion, the IOU values fell into two well-
separated clusters.

IOU(t, t′) ≈ 1 285 typical: “no change”
IOU(t, t′)� 1 21 unusual: “bump event”

Intuitively, a trajectory to a random final node is unlikely to interact with an object on the table.
However, in a rare event the hand bumps the object, knocking it over or sliding it along the table,
and sometimes off the table (the resulting absence of a final mask leads to an IOU of 0, so no special
case is necessary).

The strategy of returning to the home node to observe the final mask allows the agent to rule
out occlusion by the hand as the source of the perceptual change.2 This has not been observed to
make false positive bump classifications. This is important so that the agent will not learn incorrect
conditions for a bump. There are a small number of false negatives where the hand and object do
collide, but without lowering the IOU enough to fall into the smaller cluster. The agent is still able
to learn the conditions from the reduced number of observed bumps, and may even favor actions
that cause larger, more reliable bumps as a result.

2We have also experimented with alternatives to the IOU measure that can differentiate between bumps and
occlusions without the return motion. One option is to identify a bump by the presence of non-empty set of pixels in
the set difference t′ − t. While an occlusion can hide pixels of the object, only an actual move of the object, such as
a bump, can cause the object to appear in pixels where it did not appear before. However, this method tended to be
more sensitive to noise due to the smaller size of occluded masks considered and required more sophisticated image
processing, so at this time we have elected to require the return motion and use the IOU measure.
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Figure 5.1: All observed values of IOU(t, t′) where t is a target object mask prior to a motion and
t′ is a mask for the same target object after the motion. Three objects were observed during 102
motions to produce the 306 values. There is a clear separation between a large cluster where the
IOU is approximately one and a smaller cluster where the IOU is significantly less than one. The
large cluster contains examples of the typical “no change” event and the small cluster contains
examples of the unusual “bump” event.

The agent can classify all future motions in the presence of an object by associating the resulting
observed IOU with one of the two clusters. While we human observers can describe the smaller
cluster as a bump event, the robot learning agent knows only that the smaller cluster represents an
unusual but recognizable event, worth further exploration. The agent has no knowledge of what
makes a reach succeed. The following stages will help fill that gap.

The quantitative baseline experiment gives a reliability of 20% for the reach action to a random
final node, which will be compared to other methods in Figure 5.4.

Reach reliability given selection method for nf

Select random target node nf from PPS graph (baseline) 20.0%

5.2 Identifying Candidate Final Nodes

5.2.1 Methods

The agent has identified the rare event of a bump, and has defined reach as the action that can
cause this event. Choosing a target node nf randomly from the PPS graph gives a baseline reliability
of 20%. The agent is now intrinsically motivated to search for ways to improve the reliability of the
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reach action. This can be done by identifying one or more features that discriminate between the
cases that result in a bump, and those that do not.

The PPS graph stores a visual percept of the hand on each node, and the agent has a current
visual percept of the target object. Comparing these percepts is straightforward, since they have the
same frame of reference given our assumption of a static camera, and the agent has the RGB masks
and the depth ranges from each image. Any nonempty intersection predicts that the hand and the
target object will occupy the same region of the RGB image, or the same depth, or both.

The stored visual percepts also allow the agent to derive the image-space center of mass of
the end effector at a given node. Centers and directions will have three components, two for the
(u, v)-coordinates in the RGB image, and one (d) for depth values in the Depth image. For a
node ni, the center of the palm cpi is composed of the center of mass of pi and the average depth,
mean(PD(ni)[pi]), and the center of the hand chi is derived from hi and PD(ni)[pi] in the same
manner. Center ct for a target object with mask t and depth range D(t) in the current percept is also
found analogously.

Using the PPS graph, the agent improves reach reliability in three steps.

1. Determine which binary image masks and which intersection property best predict the
occurrence of a bump event.

2. Identify a set of candidate final nodes from the PPS graph with this intersection property.
Select an arbitrary node in this set as the target node nf .

3. Determine the best measure of closeness between centers of palm and target object, and select
the closest node nf from the candidate final node set.

5.2.2 Experiments

Experiment 5.3: Which intersection property is best? By further analysis of the data reported
in Section 5.1.3 from 102 reaching trajectories, the agent can determine which binary image mask,
and which intersection property, best predict whether a trajectory will produce a bump event.

The agent compares binary masks b representing the palm (pf ) or the hand (hf ) at its final pose
or throughout its final motion (sp,f ). For each binary mask b and the mask t representing the target
object, the trajectories are placed in four groups according to whether b ∩ t and/or D(b) ∩D(t) are
empty or nonempty. Counts of observed bumps and the total number of trajectories within each
group allow the conditional probabilities of a bump to be computed.

The set of PPS graph nodes that satisfy the selected mask intersection property, with the best
choice of mask, will define the set of candidate final nodes for a reach trajectory.
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Experiment 5.4: Using the Candidate Final Nodes. An improved reach action policy can be
created by selecting the target node nf as a random member of the candidate final node set, rather
than a random node from the entire PPS graph. The shortest graph path is found from the home
node nh to this final node nf . This policy is evaluated using the same method as Experiment 5.1 in
Section 5.1.2: reaching for 40 blocks, presented individually at randomly assigned locations on the
table.

Experiment 5.5: Selecting the Best Candidate Node. In spite of every candidate node having
non-empty intersections between the hand and target in terms of both the mask and depth range,
the reliability of this reach action is still only 52.5%. One reason is that when the agent considers
the binary mask derived from the RGB image and the depth range from the depth image together
it over-estimates the space occupied by the hand or an object. In particular, the agent makes a
simplifying assumption that the hand or object occupies the entire depth range across the entire
mask. As a result, the intersection may take place in space that one or both objects will not actually
occupy. Another reason is that some predicted intersections and corresponding collisions when the
trajectories are executed may be very small, resulting in imperceptible bump events.

To address this issue, we provide four candidate distance measures between hand and target
object and corresponding Boolean features that indicate if each measure is less than or equal to some
threshold k. In particular, using the image-space (u, v, d) coordinates of the target object denoted by
the superscript t and of the candidate final node denoted by the subscript f (and the superscript p as it
is the coordinates of the center of the palm rather than the larger hand mask), we define three features
for one-dimensional differences (fu = |ut − upf | ≤ k, fv = |vt − vpf | ≤ k, and fd = |dt − dpf | ≤ k)
and one feature for the Euclidean distance between centers (fc = ||ct − cpf || ≤ k). Recalling
when each feature was true in all previous reach trajectories and which reaches successfully caused
a bump, the agent will determine which distance measure feature f and threshold k allows the
conditional probability P (Bump|f) to be maximized most reliably. The agent then selects from
the set of candidate nodes the node that minimizes that distance measure. Once this node is chosen,
the rest of the path is planned as before. This improved policy is evaluated the same way as
Experiment 5.3.

5.2.3 Results

Experiment 5.3 results. The conditional probabilities and the results they are estimated by for
each type of silhouette and each intersection feature combination are shown in Table 5.1. The set of
intersection feature groups where b = pf contains the group with the highest conditional probability.
A bump is most likely (64%) to occur at a final node nf where the palm percept has a nonempty
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Hand silhouette
D(hf ) ∩D(t) 6= ∅ D(hf ) ∩D(t) = ∅

hf ∩ t 6= ∅ 64% (7/11) 9.8% (5/51)
hf ∩ t = ∅ 7.6% (6/79) 1.8% (3/165)

Palm silhouette
D(pf ) ∩D(t) 6= ∅ D(pf ) ∩D(t) = ∅

pf ∩ t 6= ∅ 64% (7/11) 0% (0/28)
pf ∩ t = ∅ 14% (12/84) 1.1% (2/183)

Edge (hand) silhouette
D(sp,f ) ∩D(t) 6= ∅ D(sp,f ) ∩D(t) = ∅

sp,f ∩ t 6= ∅ 60% (12/20) 11% (8/75)
sp,f ∩ t = ∅ 1.2% (1/87) 0% (0/124)

Table 5.1: Each array represents the four possible intersection conditions, and each entry holds
the conditional probability of a bump event in a trajectory satisfying that intersection condition,
estimated as the ratio of observed bump events to possible bumps during trajectories. Recall that
three objects were present for each of the 102 trajectories, so the total number of observations
reflected in the denominators is 306. When the self is represented with either pf and D(pf ) or
hf and D(hf ), having both intersections nonempty provides the highest conditional probability
of a bump (64%). Using the second best intersection condition available with each silhouette
(14% for the palm and 9.8% for the hand) as a tiebreaker, the palm silhouette is chosen as the best
indicator of reliability for reaching. The edge silhouette is attractive for potential obstacle avoidance
applications, since no bumps were observed over a large sample size of 124 possible bumps when
both intersection features were empty.

intersection in both mask and depth range with the target percept, that is, where

pf ∩ t 6= ∅ ∧ D(pf ) ∩D(t) 6= ∅. (5.2)

The process of identifying a node as a candidate is demonstrated in Figure 5.2. If no nodes are
found that satisfy the condition of Equation 5.2, the criteria are relaxed so that the candidate set
may include nodes with the next most reliable intersection set, which was when D(pf ) ∩D(t) 6= ∅
but pf ∩ t = ∅, as 14% of past motions to such nodes caused bumps. To ensure the candidate set
never remains empty, if there are still no candidates, the criteria can be further relaxed for two
additional iterations, first to include nodes with pf ∩ t 6= ∅ but D(pf ) ∩D(t) = ∅ and finally to
include nodes where both pf ∩ t = ∅ and D(pf ) ∩ D(t) = ∅. Since these sets span all possible
combinations of intersection features, with the inclusion of this final set, the set of candidate nodes
is guaranteed to be nonempty will in fact contain every node in the PPS Graph. This guarantee
allows the agent to plan reaches by its ordinary method when nodes with desirable intersection
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features are absent. While a random choice among such an inclusive set is unreliable (equivalent to
the baseline), Experiment 5.6 will show that an informed choice among this set can be sufficient.

Figure 5.2: Candidate final nodes are identified from their intersection features. [top row] RGB-D
percepts taken from the node definition (left two) and from the current percept of the environment
(right two). [middle row] The palm masks and depth ranges from the stored percept (left) and
current percept (right). [bottom image] The intersections of the palm masks and the depth ranges
are both non-empty, so the current node is identified as a candidate for reaching the observed block.
The palm masks and depth ranges for each node can be computed in advance. The intersections of
the mask and range from a target block can be quickly evaluated for all 3000 PPS graph nodes to
generate the set of candidate final nodes.

Experiment 5.4 results. Of the same 40 placements as the baseline (Experiment 5.1), 39 have
at least one node with both mask and depth range intersections with the target, and the policy of
moving to one of these nodes bumps the target 21 times. Only one placement required a relaxation
of intersection criteria to have a non-empty candidate final node set because no node had both an
RGB and Depth intersection with the target. Attempting a reach to that placement with this method
was not successful. Overall, the reach action is now 52.5% reliable. The comparison in Figure 5.4
shows reaching to an arbitrary candidate node is more than twice as reliable as the baseline action
of moving to a random final node.

Experiment 5.5 results. Figure 5.3 shows the results of comparing several different distance
measures between the center positions of the hand and of the target object. This result supports the
use of the final node candidate with the smallest center to center distance with the target ||ct − cpf ||.
The choice of the Euclidean distance measure agrees with our intuition, as it best conveys when
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the hand and object are actually close, whereas the hand and object could have similar values
for a single coordinate but not be in close proximity, due to differences in the other coordinates.
Attempting the 40 reaches again with final nodes chosen using this feature, the agent now considers
the reach action to be 77.5% reliable, with 31 successes, 7 false negatives, and 2 actual failures to
bump the object. This result is also included in the comparison in Figure 5.4.

Tabulated results from Experiments 5.2, 5.4, and 5.5:

Reach reliability given selection method for nf

Select random target node nf from PPS graph (baseline) 20.0%

Select arbitrary candidate node nf 52.5%

Select candidate node nf with hand center closest to target center 77.5%

This method, for identifying candidate target nodes that increase the probability of bumping a
specified block, can be extended to avoid bumping specified blocks.

5.3 Reaching to Positions between PPS Graph Nodes

5.3.1 Methods

Recall that the first improvement to the reach action was to learn to identify a set of candidate final
nodes, which for a given target is the set containing all nodes where the stored hand representation
and the current percept of the target intersect in both the RGB and depth images. Moving to an
arbitrary candidate final node instead of a random node from the PPS graph more than doubles the
rate at which bumps are successfully caused. However, the line for fc in Figure 5.3 demonstrates
that the success rate for reaches increased as ||ct − cpf || decreased. Choosing the candidate node
nearest to the target object improved the reliability of the reach to 77.5%, but this method is limited
by the density of the PPS Graph near the target. Especially in relatively sparse regions of the graph,
even the nearest node may not be close enough for a reliable reach. The agent must learn to make
small moves off the graph to reach closer to the object than the nearest node.

After the agent has planned a reach trajectory that would use a final node nf , it can use the local
Jacobian Ĵ(nf ) and its pseudo-inverse Ĵ+(nf ) to improve the accuracy of its final motion, and the
likelihood of causing a bump event. Recall from Section 4.4 that finding the difference between
nf and each of its neighbors in configuration space produces a matrix ∆Q, and concatenating
each corresponding difference in image space produces a matrix ∆C. Repeating Equation 4.7 for
convenience, Ĵ(ni) is the least squares solution of

∆Q Ĵ(ni) = ∆C. (5.3)
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Figure 5.3: Given percepts for hand and target object, the agent searches for the feature f that will
maximize the conditional probability P (Bump | f). Each feature considers the centers of the palm
and target in (u, v, d) image-space. fu, fv, and fd evaluate to true if the absolute difference in one
coordinate is less than a variable threshold k, and fc is true if the distance between centers is less
than k. The probabilities shown in this graph are based on the 102 trajectories used previously, and
their outcomes. For all values of k, P (Bump | f) is maximized when f = fc. The agent therefore
selects as nf the candidate node where the hand is closest to the target object, thereby minimizing k
and maximizing P (Bump | f).
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Since Ĵ(ni) is a non-square 7× 3 Matrix, it has no true inverse, but domain-general linear algebra
allows the pseudo-inverse Ĵ+(nf ) to be calculated. While the local Jacobian can be used as a
mapping from a proposed configuration change to an estimated resulting change in image space, its
pseudo-inverse can be used as a mapping from a desired change in image space to the estimated
change in configuration that would be necessary to produce it.

With the center of the palm in the stored percept of the chosen nf denoted cpf , and the center of
the target object in the current percept during planning denoted ct, the desired change in the palm
percept is ∆c = ct − cpf . The agent can estimate the change in configuration needed to produce
this desired visual change, and add it to the stored configuration qf to produce an updated final
configuration for the planned trajectory,

q∗f = qf + (ct − cpf )Ĵ+(nf ) (5.4)

When the agent moves to the configuration q∗f , the palm center should be approximately aligned
with the target’s center. A motion that aligns the centers should increase the size of the intersection,
making the action robust to noise, and increasing the likelihood of the resulting bump event.

While the ability to make a small move off of the graph to q∗f increases the robustness of the
reach, it does not eliminate the need for a set of candidate final nodes, or for the decision to use the
nearest node to the target as nf . As Ĵ+(nf ) is a local estimate, if ||ct − cpf || is large, the error in the
recommended ∆q will also tend to be large. Choosing the nearest candidate nf minimizes the factor
by which natural errors in Ĵ+(nf ) will be multiplied, giving the best accuracy for the final position
of the reach. Adding the use of the inverse local Jacobian gives the final reaching procedure below.

5.3.2 Experiment 5.6: Reaching to target adjusted by local Jacobian

The final improvement in the reach action starts with the trajectory planned to the closest
candidate node nf to the target object. The configuration qf in that node is then adjusted according
to the local Jacobian for the neighborhood of nf . The final motion in the trajectory then goes to q∗f ,
rather than qf . In effect, the PPS graph supports a local linear approximation to the full Jacobian
over the continuous configuration space, based in the neighborhood of each node.

This improved policy is evaluated the same way as Experiments 5.2, 5.4, and 5.5.

5.3.3 Experiment 5.6 Results

Using this procedure on the training set of target placements, the agent perceives bumps at the
final node of all 40 trajectories. This 100% result demonstrates that the reach action has become
reliable, and is a significant improvement from the previous methods shown in Figure 5.4.
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Reach reliability given selection method for nf

Select random target node nf from PPS graph 20.0%

Select arbitrary candidate node nf 52.5%

Select candidate node nf with hand center closest to target center 77.5%

Adjust target away from nf using local Jacobian 100.0%

Figure 5.4: Reliability of the agent’s action to reach and bump a single target object by following a
trajectory to a selected target node. The four groups represent (1) randomly selected target node;
(2) random selection from among candidate nodes with non-empty image intersections; (3) select
closest among candidate nodes; (4) adjust node with local Jacobian to best match target object.
Within each group, the bars represent different criteria for success: (l) observed bump at final node,
which measures the agent’s ability to cause bumps intentionally and efficiently; (m) observed bump
anywhere in the trajectory, which identifies bumps that can be learned from; (r) any bump, observed
or unobserved, which measures ground truth of bump occurrence.

5.4 Transfer of Learning for Obstacle Avoidance

Intuitively, reaching to a target and causing a bump requires causing a collision between the
hand and the target so that the hand moves the target to a new position. So far, the agent has learned
intersection features and other visual properties that identify nodes that will be reliable for reaching.
This expected reliability is based on the high conditional probability that moving to a node with
those properties will cause a bump. At the same time, it learns features and values that identify
nodes that will not be reliable for reaching because of the low conditional probability that moving to
them will cause a bump. While such nodes are removed from consideration for the candidate final
node set for reaching, they are desirable in the case of an obstacle avoidance task, where bumps with
any foreground object treated as obstacles are undesirable. Because both tasks rely on predicting
the likelihood of a bump when moving to a node or along an edge, the same features can be used
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and there is potential for a high degree of transfer learning. Except for adding additional terms to
the formula for calculating the best path, adding obstacle avoidance requires no additional learning -
the agent can simply select the nodes and edges with the lowest likelihood of a bump when avoiding
obstacles instead of selecting those with the highest likelihood when reaching a target.

The simplest trajectory for avoiding obstacles is to not move at all. The agent could also plan
moves around the periphery of the environment, far away from the tabletop and anywhere with
potential for collisions with the foreground objects. Obstacle avoidance is a more interesting task in
a context where the agent must avoid obstacles while reaching to a target, modifying the planned
trajectory as necessary. While we have not conducted this experiment using our current model and
experiment set, we have addressed this task in past work [22].

In Sections 3.2.2.1-3.2.2.2, we discuss alternative PPS Graphs that were built using a different
motor babbling technique and different visual sensors. Through the experiments described in [22],
the agent used these tools to learn how to reach with a 90% success rate - a demonstration that the
learning described in this chapter is not dependent on the specific sensors used or the details of the
PPS Graph. While these were quite different in [22] (three low-resolution webcams that gathered
two-dimensional images and a graph with 1001 nodes with randomly sampled configurations,
respectively), the agent was able to learn analogous features in that setting, and those features
also produced highly reliable reaching. During Experiments 5 and 6 of that work [22], the agent
performed reaches in pairs of trials with two foreground objects placed randomly on the tabletop. In
first trial of the pair, one object served as the target and the other served as the obstacle, and in the
other trial these roles were swapped. In order to discourage obstacle avoidance strategies such as
not moving or not approaching the target object, the reaching task was weighted more heavily. This
experiment yielded the 90% success rate for reaching - a number that may have been higher if the
agent was not required to consider the obstacle when selecting a trajectory. Despite treating obstacle
avoidance as the secondary goal and using the same trajectory, the agent succeeded at avoiding the
obstacle in 74% of trials, and in 68% of trials both the reaching and avoidance goals succeeded.

In [22], we relied on edge silhouettes, a representation from the perspective of each camera of
the space that would swept through by the hand as it moved along an edge. This was particularly
important due to the use of the Learning PPS Graph (Section 3.2.2.2), which was especially sparse
with only nine manually placed nodes and relatively long edges. Due to the structure of this
graph, a high number of bumps occurred during the motion, and would not have been predicted
if only considering the palm or hand masks at the endpoint nodes themselves. Checking only for
intersection with the node hand masks would only predict bumps at the very beginning or end of the
motion. In addition to allowing consideration of bumps that may occur during the motion, edge
silhouettes provided a conservative over-estimate of the space swept through because they ignored
the timing of the hand’s motion through the larger mask, instead treating the hand as occupying
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the full mask for the full duration. This allowed for some false positive bumps along some edges
to be predicted, so the agent required additional features to rule out those edges when choosing
the final edge of a reach trajectory. But when avoiding obstacles, the over-estimating nature of the
edge silhouettes was helpful, as there were very few false negative predictions, and an edge with no
perceived intersections was highly reliable.

To repeat this experiment in the context of this work, the edge silhouette sp,f and its depth
range D(sp,f ) are most similar to the three edge silhouettes used previously. Additional features
such as intersections using the smaller pf and D(pf ) could still be used to refine the selection
of candidate final nodes for reaching. While it is possible that the edge silhouette will again be
naturally useful for obstacle avoidance, we hypothesize additional features may be needed as the
space swept through is even more so overestimated when using sp,f and D(sp,f ) that are available
from the RGB-D camera. For moves along long edges, treating the hand as occupying the entire
depth across the entire mask makes the implied space so large that it becomes uninformative. It
may also not be possible to avoid an overlap between the overly large hull formed and a tabletop
obstacle in any successful reach trajectory. In future work, two or more foreground objects can be
placed and the agent’s success rate for avoiding obstacles while reaching can be evaluated with only
the edge silhouettes and with new features until a satisfactory reliability is achieved.

5.5 Conclusion

By the end of Chapter 4, the agent had learned to move all the joints of the arm to set points
individually or in parallel. After the agent had built the PPS Graph by motor babbling, it was able
to use the information stored in the nodes and edges to move throughout its environment. The agent
had also learned to make small adjustments to the stored configurations so that it could move with
suitable precision to positions within its continuous peripersonal space as long as they were in the
neighborhood of a node’s configuration. In Chapter 5, the agent identified the unusual event of
a bump and applied these capabilities for moving the arm to learning a reach action to recreate
that event with increasing reliability. Incorporating intersection features and a technique with the
pseudo-inverse of the local Jacobian to reduce expected distance from the target produced a 100%
reliable reach.

In section 5.1, the agent conducted a large sequence of moves to randomly selected nodes
along PPS Graph paths and discovered that moving to some nodes caused the position at which
a foreground object appeared in the visual percepts to change significantly. The agent computes
the Intersection over Union (IOU) between the before and after binary mask (t and t′) of each
foreground object present for each node moved to. Using clustering, the agent found many examples
of a typical result where IOU(t, t′) ≈ 1 and a small cluster of unusual results where IOU(t, t′)� 1.
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We call this particular type of unusual event a bump. The agent calculated an IOU threshold using
these clusters so that it could classify future observations as typical results of moving (no bump)
or a bump. The section concludes with Experiment 5.2 that established a baseline that 20% of
trajectories from the home node to a random node with a single target object cause a bump. The
remaining experiments in this chapter are the agent’s process of learning a reach action that causes
bumps more reliably.

In section 5.2, the agent improved the reach action by learning better criteria for selecting the
final node of the trajectory. In Experiment 5.3, the agent reviews its past experiences to determine
that the conditional probability of a bump is highest when the stored binary mask and depth range
for the final node both intersect with their counterparts observed for the target object while planning.
The agent applied this finding in Experiment 5.4 and by randomly selecting from the set of nodes
with the best intersection features available instead of from the set of all nodes was able to improve
the reliability of the reach to 52.5%. In Experiment 5.5, the agent chose to move to the closest of
these candidate final nodes to the target (according to the most informative distance measure, found
to be ||ct − cpf ||) instead of a random candidate final node, which made the reach action 77.5%
reliable.

In section 5.3, the agent uses its ability to move to positions interpolated between nodes.
While this capability had been present since the agent finished building the PPS Graph and could
analyze its neighborhoods to calculate the local Jacobian and its pseudo-inverse, it is better for
the agent not to use this capability in the earlier stages of learning to reach since it does not have
definitive visual information for these interpolated positions. The known visual percepts stored
in the nodes facilitated learning the intersection features and importance of closeness without
relying on estimated masks and depth ranges. However, with these techniques known, the agent
can then calculate the arm configuration in the neighborhood of the nearest candidate final node
that it estimates would give the hand the same image-space center as the object, for ||ct − cpf || = 0.
When the agent replaced the final node in the reach trajectory with this modified position the action
became 100% reliable over the set of positions tested in Experiment 5.6.

Section 5.4 discussed the previous work [22] that demonstrated learning a 90% reliable reach
action with a different PPS Graph and different visual system, requiring different features to be
learned. The existence of two alternative methods that produce successful reaches support the
generality of the type of learning from unusual events performed, and shows that the specific choices
of sensors and assumptions are not required. In [22], we also showed that the agent’s ability to
reach depended on predicting whether motion to a node will or will not produce a bump, and this
skill could also be applied for obstacle avoidance. By using a trajectory that was expected to bump
the target object with only the final move and not bump any other objects with any of the moves,
the agent avoided those collisions in 74% of trials, with 68% of trials succeeding at both reaching
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the target and avoiding a bump the other object. The principle that nodes that are unreliable for
reaching because motion to them is unlikely to cause a bump will be reliable for obstacle avoidance
is also true in the context of this work when the RGB-D camera and related features are used. In
future work, the ability to identify these nodes can be used for both purposes, and the agent using
the current vision system may be evaluated on a task where it reaches while avoiding obstacles.

With a fully reliable reach action, the agent can readily interact with objects placed in its
environment. Once the set of example interactions is large enough, the agent can repeat the process
of learning from unusual events. Because the reach action is reliable, its typical result is a bump.
While a simple model of treating all changes in target object position that are not based on occlusions
as bumps was sufficient for learning to reach, the agent can improve its model with the revision
that some of the interactions with the object that result from successful reaches are qualitatively
different. In the next chapter, the agent focuses on grasps, where the hand closes around the object
and gains control over it. A grasp can be classified by the presence of a behavior where the object
follows the motion of the hand while this control is maintained. Chapter 6 discusses features that
allow the agent to predict which subset of reach trajectories will produce a grasp, and apply them to
make a semi-reliable grasp action.

118



CHAPTER 6

Learning a Reliable Grasp Action

In our model, after the intrinsic motivation pattern has resulted in a reliable reach action, the
pattern may be applied a second time to learn a grasp action. As the reach action toward a target
object becomes more reliable, the result of causing a quasi-static change in the image of that object
becomes more typical. However, there is an unusual result: during the interaction with the target
object, the hand may reflexively close, providing sensorimotor experience with “accidental grasps”.

Driven by intrinsic motivation, the grasp action becomes more reliable, toward becoming
sufficient to serve as part of a pick-and-place operation in high level planning. Additional features
may be considered in a flexible order or in parallel as the agent identifies and learns to satisfy the
requirements for a reliable grasp action. In this work we present one such set of features considered
by our agent in a set of distinct learning stages in a fixed order. This order was determined by the
experimenter and facilitates incremental evaluation of grasp reliability as each feature was added.
This chapter presents the grasp requirements and features used to satisfy them in the order they were
considered within our agent’s set of learning stages. The agent must begin with the Palmar reflex
to observe the unusual results of a reliable reach action without consciously closing the hand with
correct timing. Our agent then learned: how to most reliably set the gripper’s aperture during the
grasp approach, how to best align the hand, target, and final motion, and how to preshape the hand
by orienting the wrist. Each stage is presented with a Methods-Experiments-Results description.

6.1 Reaching with an Innate Palmar Reflex

6.1.1 Methods

Human infants possess the Palmar reflex, which closes the hand as a response to contact of an
object to the palm. Our work assumes that the Palmar reflex is innate and persistent during at least
early stages of learning to grasp. Within our framework, the primary importance of this reflex is to
enable the observation of accidental grasps as an unusual event while reaching. While the closing of
the hand is unconscious, the agent learns the motor commands and sensations of closing the hand.
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When conditions are correct, the Palmar reflex causes an accidental grasp, where the object is
held tightly in the hand and becomes a temporary part of the self. This gives a much greater level of
control over the pose of the object, as it can be manipulated with the agent’s learned scheme for
moving the hand until the relationship ends with an ungrasp, an opening of the fingers that releases
the object. The variety of outcomes possible with the level of control a grasp provides imply a high
potential reward from learning to predict the outcomes and actions to cause them, but it is also
the case that grasps occur too rarely to learn immediately after learning to reach. Without enough
examples, learning the conditions for a grasp may prove too difficult, leading to a modest rate of
improvement and a low reward. In our model, the agent focuses next on an intermediate rare event.

The activation of the Palmar reflex is such an event that may be observed as an unusual result of
successful reaches. When the hand’s final approach to the target meets all necessary conditions of
openness, alignment, and orientation, the target object passes between the grippers in a way that
activates the simulated Palmar reflex, and the gripper fingers close. The openness of the grippers is
a degree of freedom for the robot’s motion, and is continually sensed by proprioception. As a result,
accurate detection of when the Palmar reflex has been triggered does not rely on the visual percept,
and can be observed in a rapid decrease of openness to a new fixed point.

The closing of the grippers, either by reflex or conscious decision, is necessary for the agent to
gain control over the object with a grasp. In some cases, the initial interaction between the hand
and object does not lead to the grippers closing around the object, and the attempt to gain control
fails immediately. We refer to this event as a Palmar bump, as it often involves knocking away
the object before the grippers can close on it. Like other bumps, this is a quasi-static change with
an observably low IOU value between the object’s before and after masks, and it is the result of a
successful reach. While the Palmar bump is not a successful grasp, it serves as a useful near-miss
example, promoting use of the conditions that allowed the reflex to trigger in this attempt and can
be expected to allow it to trigger in future grasp attempts.

When a grasp occurs, the activation of the Palmar reflex is followed by the object shifting from
its initial quasi-static state to a new dynamic state. Now held between the gripper fingers, the object
begins to follow the hand with continued motion correlated with the motion of the hand. The agent
can identify this corresponding motion by comparing masks and depth ranges during the return
trajectory. A grasp is successful if and only if the stored masks and depth ranges for each node
of the trajectory intersect with those of the target object in the visual percepts during the return to
the home node. Note that the full hand masks and depth ranges are used since the gripper fingers,
once closed, may obscure the portion of the object in the palm region. If all nodes of the trajectory
have an empty mask or depth range intersection, control was never gained and the result is a Palmar
bump. If at least one node fails the intersection check, but not all nodes, the grasp is considered to
be a weak grasp. Here the grasp was initiated, but due to a loose or poor placement, did not persist
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through the return trajectory. Note that the loss of control of the object in a weak grasp does not
involve an opening of the grippers, as an intentional ungrasp action would. Figure 6.1 provides an
example of the agent’s visual percepts of a trajectory that produced each type of result.

Since the Palmar bump and weak grasp cases fail to gain or maintain control of the object, both
are successful reaches but failed grasps. By considering both situations to be failures, the successful
grasps that emerge from this learning process are more likely to facilitate subsequent learning of
higher order actions that require a grasp. However, Palmar bumps, weak grasps and grasps share the
sensed result of reflexively closing the hand, and may be assumed to share similar preconditions as
well. Until a sufficient number of successful grasps are observed, the agent will draw information
from all cases where the Palmar reflex was activated to learn to grasp.

6.1.2 Experiment 6.1: Monitoring the Palmar Reflex During Reaching

We first attached a break-beam sensor between the tips of the Baxter robot’s parallel gripper
fingers to provide the agent with a simulated innate Palmar reflex. Then our agent repeated all trials
of Experiments 5.2, 5.4, 5.5, and 5.6 in chapter 5, using the same target placements and planned
trajectories. For each trial, the agent records whether the Palmar reflex was activated, and which
category of result (grasp, weak grasp, Palmar bump, bump, or miss) it observed.

6.1.3 Experiment 6.1 Results

It is clear that learning to reach more reliably and with greater precision allows more Palmar
reflex activations and grasps to occur. With the random trajectories of Experiment 5.2, one of 40
activated the Palmar reflex, and this was a successful grasp. Using the final reaching method of
Experiment 5.6, the agent observed that the Palmar reflex was activated in 12 out of the 40 trials. Of
these 12, 5 were successful grasp trajectories. These provide a baseline reliability of grasping with
random motion trajectories (2.5%) and of grasping with a reliable reach trajectory (12.5%). These
results and those for intermediate reach methods are tabulated below, and also shown alongside the

121



Figure 6.1: The agent’s RGB percepts during attempted grasp trajectories. Images for the forward
portion toward nf are shown in the first of each pair of rows, and images for the portion to return to
nh are shown in the second rows. Images for some nodes in the middle of trajectories with more
than five nodes have been omitted. The agent classifies the result of the grasp attempt by observing
the state of the target object during the trajectory. In all cases but miss, there is a substantial change
between the first and last observations, and the trajectory is a successful reach. In all other cases
these observations should be significantly different, and the reach component of the grasp was
successful. Further classification depends on the state throughout the return trajectory and whether
the Palmar reflex was activated, as discussed in section 6.1.1. Only the result of the final example is
considered to be a successful grasp.
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rest of the results for this section numerically in Figure 6.4 and spatially in Figure 6.5.

Tabulated Results from Experiment 6.1, using trajectories from the reaching Experiments 5.2,
5.4-5.6 as indicated:

Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss

Experiment 6.1 (5.2) 2.5% 0% 0% 17.5% 80.0%

Experiment 6.1 (5.4) 2.5% 0% 7.5% 42.5% 47.5%

Experiment 6.1 (5.5) 5.0% 0% 12.5% 60.0% 22.5%

Experiment 6.1 (5.6) 12.5% 0% 17.5% 70.0% 0%

6.2 Initiating Grasps with the Gripper Fully Open

6.2.1 Methods

While exploring PPS and performing reaches, the agent is motivated to keep the hand fully open
(a = 100). This presents the largest silhouette of the hand to keep in view, as desired, and the full
extension allows for more interactions with objects when the extremities collide with them. As the
PPS Graph was created, this setting also allowed a brightly colored block to be placed spanning the
full width of the grippers, simplifying visual tracking of the “palm”.

With the new event of a Palmar reflex activation during the interaction, the agent may choose
to investigate its degrees of freedom. Each of the joint angles in q have a role in modifying the
placement of the hand that is modeled by a node’s local Jacobian estimate, but a does not appear to
significantly affect the location of the hand’s center of mass and does not differentiate graph nodes.
This allows it to be freely modified to investigate its influence on the frequency of Palmar reflex
activations.

6.2.2 Experiment 6.2: Which gripper aperture setting is most reliable?

While it is intuitively desirable for the agent to approach targets with the grippers open for a
Palmar bump or grasp, the agent does not yet have sufficient data to reach this conclusion. This is
gathered by repeating the trajectories of Experiment 5.6, the final reaching method, with the Palmar
reflex active and each gripper aperture of 0%, 25%, 50%, and 75% open. These four sets of results
can be compared with those for the fully open gripper that were already obtained in Experiment 5.6.

123



Figure 6.2: The portion of attempted reach trajectories that produce observed bumps (orange),
ground truth bumps (yellow), and Palmar bumps, or bumps which also trigger the Palmar reflex
(purple) for varying gripper apertures a. The high reliability of the reach action is independent of
a, indicating it could be learned and executed with any setting. By contrast, triggering the Palmar
reflex is much more likely as a increases, and is learned as a prerequisite for the Palmar bump event
and later for the grasp action.

6.2.3 Experiment 6.2 Results

Two conclusions may be drawn from the results of this experiment, which are visualized in
Figure 6.2. First, it is clear that the probability of activating the Palmar reflex increases with the
openness a of the gripper during the approach. As a decreases, the opening of the hand narrows,
and the object is less likely to pass inside with an approach of equal precision, so there are less
activations. Once a is sufficiently low that the object cannot fit in the hand, the Palmar reflex
never triggers. The agent will continue using the fully open setting a = 100 in future attempts to
maximize its expected success rate.

Second, we see that the openness of the gripper has almost no affect the probability of a bump.
In fact, only one trial was perceived to fail with any setting, and this was a false negative. We claim
that this demonstrates the agent could have learned the reach action with the same process and
ending reliability for any gripper setting, and at that point would learn to prefer 100% open. It is
therefore not necessary for our model to assume any initial setting a for the gripper opening while
learning to reach.

6.3 Planning the Approach with Cosine Similarity Features

6.3.1 Methods

When reaching, it is important that the candidate final nodes satisfying

pf ∩ t 6= ∅ ∧ D(pf ) ∩D(t) 6= ∅. (6.1)
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are identified, and nf is chosen to minimize ||ct − cpf ||. To plan reaches that activate the Palmar
reflex, additional features are needed to ensure not only that the final position is correct, but also that
the hand orientation and the direction of final motion are suitable. These must be compatible during
the approach, and must also be effective for the current target object. To learn to use satisfactory
relationships between these vectors, the agent constructs this set of vectors using information from
its stored and current visual percepts:

gripper vectors: pointing outward, near parallel to the gripper fingers.
~gp ≡ drawn from chp through cpp
~gf ≡ drawn from chf through cpf

motion directions: direction of motion along an edge or toward a target
~mp,f ≡ the direction of the edge-based final motion from cpp to cpf
~mp,t ≡ the direction of the modified final motion from cpp to ct

~mf,t ≡ the direction of displacement from cpf to ct

object orientation: the perceived major axis of the target object
~o ≡ drawn along the major axis of t.

(6.2)

As described in Section 3.4.4, the agent is instructed to extract these vectors from the perceived
images. This instruction is justified as these vectors are a natural and general way to describe
the relationships between binary image masks like those used to describe the positions of the
hand and foreground objects in image-space. Without further instruction, the agent learns cosine
similarity criteria for the vectors of final motions that most reliably cause Palmar reflex activations
in Experiment 6.3. In Experiment 6.4, the agent plans trajectories with final motions that satisfy
this criteria to improve the reliability of Palmar reflex activations and grasps.

6.3.2 Experiments

Experiment 6.3: Learning reliable cosine similarities. To discover the best relationship be-
tween these vectors for repeating the Palmar reflex activation event, the agent uses the data
from repeating the final reach trajectories of Experiment 5.6 in Experiment 6.1 with the Pal-
mar reflex enabled. For each trajectory, it considers the cosine similarity C(~v1, ~v2) of each pair
~v1, ~v2 ∈ {~gp, ~gf , ~mp,f , ~mp,t, ~mf,t, ~o} and results. The cosine similarities are discretized to the near-
est value in {-1, -0.5, 0, 0.5, 1}. The rate of Palmar reflex activations is observed for trajectories
grouped by their discretized C values.

Experiment 6.4: Planning well-aligned final motions. The agent uses the results of Experi-
ment 6.3 to plan the next set of trajectories to interact with the target. At this time, the agent does
not have the ability to change any ~gi to a particular direction to be perpendicular to ~o. Therefore,
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instead of the nearest candidate final node, nf is selected from the candidates such that |C(~gf , ~o)| is
minimized. As before, Ĵ+(nf ) is computed and used to modify the final configuration to a more
reliable q∗f by equation (5.4). The agent may apply Ĵ+(nf ) again to create a preshaping position,
a copy of the final position translated in the direction of −~gf . This image-space translation has a
magnitude of 21, the mean length of the final motion for all Palmar bumps and grasps previously
observed. The preshaping position has configuration

q∗p = q∗f + 21(−~gf/||~gf ||) (6.3)

and will replace qp. With this use of Ĵ+(nf ), it is expected that ~gp ≈ ~gf , and the motion from q∗p to
q∗f should be in the direction of ~gf , opposite of the translation. In place of ~mp,f , ~mp,t, and ~mf,t, the
direction of this motion is parallel to the gripper vector and near perpendicular to the target major
axis. The three steps of choosing nf , adjusting to q∗f to match centers with the target, and translating
to create a well-aligned preshaping position with q∗p are visualized in Figure 6.3.

The agent must plan a trajectory that ends with this approach. q∗p is not stored in P , so to find a
feasible path to q∗p, the agent first identifies the nearest node nn ∈ P that minimizes ||q∗p − qn||. A
graph search then yields the shortest path from the home node to nn. After visiting nn, the arm will
be moved from qn to q∗p , and then make the final motion to q∗f to complete the trajectory.

The reliability of the grasp action using this method for planning trajectories with aligned final
motions is evaluated using the same layout of target placements as Experiment 5.6, with the Palmar
reflex enabled as in Experiment 6.1. The agent also continues to record the frequency of all types of
Palmar reflex activations.

6.3.3 Results

Experiment 6.3 results. When ~v1 6= ~o and ~v2 6= ~o, the highest rate of Palmar reflex activations
occurs in the C(~v1, ~v2) ≈ 1 group. For any ~v1 6= ~o, the trajectories where C(~v1, ~o) ≈ 0 have the
highest rate. The agent concludes that the ideal approach for the Palmar reflex activation event
should use matching directions for all vectors describing the motion and orientation of the hand,
{~gp, ~gf , ~mp,f , ~mp,t, ~mf,t}, and all of these parallel vectors should be perpendicular to the target’s
major axis ~o.

Experiment 6.4 results. Using trajectories planned in this manner, 39 of 40 reaches are success-
fully completed and 21 of these activate the Palmar reflex. 14 of these activations result in a grasp.
By choosing the best aligned candidate final node instead of the closest candidate node and then
adjusting the entire final motion to match its gripper vector, the reliability of grasping is nearly
tripled to 35%. Figures 6.4 and 6.5 provide additional comparisons with results from other learning
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Figure 6.3: The agent plans modifications to the end of the trajectory, and defines a preshaping
configuration q∗p. Human intuition and the agent’s learning recognize that all vectors describing
gripper direction and the direction of motion should be near parallel, with all of these vectors near
perpendicular to the target’s major axis. The agent plans a final motion with these features in
three steps: (a) The agent chooses nf from the candidate final nodes (equation (6.1)) to minimize
C(~gf , ~o). This image displays the palm mask (yellow) and hand mask (red) for the chosen nf , along
with the target mask (blue). A blue outline is used to show the boundary of the intersection between
the hand and target. ~gf and ~o are displayed in light blue and orange, respectively. (b) The agent
uses Ĵ+(nf ) to estimate the change in joint angles necessary to cause the image-space translation
shown here. This translation improves the approach accuracy by aligning cpf with ct by moving to
q∗f . (c) The agent constructs q∗p by equation (6.3), which is predicted to have masks translated as
shown from those for q∗f . A final motion from q∗p to q∗f has aligned gripper and motion vectors.

stages.

Tabulated Results from Experiments 6.1 and 6.4:

Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss

Experiment 6.1 (5.2) 2.5% 0% 0% 17.5% 80.0%

Experiment 6.1 (5.4) 2.5% 0% 7.5% 42.5% 47.5%

Experiment 6.1 (5.5) 5.0% 0% 12.5% 60.0% 22.5%

Experiment 6.1 (5.6) 12.5% 0% 17.5% 70.0% 0%

Experiment 6.4 35.0% 0% 17.5% 45.0% 2.5%
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6.4 Orienting the Grippers with the Wrist

6.4.1 Methods

For our Baxter robot, the joint angle setting q7, which controls the most distal twist joint, “wrist
2” or w2, affects only a small portion of the wrist with a roll of the hand relative to the axis of the
forearm without changing this axis. This alters the orientation and perceived shape of the gripper
opening, but leaves the position largely unchanged. The primary modification is to the plane in
which the gripper fingers open and close. Adjusting this is analogous to a human’s preshaping
techniques to ready the hand for grasping an object, though simpler, as there are fewer ways to
configure parallel grippers than an anthropomorphic hand. For a grasp to be successful, the cross
section of the object in the gripper plane must be smaller than the space between the grippers.
Additionally, the angle at which the plane and the object meet must not be so steep as to squeeze
the object out of the grip. Intuitively, the most reliable grasp approach rotates w2 so that the gripper
plane is perpendicular to the target object’s major axis.

6.4.2 Experiment 6.5: Copying successful wrist settings

Without intuition for the correct orientation, the agent must find another criteria for predicting
the wrist orientation that will be most reliable. By this time, the agent has observed that, like the
gripper aperture a, q7 does not have a significant impact on the hand’s location in the image. This
allows the agent to consider modifying q7 without considering the graph nodes visited to change.
In the same way, these changes do not conflict with the learned requirements for reaching or the
previous grasping method of choosing nf such that ~gf and ~o are approximately perpendicular. In
order to avoid new failures from introducing large, sudden rotations of the hand near the target,
when a new q7 is chosen it will be used instead of the stored q7 value of all nodes in the trajectory
nTj

.
To begin, the agent repeats each successful grasp, with a linear search over values of q7 to

identify the longest continuous range where the attempt still succeeds. The center of this range will
be saved as the ideal q7 value for this example grasp. The agent will then retry each trajectory from
Experiment 6.4. For each of these grasp attempts, the adjusted final configuration q∗f is computed by
equation (5.4), as before. Using the Euclidean distance between all other joint angles, 〈q1f , . . . , q6f〉,
the nearest neighbor example grasp is found for the current trial. The grasp is attempted with the
ideal q7 value from this example and all other angles unchanged.
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6.4.3 Experiment 6.5 Results

Over the same set of 40 object placements from previous experiments, this technique increases
the number of Palmar reflex activations (Palmar bumps, weak grasps, and grasps) to 30 (75%),
and grasps to 20 (50%), as shown in Figures 6.4 and 6.5. These increases come at the cost of one
bump, where the target is now missed because the rotation of the hand prevents a collision that
used to narrowly occur. In principle, any time new successes are achieved, they can be treated
as new example grasps with ideal q7 values to consider for trials with nearby target placements,
allowing for further improvements to the success rate. However, in this training set only two still
unsuccessful grasp attempts have different nearest neighbor examples than previously, and neither
changes to a success with the new q7 value. Iterations of using new nearest neighbors therefore end,
but may be returned to in future work once more examples are available.

Tabulated Results from Experiments 6.1, 6.4, and 6.5:

Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss

Experiment 6.1 (5.2) 2.5% 0% 0% 17.5% 80.0%

Experiment 6.1 (5.4) 2.5% 0% 7.5% 42.5% 47.5%

Experiment 6.1 (5.5) 5.0% 0% 12.5% 60.0% 22.5%

Experiment 6.1 (5.6) 12.5% 0% 17.5% 70.0% 0%

Experiment 6.4 35.0% 0% 17.5% 45.0% 2.5%

Experiment 6.5 50.0% 2.5% 22.5% 20.0% 5.0%

6.5 Addressing the Difficulties of a New Environment

Within the duration of this work, the robot’s physical location was changed significantly on
multiple occasions. Generally, these moves coincided with new versions of the peripersonal space
graph or other changes in methodology, and the effects of the environment change were not directly
measurable. One location change occurred between Experiment 6.5 and the remaining grasping
work in this chapter, and this change was an exception to this pattern, as it reused the Explored PPS
Graph and continued using the same learned features for planning grasp actions. We found that the
agent initially had drastically reduced grasping performance in the new environment. While the
exact causality could not be confirmed, we determined several factors that were not controlled for
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Figure 6.4: The top plot presents the overall results from the reaching methods as a baseline for the
grasp action as found in Experiment 6.1. The final reach method, Adjusted Closest Candidate Node
(Experiment 5.5), is always successful at reaching, but within these interactions only 12.5% are
fully successful though accidental grasps. By considering additional features, the grasp methods
in the bottom plot all achieve more than double this success rate for grasping with only modest
decreases in reach reliability. The Cosine Similarity Approach Method (Experiment 6.4) aims to
increase the number of Palmar Bumps, with nf chosen from the candidates such that |C(~gf , ~o)|
is minimized and with np replaced by a preshaping position so that all other cosine similarities
are 1. Approaching with a motion parallel to ~gf and perpendicular to ~o also increases the number
of successful grasps. The Wrist Orientation Method (Experiment 6.5) further adds a technique to
copy the most distal degree of freedom q7 used at the nearest configuration to previously succeed,
converting more bumps into Palmar bumps and grasps.
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Figure 6.5: Spatial representations of the results of three methods for the agent’s learned reach and
grasp actions. Each shows a superposition of all placements of the single target object, colored
according to the result of the agent’s attempt to repeat an unusual event by executing a motion
trajectory. (a) Experiment 6.1 uses the final reaching trajectories of Section 5.3 to successfully
repeat the bump event for all target placements. Twelve of these reaches accidentally trigger
the Palmar reflex, five of which become early examples of grasps. (b) Using cosine similarity
features in Experiment 6.4 (Section 6.3), the agent modifies the final approach so that this motion
causes significantly more Palmar bumps and more grasps are also observed. (c) In results from
Experiment 6.5, the agent grasped from additional placements by changing the angle of the most
distal joint, w2. The wrist orientation is copied from the final configuration of a trajectory that
succeeded for a nearby placement (Section 6.4). The use of nearest neighbors applies best very
close to existing successes, so most improvements can be observed in these areas.
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during the move of the robot that either violated assumptions the agent had been allowed to make
thus far, or otherwise made the grasping task more difficult. In this section, we discuss these factors
and the steps taken to correct for the differences enough to return the grasp action to at least the
level of reliability observed in the original environment for Experiments 6.1-6.5.

The theoretical formulation of the peripersonal space graph representation is such that it should
not be necessary to recollect images when the appearance of the agent’s environment changes.
However, this requires strict enforcement of the assumptions that allow the agent to simplify the
visual components of its tasks. In particular, it must be the case that the relationships between the
positions of the workspace (table), the robot, and the camera are kept fixed, and the angle of the
camera perspective must also be kept static. We also assumed that the agent would be capable
of identifying the masks and depth ranges of the hand and target reliably, and the truth of this
assumption can also vary in practice due to the environment. Due to violations of these assumptions,
it was necessary to collect a new set of images and to edit the image processing code that allows the
agent to extract object representations from the raw visual percepts.

While a PPS Graph can support changes to the workspace (either different placements of the
table relative to the robot or camera or a different table entirely), the current implementation of the
graph used rejection sampling to ensure that the nodes were gathered in an area concentrated above
or near the table in its position at the time that the Explored PPS Graph was initially constructed.
This means that changes to the table or its position relative to the robot will cause the set of nodes
to drift from the most useful locations, as their positions will not change relative to the robot. We
attempted to set the table in as similar of position and orientation as possible to minimize this
effect, but it cannot be entirely corrected for without generating a new set of configurations for the
nodes that are better fit to the exact new position of the table, or a set of configurations without a
bias towards the table, for greater generality. This difficulty was increased by potential changes to
the height and leveling of the robot, which was not controlled for in its move between buildings
and resetting the brakes and anchors or the floor. An apparent consequence of the combination
of these factors can be seen in Figure 6.6, where the nodes appear to be further from the table’s
surface overall. This increased displacement from the workspace may cause candidate nodes with
nonempty intersection features to be more sparse, and requires larger adjustments using the local
Jacobian estimates to bring the hand from its stored visual center to a target’s perceived center. Both
insufficient numbers of candidate nodes and extrapolating too far with the locally linear estimate of
the Jacobian can make grasp attempts more prone to error.

Neither the theoretical PPS Graph formulation or the current implementation of it in the Explored
PPS Graph can accommodate a change in the position or angle of the camera relative to the robot.
Because the camera perspective is expected to be fixed throughout all experiments, when it is
moved, the stored visual representations of the nodes become incorrect. When searching for nodes
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Figure 6.6: The top plot shows the palm depth range extracted from the original image set for all
nodes, with the nodes sorted by minimum disparity in ascending order. The full range appears as
a vertical blue line, and the mean disparity value recorded for that palm is plotted with a red dot.
The horizontal black lines denote the minimum and maximum disparities observed for the surface
of the table, meaning that blocks that can be reached and grasped from positions on the tabletop
will occupy this range of [33,46] and just above it. The bottom plot shows the corresponding
information for the palm depth ranges extracted from the new set of images after the move to the
new environment and the camera angle was changed. The range of disparities for the table in these
images was [32,47]. Despite the wider range occupied by the table in the new images, a smaller
number of nodes appear to have the palm at this key range of disparities to coincide with objects
on the table’s surface. Excluding the nodes in the top plot with inaccurately large ranges and the
undefined or zero valued ranges in the bottom plot, it appears that about 1400 nodes intersected
with this range in the original data and only approximately 1100 nodes intersect with this range in
the new data. This suggests that the position of the robot has changed relative to the position of
the table, and nodes tend to appear further from the table in images than before. For some regions,
this will reduce the number of final node candidates, and when candidates are found they are more
likely to need larger adjustments to align the d component of their center with the d component of
the center of a target on the table. Both cases make planning reliable grasps more difficult, and may
explain some of the reduction in success rate that needed to be corrected for.
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with nonempty intersection features, the agent will generate a significant number of false positives
and false negatives since the target’s position in the current images will not match up with hand
positions in the same pixels of the stored images. That is, with a new camera angle, masks may
occupy the same region in the current image as in the stored image, but those regions will no longer
represent the same space in the environment, creating false positive candidate nodes. Alternatively,
some nodes may be observed to have empty intersections when they would coincide with the target
if the camera was correctly aligned, creating false negatives. The change in alignment also affects
the relationship between current and stored center positions, and can cause the desired adjustments
using the local Jacobians to be inaccurate. If the precise position and angle of both the new and old
camera setup was known, a transformation between the current visual percepts and the stored visual
percepts could be used so that intersections still carry their original meaning without false positives
and negatives. This was not the case, and attempts to estimate the transformation would introduce
additional noise, so the best solution was to gather a new set of images to associate with the existing
configurations of the nodes of the graph.

In order to rebuild the existing graph with a new set of images, code was written that instructed
the agent to move to each node’s stored configuration qi in order and record new RGB and disparity
images while paused at each. The motion of the agent to each qi used the built-in Joint Position
Control mode, which commands each joint to a set point angle. The motion for each joint continues
until its reported angle is within a threshold of 0.008 radians of the set point, and then comes to a
stop. As a result, the angle reached by joint j may be equal to the original qji , or up to 0.008 radians
different. The agent may also reach a different joint angle due to any changes to the calibration
or settings of the arm that may have occurred between experiments. For the highest accuracy, the
new angle reached should be recorded and replace the original angle that the agent attempted to
move back to. This may affect the local Jacobian estimates, which are based on the relationship
between small changes in the joint angles and the corresponding small changes in image space.
We introduced a small additional source of error by continuing to use the original qi from the
motor babbling of the first time the Explored PPS Graph was built. As a result, the angles may
not be precisely those held in the new set of images, and the local Jacobian may overestimate or
underestimate the impact of joint angle changes on the image-space center. We believe the noise
introduced by this difference will not have a significant impact on the reliability of the agent’s
actions, as the motion controller was typically more accurate than the threshold required, and the
threshold’s magnitude is already less than 1/300th of the range for e1 (2.67 radians), the joint with
the narrowest range, so it is unlikely that the actual configuration of the arm reached while taking
the new set of images would produce a significantly different pose of the hand. However, we note
the recording of the new joint angles reached as a best practice to eliminate this potential source of
error for our use in future work or in any studies replicating the Explored PPS Graph method.
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While the new set of images represent the same poses of the robot, there are significant
differences from the original image set. These changes may contribute to the newly increased
difficulty of the grasping task. As seen in Figure 6.7, the new camera angle appears to create a
coordinate system for image space where each pair of dimensions is more correlated than when
using the old camera angle. Each of the u and v components of the nodes’ image-space centers
is especially correlated with the disparity d of the centers, though the correlation between u and
v is also increased. If the coordinates of the nodes are correlated, and thus conveying some
redundant information, the agent is receiving less information about the 3D space than it would from
coordinates on three independent axes. While it is not necessary for the agent to have a standard
coordinate frame with independent axes, if the correlation is stronger when the new image set is
used, the agent is tending to receive even less information as it plans actions than before, and this is
a plausible explanation for some of the observed decrease in the success rate of the grasp action.

Another concern when moving the robot between buildings to a new environment is the change
in lighting and the appearance of the background. Compared to pictures taken in the original lab
setting, images in the new lab tended to have slightly darker lighting (at least as it registered in
average RGB values for the camera) with a different white balance and shadowing from a different
direction. For a robust image processing system, these changes would not cause the assumption
that the agent can reliably segment the images to identify the masks, depth ranges, and centers for
important portions of the self and the foreground objects. However, we have satisfied this assumed
condition with a very simple image processing function that relies on custom ranges of RGB values
to create the representations that are made available to the agent. Multiple ranges already existed
for identification of each key segment (such as the yellow block and the green and blue gripper
fingers), but the lighting in the new environment pushed some pixels in these object segments out of
these ranges. Additionally, some aspects of the new background fell inside the original ranges, and
needed to be ruled out. In order to improve the accuracy of the extracted binary image masks, rules
needed to be added and modified to avoid false positive and false negative inclusions. While some
anomalies remained, reducing the errors in these masks and the depth ranges that depend on the
masks eliminates some failure cases that result from planning with poor data. While adjusting and
adding rules for RGB ranges for the objects does involve expert knowledge from the experimenter
and trial and error (which informed the changes when clearly incorrect masks were discovered),
we claim that these updates do not detract from the autonomy of the agent. These updates were
only necessary to maintain the agent’s assumed (foundational) visual capabilities, and would not
be needed in a more general and sophisticated computer vision method that could provide similar
representations independent of the domain, the task at hand, or specific color assumptions.

For the new image set, we borrowed the mask location technique for the Improved Explored
PPS Graph (Introduced in Section 3.2.2.3 primarily for consideration in future works, where it may
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Figure 6.7: These plots show pairs of coordinates (u, v), (u, d), and (v, d) for all palm centers,
with different coordinate pairs in each column. The top row displays information derived from
the original image set for the Explored PPS Graph, while the bottom row displays information
derived from the new image set taken for the Rebuilt Explored PPS Graph in the new environment.
Comparing plots in the same column shows that the correlation between all pairs has increased
when the new data is used (seen in the increased R2 values), and increases most significantly for
the pairs involving d. The p-scores reported are calculated using a distribution F (p, n − p − 1),
where p = 1 in all cases and n = 2945 for the original data and n = 2917 in the new data, based
on the number of nodes with defined palm centers. The very low p-scores indicate that there is
very little chance that these coordinates would be determined to have this correlation when they
are actually independent. The correlation between d and the other coordinates was expected as a
line out from the camera to measure distance is not perpendicular to either axis of the RGB image.
The observation that u and v are correlated is more surprising, but is explained in that for the agent
to reached to the far right side of the image (where the palm center will have a high v coordinate)
during motor babbling, it is more likely that the hand is also near the bottom of the image (where
the palm center will have a high u coordinate) since it requires less additional extension of the arm.
Some correlation is expected when using the nonstandard axes of the agent’s image space rather
than the independent axes of a standard Euclidean 3D space, and the agent shows a tolerance for
correlated axes by performing well in the original environment. However, when all correlations are
increased, this implies the new camera perspective provides more redundant information about the
3D space (at least at the sampled positions of the palm centers), and the agent has less information
for planning. Therefore, this change is one of the hypothetical explanations for the drop in grasp
reliability in the new environment.
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allow additional features and methods to be used) that relies on color-coding the two gripper fingers,
so that it is not necessary for the robot to grasp a block that fills the hand to distinguish the palm. In
future work, this change will allow the agent to perform learning more naturally, with less fixed
stages, as motor babbling with an empty hand allows the agent to experience accidental bumps and
grasps during this time, and also would allow for motor babbling with the gripper aperture a. The
images taken by the agent may also better convey the mask and depth range for the hand when the
grippers are not adjacent to or partially obstructed by a brightly colored block.

In the new set of images, we observe that for 83 nodes, there were no valid disparity values
reported within the palm mask, and the palm center cannot be defined due to the missing data for the
d coordinate (for some nodes the u and v coordinates are also undefined, if the palm was not visible
at all and had no mask). The local Jacobian estimate cannot be computed for 368 nodes given the
new image set: these 83 nodes and an additional 285 nodes that have defined centers but fewer
than 7 neighbors with defined centers. Both a center and a local Jacobian estimate are required for
using a node as the final node of a reach or grasp, so the agent will not consider nodes without
this information. This leaves 2632 nodes that will be considered for candidacy (with the subset of
these nodes that become the final node candidate set still determined by the presence of nonempty
intersections with a specific target). By contrast, the original set of images had 2950 nodes that
could potentially be candidate final nodes. The reduced number of nodes with complete data may
be a result of finding the palm representations without the grasped block - thin objects, such as the
gripper fingers, appear to be more prone to registering with undefined disparity values. The use
of pipe cleaners to increase the size of the grippers and to change their color and surface material
that also seemed to be problematic for the camera provided more valid readings, but only up to
this level. Another possible explanation is that the calibration of the camera may have deteriorated
before these experiments were carried out, either during the long delay between experiments while
the lab facilities were closed or when the angle was changed during the move or other occasions. If
the camera was not able to properly align the disparity image with the RGB image, some or all of
the disparities reported inside the mask may not have actually corresponded to the object. Values
that did not belong to the object may have been too close or too far from the camera, or otherwise
reported an undefined value, or they may have appeared as the disparity of those pixels in the base
image taken without the hand present, and eliminated as noise values from the background. Note
that since the agent still has the configurations recorded for all 3000 nodes, the agent may still plan
trajectories that pass through these nodes that are excluded from all candidate sets. These nodes are
only excluded for use as final nodes since it would be impossible to adjust their positions.
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6.5.1 Methods

In order to evaluate the agent’s grasp reliability after the change in environment and corrections
for new factors were performed, we generated a new set of target object placements that the agent
could attempt to grasp. At the end of Chapter 7, the agent will be asked to demonstrate its ability
to perform a pick-and-place action to move an object from one qualitative location of interest to
another (these locations are discussed further in Section 3.3). In addition to confirming that the grasp
method can be transferred to the new environment, this new set of experiments will also be used to
show that the grasp action is sufficiently reliable when grasping from those locations of interest
for the pick-and-place demonstration to be feasible. To accomplish this, instead of generating
random object placements across the full tabletop, trials will begin with the object placed by the
experimenter into one of the locations at random coordinates (these coordinates are not available to
the agent, which still relies on its visual percept to construct a representation for the target object in
image space instead of standard axes for the 3D environment). Since the locations are rectangular,
the coordinates will specify a displacement of the corner of the object between 0 and 11 inches
down and between 0 and 8 inches right of the location’s top-left corner. The target object will be the
same yellow rectangular prism block as in previous experiments, and will always be placed in the
same upright orientation with the second-longest dimension parallel to the table’s longer dimension,
presenting one of the largest faces toward the robot.

For experiments from this point on, the agent is given the ability to refuse to attempt a grasp
if there are zero final node candidates1. This rejection occurs when the placement of the object is
represented by a target mask and depth range that do not intersect with the palm mask and depth
range for any node that is considered for candidacy. This replaces the agent’s previous strategy of
choosing the closest node in image space when there are no candidates. The previous strategy was
sufficient for making reaching fully reliable, including to positions that had no candidate final nodes,
but was typically not sufficient for producing successful grasps, since the additional factors, such as
alignment of the final node, were not considered. As the agent has a clear criteria that identifies
these trials (no candidates) and given the observation that these trials, if attempted, tend to result in
misses or bumps that do not activate the Palmar reflex, it is feasible and more productive for the
agent to reject these trials. As the methods will require further reducing the set of nodes eligible for
candidacy, rejections will be based on the smallest set of nodes that can be considered, so that each
success rate can be evaluated on the same set of object placements.

The evaluation took place over 40 trials with attempted grasps. The agent was presented with

1In the following discussion, “no candidate nodes” indicates when the set of candidates is empty after the first pass
that identifies all nodes with the most desirable intersection feature combination, D(pf ) ∩D(t) 6= ∅ and pf ∩ t 6= ∅.
While a strategy of expanding the set to include nodes with decreasingly desirable features until it is not empty and then
using a modified configuration from the closest candidate node was sufficient for reaching, use of the nodes from the
expanded set of candidates does not produce any successful grasps.
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object placements in the green location L1 until it had attempted 20 grasps from L1, and then the
agent was presented with object placements in the blue location L2 until it had attempted 20 grasps
from L2. The agent accepted all placements in L1 where the graph tends to be more dense, but
rejects 9 placements in the more distant location L2, one of the regions near the table where the
graph is at its most sparse. For each experiment in this set, 49 grasping trials were initiated with an
object placement and observation, 40 were attempted, and 9 were rejected by the agent.

6.5.2 Experiment 6.6 - Grasping with New Images and Masks

The agent attempts 40 grasps as described in order to measure the baseline performance of the
grasp action when relying on the new image set and the code with new color thresholds and the
mask-finding method from the Improved Explored PPS Graph (though in this work the agent does
not make use of the individual green and blue gripper masks except to find the palm mask and
vector without a block in the hand while motor babbling). The agent’s decision making method is
exactly the same as in Experiment 6.5, and merely differs due to reliance on new data and a larger
set of nodes with missing data that must be excluded. The agent will record each successful grasp
as well as the types of partial successes and failures observed and the number of rejected trials.

6.5.3 Experiment 6.6 Results

Prior to this experiment, grasp attempts using the original stored images or representations of
the nodes with the agent in the new environment prevented any grasps from succeeding. These
failures appeared to be primarily due to the change in perspective and the issues this introduced
with false positive and negative intersections. However, in this experiment the agent was able to
observe some level of success once the new image set was taken and the image processing code was
revised to allow the palm mask and vector representations to be extracted.

For objects in the green location L1, the agent successfully grasped in 2 (10%) out of 20 trials,
with no rejected trials. For objects in the blue location L2, the agent successfully grasped in 11
(55%) out of 20 trials, with 9 rejected trials. These results establish a baseline reliability of 13/40
(32.5%) for the grasp action when using the previous learned method and the new data. The results
of this experiment are compiled with those of the remaining experiments in this section in Table 6.1.

Of the failure cases, 8 were Palmar bumps and 19 were bumps that did not activate the Palmar
reflex. No miss results were observed, so the reach component of the grasp was still reliable. The
limited number of Palmar reflex activations suggests that the approach is not aligned well enough or
moving to a precise enough position to surround the object with the gripper fingers. We also see a
departure from the pattern of results so far, where the agent had tended to be more successful in
regions of space where the graph nodes were dense. This density should allow the agent to have a
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(a) (b)

Figure 6.8: (a) A heatmap displaying the number of palm masks (out of all 3000 nodes) contain
each pixel (u, v) when derived from the new image set for the Explored PPS Graph. These numbers
reflect palm masks at that position and any disparity, so the number of masks at the level of the
tabletop or just above to interact with blocks on its surface will tend to be lower. The heatmap is
overlaid with the boundary and center of each of the two locations of interest. The presence of these
boundaries demonstrate that L1, the green location, is at one of the most dense areas of the graph,
and that L2, the blue location, is more sparse because only when motor babbling had the arm close
to fully extended across the body were nodes recorded there. The periphery of the image has even
fewer nodes due to the biasing of the motor babbling to generate useful nodes where the hand was
fully in view and above the table. The density of the graph is important for planning reach and
grasp actions, as it determines the number of nodes that will have intersections with a given target
placement, and can be used to plan the final pose. (b) The same heatmap and overlaid locations,
but only counting the palm masks of nodes that would be considered for candidacy after the more
extensive exclusions in Experiment 6.8. The dense and sparse regions are generally the same, with
lower numbers of nodes throughout. Note that this heatmap uses the same scale as the original so
that it can be directly compared by colors, even though its range is [0,96] instead of the original
range, [0,107].

larger set of final node candidates, and within the variation of these candidates at least one should
have reliable features that can be identified. However, the agent was much more successful in L2,
a location on the far end of the table that is sparsely covered by the graph, than it was in L1, near
the center of the table and the graph where there is a high concentration of nodes. The difference
in graph density near the two locations is visualized in Figure 6.8. Based on this observation, we
hypothesize that the agent is still receiving inaccurate data, and that a significant number of nodes
with inaccurate representations have desirable-looking features. In the following experiments, we
will attempt to improve the image processing so that the inaccuracies can be minimized or nodes
that appear to retain inaccurate information can be eliminated from consideration as final node
candidates.
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6.5.4 Experiment 6.7 - Grasping with Trimmed Masks and Depth Ranges

One possible cause of the agent’s poor choices of final nodes, especially where the graph is
dense and may have numerous false positive candidates, may be the representations of the palm
when computed with the new method. The new palm masks and depth ranges tend to be larger than
when they were computed by the old method, and it appears to be the case that the new sizes are too
large, including too many pixels and disparity values to accurately convey the grasping region.

We can determine that the palm masks are larger than before by examining the distribution of
differences of areas seen in the new and old mask for each ni, with area measured in the number
of pixels included. This can be observed in the first panel of Figure 6.9. We found evidence that
the increased size, while possibly explained by the new camera angle for some nodes, for many
nodes involved the inclusion of pixels around the periphery that were included but were actually
parts of the gripper fingers, the base of the hand, or a part of the palm opening but past the end of
the grippers. In the remaining panels of Figure 6.9, we examine the distribution of changes in palm
mask size when the new masks have a variety of binary image erosions applied to them. We found
that the distribution is best centered around 0, and thus the areas are most similar, with an erosion
using a disk of radius 1. The eroded palm masks will be used in this experiment to determine if an
intersection is present.

We can perform a similar examination of the changes to the depth ranges for the palms when
they are based on the new disparity images and take the values for the set of pixels within the new
palm masks. While the original method attempted to remove all error values and apparent noise, it
is still possible for some of the included disparity values to not represent the palm correctly. We
switched to use the original resolution of the disparity image rather than the downsized image, to
avoid averaged values from pooling the pixels together. Since it is typical for disparity values along
the table, hand, or target object to increase by less than one unit per pixel, we also exclude any
reading that is at least three units different from one of its neighbors as a likely error. Given how
many pixels must typically be traveled through to see a one unit change in disparity, it would be
quite surprising to see this large of a change in one step legitimately, and it is much more likely
that it arose as part of an error or disparity reading from a neighboring region or object. We also
continue to remove any 0 values, which are reported in a variety of cases: when the object is closer
than the minimum distance from the camera, when the object is further than the maximum distance
from the camera, and when the data is missing, which seems most common with narrow objects and
boundaries, as well as objects presenting certain materials, colors, or angles. Still, it is possible for
the agent to have depth range to include extremes based on the surface of the table, the floor, or other
objects in the environment, and this can occur either from reading disparities from false positive
pixels in the palm mask, or from pixels that were part of the object in the RGB image but not the
depth image, which is offset and in some places not calibrated to correct for this adequately. When
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Figure 6.9: The top left panel shows a histogram of the differences in the area of each node’s palm
mask when derived from the image taken for “rebuilt” graph in the new environment and when
derived from the original image. The range of this distribution is [-212,238], with the extreme
values coming from 5 cases where a node was not visible in one set of images but was in the other
due to the change in camera perspective. In general, the new palm masks tend to be larger, by a
mean of 33 pixels, due to differences in the raw images and the image processing methods. The
agent was observed to fail grasp attempts after selecting nodes that appeared to intersect with the
target object, but did not produce a successful reach or grasp when used. This may be due to the
larger palm masks over-representing the size of the palm, and the selection of final nodes that were
only candidates because of false positive intersection features. To compensate, we added a final
step to the image processing algorithm that extracts the palm mask representation. Once the palm
mask is extracted, a binary image erosion with a small disk or square is performed to create the
final mask. The remaining panels show the resulting histograms in the difference of areas, with
the bottom left panel displaying the best result (Note that erosion with a square of side length one
produces no change in the binary images, so its results histogram is omitted). When the erosion
is performed with a disk of radius one, the distribution narrows and centers nearest to zero, better
matching up with the original areas of the palm masks. These eroded palm masks will be used to
check for the presence of an intersection with the target mask in all experiments from this point on.
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any of these problems occur, the depth range for the palm can become much wider than accurately
represents the hand. Fortunately, each problem typically introduces only a small number of pixels,
and the accuracy of the depth range can be improved by introducing a rule to exclude these outliers.
Similar to the areas, the distribution of depth range widths (the maximum disparity value minus
the minimum disparity value) is initially skewed to be larger for most nodes. By calculating the
mean and standard deviation of the disparity values reported for each node’s palm, the creation of
the depth range representation can set bounds for the depth range to exclude outliers. In the original
image set and representations, the depth ranges ignored values that were more than three standard
deviations from the mean. This same technique leaves the ranges still larger than the previous
ranges, but ignoring values that were more than two standard deviations from the mean creates the
most similar distribution. This trimmed depth range where the minimum and maximum are capped
at two standard deviations below and above the mean will be used to check for depth intersections
when determining if a node is a candidate. As before, any candidate must have a defined center,
vector, and local Jacobian estimate, so 2632 nodes will be considered.

The agent will perform the same 40 grasp attempts with the final node candidate set determined
using the new eroded palm masks and trimmed depth ranges. Using the same experimenter
placements of the target object will allow a direct comparison of the performance without considering
if there was a benefit or detriment caused by random variation in the placements. As a result, the
agent will again reject 9 of the placements in L2, and will perform the 40 grasp attempts over 49
initiated trials.

6.5.5 Experiment 6.7 Results

The results were successful grasps in 10 (50%) out of 20 attempts from L1 and 10 (50%) out of
20 attempts from L2, for an overall success rate of 20/40 (50%). This is already equivalent to the
performance observed in the original environment of the Explored PPS Graph during Experiment 6.5,
and demonstrates that the systematic changes to the palm representations were influential and
allowed the agent to perform significantly better with the improved data. However, the failure
cases included 10 Palmar bumps, 8 bumps, and 2 misses, which suggests that only half could be
considered near success. Many of these more pronounced failures seem to involve choices of final
nodes or local Jacobian modifications to the final pose that are not reasonably in line with the agent’s
learned methods. When this is the case, the agent is often still acting on incorrect or incomplete
data, and the following experiment will attempt to rule out cases where the erosions and trimmings
have not sufficiently reduced the number of false positive candidates and their apparent quality. The
full results of this experiment are repeated in Table 6.1, alongside the other experiments from this
section for comparison.
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6.5.6 Experiment 6.8 - Grasping with Additional Excluded Nodes

While the agent’s grasp action is back to the 50% reliability observed in the previous environment,
it can still be observed that it is choosing some final nodes that are well off and qualitatively different
than those it chooses when it is successful or close. This suggests that for some nodes, some bad
data has slipped through (or that some component of the simplistic methods for extracting the image
features don’t work well for nodes with noisy data, small visible portions of the hand, or other
problem cases, and this produces a poor representation). These nodes will be unreliable whenever
they are chosen, but cannot be ruled out by the agent because the representation it is given for them
is wrong (violating our assumptions that the vision system, while simple, works and can be trusted
by the agent). These nodes can be especially problematic because the incorrect representations
are unique, and their unrealistic features can be especially desirable for selection. This provides a
plausible explanation for the continued observation that having higher graph density near a target
is still not helpful for grasping in the new environment. In particular, having a higher number of
candidates increases the chance that at least one is a false positive, and that its incorrect features
will appear reliable and lead to selection.

While systematic changes to the image processing and feature extraction methods risk leaving in
some errors or eliminating some values that are valid but unusual, we choose to use them rather than
manual revisions to the representations for individual nodes to prevent any potential biasing from
the experimenters, as well as to eliminate potential sources of human error and a time-inefficient
process. In this case, we use an expanded set of criteria to exclude nodes from consideration
as candidates. This set will include the past criteria where missing data would make the nodes
impossible to use or impossible to predict what their use would accomplish, as well as new criteria
where the representation is so unusual that the agent should not rely on it being valid and select
those nodes. The criteria are not mutually exclusive, and in some cases are subsets of each other.
The full list is still used for efficiency, as some of the less exclusive rules can be evaluated more
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quickly. The list is as follows:

• Existing Criteria:

– 1 node is rejected due to being the home node, where the hand is assumed to never
intersect with the starting position of the object so that it can be observed without
obstruction.

– 5 nodes are rejected due to being bad positions that should have been rejected during
motor babbling, but were not. Either because of the nodes themselves or the set of edges
connected to them, a high portion of moves to these nodes require a slight or glancing
collision with the tabletop to reach them.

– 83 nodes are rejected due to having undefined palm centers or palm vectors

– 368 nodes are rejected due to having undefined local Jacobian estimates (includes the
83 above)

• New Criteria:

– 267 nodes are rejected because both gripper fingers aren’t visible (green is not visible in
54 and blue is not visible in 216). This prevents an accurate segmentation of the palm
since it could be on any side of a single gripper (or overlapping it at a different depth),
and with no visible gripper the agent has no reliable information about the palm.

– 637 nodes are rejected because they do not have a reliable estimate of the palm vector.
In the case of the 267 nodes above, this is because the palm cannot be located. For the
other nodes, the two estimates (one is a vector drawn from the center of the base of the
hand through the center of the palm, and the other is a vector perpendicular to the line
between the centers of the green and blue gripper fingers) for the palm vector’s direction
to not sufficiently agree, so the observation is deemed unreliable. The measures of
agreement are shown in Figure 6.10, where a cosine similarity of 0.707 is chosen as
the threshold. Cosine similarities below this threshold are both uncommon and imply
significant disagreement of at least 45 degrees.

– 256 nodes are rejected because their palm depth range has max(disparity)−min(disparity)
> 10 units. This is after the image processing code was updated and the trimming to
within two standard deviations of the mean was performed, so as seen in the histogram in
Figure 6.11, 10 units is abnormally large. Examples of these exceptionally large ranges
were observed to be cases where an anomaly mask-finding problem or a significant
offset between the RGB and depth images that resulted in a large region of incorrect
depth values being present. This region would be large enough to have internal pixels
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that would not be removed by erasure or by ignoring depths that changed too far from the
neighboring pixels, and also large enough to spread the standard deviation and make the
trimming ineffective. It is possible that some nodes where the hand appeared especially
large to the camera could have legitimately had a depth range spanning more than 10
units, but these would all be high above the table and close to the camera, and would
never be good choices for final nodes to reach or grasp objects on the table’s surface.
Therefore, it is not necessary to be concerned about ruling out a small number of nodes
where this range is accurate, as it will not affect the agent’s decision making.

After all criteria are applied, the agent has excluded 952 nodes and considers a set of 2048 nodes
that can be final node candidates if they satisfy the conditions of nonempty intersections for mask
and depth ranges for the specific placement of the target object. The agent will be evaluated again
for the same 40 attempted grasps, both to determine the success rate with the additional exclusions
and to see if the failure cases are closer to success in a way that suggests the agent is not being asked
to use unreliable data that violates the assumptions of reliable vision. Note that the agent’s decision
making as it plans each grasp attempt will still be identical to the method in Experiment 6.5, and
simply uses the new data and measures to correct for the challenges of the new environment and
images.

6.5.7 Experiment 6.8 Results

With the additional nodes excluded from consideration, the agent was successful in 12 (60%)
out of 20 grasps attempted from L1 and 8 (40%) out of 20 grasps attempted from L2, with the
additional 9 rejected trials when the block was placed into L2. Overall, the agent’s grasp reliability
has not improved from 20/40 (50%), but the full results of this experiment (Table 6.1) illustrate
desirable effects of the new criteria. The failure cases include significantly more Palmar bumps (14
rather than 10) and one less miss (one instead of two), suggesting that the agent is closer to success
when it fails. When generalized from these specific initial placements of the target object, this
tendency to be more towards successful grasping is likely to produce additional successful grasps.

We also see in these results a return to the expected pattern, where the agent performs better in
dense regions of the graph where it has more final node candidates available. Intuitively, a larger
set of candidates increases the chance that one will be oriented nearly perpendicular to the target’s
major axis. Further, when the block being in a region that is only sparsely covered by the graph,
a higher portion of the candidates tend to have small peripheral intersections with the target, and
if one of these candidates is selected the creation of the final and preshaping poses requires large,
potentially inaccurate, adjustments with the psuedo-inverse of the local Jacobian estimate. In the
first set of trials for the new environment in Experiment 6.6, the agent grasped 10% of objects from
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Figure 6.10: The cosine similarity between the two estimates of the palm vector’s direction in
2D (u, v)-space can be used as a measure of confidence that the resulting vector is a reliable
representation of the orientation of the hand in the agent’s simple understanding of space. There is
a large bar at zero due to the 267 nodes where one or both gripper fingers are not visible, and the
estimation method that relies on them cannot be computed. With one of the estimates undefined,
the cosine similarity is also undefined, but is set to zero as the agent has no confidence in those
nodes - the estimates cannot be evaluated through comparison. With the exception of these nodes, it
can be observed that the confidence is typically very high, near the maximum cosine similarity of
1. (Note that the cosine similarity is never negative because the estimate that is perpendicular to
the line between the gripper fingers can be flipped to have the same sign as the estimate based on
the palm’s relationship to the base of the hand.) The number of nodes in each bar drops off in a
long tail near the selected threshold value of 0.707, which corresponds to a 45 degree difference
between the estimates for the vectors. Because cases that fall below this threshold are uncommon
and show that two generally reliable ways of estimating the vector have produced very different
angles for the same pose, these nodes will be excluded from consideration as final node candidates.
If they were considered, it would be impossible for the agent to know which of the estimates, or
some point between them, is an accurate portrayal of the orientation, and the fitness for grasping
could not be determined.
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Figure 6.11: A histogram of the sizes of the palm depth range of all nodes, measured as the
maximum disparity observed within the masks for the gripper fingers minus the minimum disparity
observed within the masks. These sizes are calculated after all measures have been taken to eliminate
noise and error readings and the extremes have been trimmed to be at most two standard deviations
from the mean disparity value (with both the mean and standard deviation calculated for each
individual node). For a large majority of nodes, the size of the palm depth range was between 0 and
10 units. Once the size is greater than 10 units, the hand is spanning an abnormally high range of
disparities, and these nodes are excluded from consideration as final node candidates starting in
Experiment 6.8. While it is possible for these large ranges to be accurate representations, it is much
more likely that they are the result of errors that could not be eliminated in the systematic procedure,
and would have to be corrected for manually and on an individual node basis in order for the
agent to predict the result of their usage. We want to avoid this level of experimenter involvement
with individual nodes, so the agent will simply not be allowed to use these nodes that may have
inaccurately reported depth ranges.
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the densely covered L1 and 55% of the objects from the sparsely covered L2, which conflicts with
this intuition due to errors in the data that appear to become more frequently encountered and more
influential with more candidates. In this experiment, the agent had 60% success in L1 and 40%
success in L2, in agreement with this intuition.

We do see an undesirable side effect that the performance in L2 has decreased since Experi-
ment 6.6. As seen in panel (b) of Figure 6.8, the graph may be too sparse across too much of L2 for
more reliable grasping from that location. The exclusion criteria were made generally and without
consideration for individual nodes or their location in the graph, configuration space, or image space,
and may be too aggressive, removing some nodes that could be suitable for use in grasp attempts but
with data that could not be verified with the automatic process. These unnecessary removals have
little impact where the graph is dense and another node will be expected to be nearly as reliable
according to its features, but where the graph is sparse an unnecessary removal may take away the
only suitable choice, and the agent will fall back on a candidate that appears much less reliable.
Additional tuning of the criteria may allow fewer nodes to be excluded and improve performance
when grasping from sparsely covered regions like L2. We leave this issue to be addressed in future
work, and continue forward with this set of exclusion criteria due to this result’s clear advantage
over the other results in this section: the agent no longer appears to be misled by unreliable image
data, and is not failing by wide margins after selecting unreasonable final nodes and modifications.

6.6 Revisiting Cosine Similarity Features for Alignment

6.6.1 Methods

With the change in environments sufficiently accounted for so that the success rate matches
the rate prior to the move, the agent can continue to attempt to add features that would make
grasping more reliable. One area with room to explore is the alignment of the hand for the grasp
approach, the final motion in a grasp trajectory that depends on the preshaping pose and the final
pose. Since Experiment 6.4, the agent has selected the final node from the candidate set that is
most perpendicular to the target’s major axis, that is, the node nf such that the absolute value of
the cosine similarity C(~gf , ~o) is minimized. This cosine similarity was prioritized because the
agent has no method for modifying either of these vectors, but can use the psuedo-inverse of the
local Jacobian estimate J+(nf ) when constructing the preshaping pose and final pose so that all
other cosine similarities are expected to be approximately 1, as desired. However, this assumes
that J+(nf ) and the calculated configurations are perfectly accurate, and will produce the desired
positions in image space that would make the vectors fully aligned.

J+(nf ) is only an estimate, and only intended to be used locally, with growing error as the
desired image-space coordinates become further from the original image-space center of the palm
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Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss
Experiment 6.6 (L1) 10% 0% 25% 65% 0%
Experiment 6.6 (L2) 55% 0% 15% 30% 0%
Experiment 6.6 (All) 32.5% 0% 20% 47.5% 0%
Experiment 6.7 (L1) 50% 0% 25% 25% 0%
Experiment 6.7 (L2) 50% 0% 25% 15% 10%
Experiment 6.7 (All) 50% 0% 25% 20% 5%
Experiment 6.8 (L1) 60% 0% 20% 20% 0%
Experiment 6.8 (L2) 40% 0% 50% 5% 5%
Experiment 6.8 (All) 50% 0% 35% 12.5% 2.5%

Table 6.1: Tabulated results for grasp attempts in the new environment using the new image set and
feature extraction code (Experiment 6.6), using those as well as eroded palm masks and trimmed
palm depth ranges (Experiment 6.7), and when with those methods as well as the exclusion of nodes
with potentially invalid data (Experiment 6.8). The results for each experiment are presented in 3
sets, for the 20 attempted grasps from the green location L1 that is densely covered by graph nodes
and 20 attempted grasps from the blue location L2 where the graph is sparse, as well as the overall
performance out of all 40 attempts. There were 9 rejected object positions in L2 where a grasp
was not attempted, and additional trials were generated so that 20 attempts (and 40 total attempts)
were made. The lower success rate in Experiment 6.6 shows the continuation of the added difficulty
of grasping after a change in environment with uncontrolled factors that cause violations of the
assumptions about the image data. These are corrected for in Experiments 6.7 and 6.8, with the
strongest result coming with the exclusion of nodes as the failure cases are closer to successful
grasps.

cpf . J+(nf ) is used to move the preshaping position backward along the direction of ~gf according to
Equation 6.3. However, if the original position of the final node was such that C(~gf , ~mf,t) is low,
the modified preshaping position is moving especially far from cpf . This is because the direction
from the original final position stored in the node to the target’s center is going to be different from
the intended direction from the modified final position to the target’s center, with the two positions
of the palm on different sides of the target. This larger modification will be less reliable, and the
inaccuracies will tend to produce less aligned vectors. A particularly large move may also cause
unmodelled changes to the orientation of the grippers, causing an additional misalignment.

This can be addressed by considering C(~gf , ~mf,t) as a new feature. The agent has observed
previously that the local Jacobian and its pseudo-inverse are more reliable in smaller neighborhoods
around the observed pair of configuration and image-space coordinates. We assume the application
of this lesson to this situation, such that the agent will prefer to maximize this cosine similarity so
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that the original alignment is better and requires a smaller adjustment, the results of which can be
more reliably predicted and used for better grasping success.

The agent cannot always maximize C(~gf , ~mf,t) and minimize |C(~gf , ~o)|, as these will often be
done with different candidates. This suggests a set of experiments. Experiment 6.8 has already
evaluated the agent’s performance when it only considers perpendicularity to the target’s major axis.
Experiment 6.9 will evaluate the reliability of grasping when only the alignment between the palm
vector and direction of displacement from the target is considered. Finally, Experiment 6.10 will
suggest a straightforward combination of the two measures of fitness and evaluate the performance
when both alignment and perpendicularity are considered.

6.6.2 Experiment 6.9 - Maximizing Alignment of ~gf and ~mf,t

The agent is presented with the same 49 placements of the target object, and based on the
exclusion criteria of Experiment 6.8 rejects to attempt grasps in 9 of them. The final node selection
criteria that was used in Experiments 6.4 - 6.8 is replaced by a criteria to maximize the alignment of
the palm vector (which is assumed to be the same at both the final pose and preshaping pose when
they are constructed with the pseudo-inverse of the local Jacobian estimate) and the displacement
from the original palm center to the target center. That is, of the candidate nodes with nonempty
intersection features, the selected final node will have the maximum value of C(~gf , ~mf,t). This
experiment will answer the question, “Would it be better to only focus on alignment instead of
perpendicularity?”

6.6.3 Experiment 6.9 Results

The answer to the question posed is no - the agent’s success rate for the grasp action drops
if it only considers alignment. The success rate with this method is 9/20 (45%) in L1 and 7/20
(35%) in L2, for an overall grasp reliability of 17/40 (42.5%). The results are compared to those of
Experiments 6.8 and 6.10 in Table 6.2. Because the agent ignores perpendicularity to the target’s
major axis, many failures now involve approaching the block nearly vertically, aligned with the
major axis, and others approach the block from an odd angle that attempts to close around a corner
or other unfavorable cross section, squeezing the block out of the hand in a Palmar bump.

6.6.4 Experiment 6.10 - Maximizing Alignment and Perpendicularity

Since it is generally the case that no single candidate is both the best aligned and the most
perpendicular to the target, the agent needs a way to combine these fitness measures and select a
single final node nf . While other combinations could be explored in future work, for this experiment
the agent combines the features by a straightforward product. In order to facilitate the combination
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of one cosine similarity that should be maximized and another that should be minimized, |C(~gf , ~o)|
will be replaced by 1− |C(~gf , ~o)| so that both measures should be maximized. Then, the agent will
select the final node nf that maximizes the product

C(~gf , ~mf,t) · (1− |C(~gf , ~o)|), (6.4)

which will have a value of 1 in the ideal case that the agent has learned to expect to be the most
reliable. The remainder of the process of planning the trajectory, which moves along the shortest
path set of edges from the home node to the nearest graph node to the preshaping pose, and then
moves to the preshaping pose and final pose, remains the same. The results of this experiment will
answer the question, “Is there a straightforward way for the agent to consider both alignment and
perpendicularity that outperforms planning with either measure alone?”

6.6.5 Experiment 6.10 Results

In this case the answer to the question is yes, the agent can perform grasps more reliably by
considering the product in Equation 6.4. The success rate for grasping was observed to improve to
57.5% over the 40 attempts, with performances by location of 11/20 (55%) in L1 and 12/20 (60%)
in L2. The additional constraints for selection of the best node for grasping appear to affect the
reliability of the underlying reach, as the failure cases include 3 misses along with 9 Palmar bumps
and 5 bumps. A reach is most reliable when the closest candidate is selected as the final node, and
this distance is not considered in the grasping node criteria. The three miss results are examples
where the final node selected was far from the target and the local Jacobian estimate of that node
was not accurate enough at that distance to move the palm to the object’s center, or even in contact
with the object at all. Even with these failure cases, this is the agent’s best grasp performance within
the duration of this work, as can be seen through tabulated results of sets of grasp experiments.
Table 6.2 provides a comparison with the results of Experiment 6.8 and 6.9, and Table 6.3 provides
a comparison with Experiment 6.5, with the best results achieved in the original environment, and
Experiment 6.11, a final alternative method in the new environment. A spatial representation of the
results of each trial given the initial target mask and number of candidates considered is shown in
Figure 6.12. As these results indicate it is the most reliable, this grasping method will be used in
Chapter 7 as a component of the pick-and-place action.

6.6.6 Experiment 6.11 - Using only u and v Vector Components

Another source of noise or error in the processed image data given to the agent is the d
component of all palm vectors ~g and the vector for the target’s major axis, ~o. Recall that the agent is
not provided with 3D models of the hand or the target object, and that it does not have the visual
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Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss
Experiment 6.8 (L1) 60% 0% 20% 20% 0%
Experiment 6.8 (L2) 40% 0% 50% 5% 5%
Experiment 6.8 (All) 50% 0% 35% 12.5% 2.5%
Experiment 6.9 (L1) 45% 0% 10% 45% 0%
Experiment 6.9 (L2) 40% 0% 15% 35% 10%
Experiment 6.9 (All) 42.5% 0% 12.5% 40% 5%
Experiment 6.10 (L1) 55% 0% 30% 15% 0%
Experiment 6.10 (L2) 60% 0% 15% 10% 15%
Experiment 6.10 (All) 57.5% 0% 22.5% 12.5% 7.5%

Table 6.2: Tabulated results for three experiments that all rely on the new image set, trimmed palm
representations, and candidate node exclusion criteria. In Experiment 6.8, the candidate selected as
the final node minimizes |C(~gf , ~o)|, and is the most perpendicular to the target’s major axis. The
grasp success rate decreases in Experiment 6.9 when the agent instead considers only the alignment
of the palm vector and the approach direction, choosing the final node that maximizes C(~gf , ~mf,t).
In Experiment 6.10, when the agent considers both perpendicularity and alignment with the final
node that maximizes C(~gf , ~mf,t) · (1− |C(~gf , ~o)|), performance increases. The 57.5% reliability
of grasps planned in this way is the most reliable grasp action achieved in this work.
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Figure 6.12: A visualization of all 49 target placements for Experiment 6.10, where grasping was
57.5% reliable, with successful grasps in 23 out of 40 attempts, and 9 rejected trials. Each placement
is shown as the boundary of the target mask as observed at the start of the trial, colored according to
the result of the trial. These results can be compared with Figure 6.5 to see a continued trend that
while the positions where successful grasps can be performed are spread around the table, and in
both sparsely and densely covered regions, grasping tends to be most reliable in localized lines and
areas, and a progression from success to failing to activate the Palmar reflex to failing the reach
component as the object’s placement is further from these most reliable regions. This appears to
have some relationship to the number of final node candidates (shown here near the center of the
mask for each trial), which makes intuitive sense since more options will be available to find at
least one that has a well-aligned orientation and approach direction and where these vectors are
perpendicular to the target’s major axis. However, there appear to be other factors, as some of the
failure cases in green L1 have significantly more candidates than the successful cases in blue L2.
The bumps in the lower left corner of L1 may reflect a difficulty of the agent to line up a successful
grasp approach so close to the home node, while the rejections and misses in L2 may indicate the
graph is too sparse to have any reliable candidates when the arm must be so extended to reach an
area. The regions where grasping is most reliable may reflect where the hand happened to have
clearly identifiable and desirable features when motor babbling near that region, and in other regions
the hand may be more difficult to observe accurately or tend to have an undesirable pose. The
factors that cause localized success and failures will be identified and addressed in future work.
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information or motivation to construct its own 3D models. Instead, the agent considers the mask in
(u, v) space and the range of disparity values as separate representations, with the exception of the
combination of the mean of all three dimensions to define a center (u, v, d). One of the limitations
of this representation is that the agent does not have a standard and accurate way of calculating the
d component of the vectors ~g or ~o. Instead, the agent will rely on rough estimates of each vector’s
depth component that are computed by a custom method.

When images of the hand are segmented using the new method where the gripper fingers are
wrapped with colored pipe cleaners, binary image masks of subsections of the hand can be created
as shown in Figure 6.13, one each for the green gripper finger, the blue gripper finger, the base of
the hand (the portion of the image changed from the static background near the grippers), and the
palm (the region between the gripper fingers). The u and v components of the vectors are estimated
in two ways, and then averaged. The first finds the vector from the (u, v) center of the base to the
(u, v) center of the palm, and the second finds the line through the center of the green gripper finger
and the center of the blue gripper finger, and computes the vector perpendicular to it. Since this
vector could be one of two opposite directions that are both perpendicular to the 2D line, the one
that has a nonnegative cosine similarity with the first estimate vector is chosen. (It is this cosine
similarity that is tested by the new exclusion criteria introduced in Experiment 6.8, and if it is less
than 0.707, it is assumed that the agent cannot rely on the accuracy of this node’s representation and
it is not allowed to be a final node candidate.) The d component of each palm vector ~gi is calculated
as a single estimate based on the change from the mean disparity value observed within the base
mask to the mean disparity value within the palm mask (which itself is based on the disparities
observed in the union of the two gripper masks, as the palm mask is the empty space between them
and its own disparity readings would be those of the background). While this tends to include a
functional estimate of the d component of the palm vector, there are many orientations of the hand
where the full trend of depths is not captured well by observing the changes between averages. No
additional adjustments are made to the scale of the components other than a final step to ensure the
3D (u, v, d) vector is a unit vector.

The problem of estimating the d component of ~o is more challenging because there are no
defined subregions of the target object - this could perhaps be resolved in future work that makes
parts of the object visually distinct from each other, but at the cost of providing additional structural
information to the agent (either directly, or indirectly through the image processing code that the
agent can treat as a black box that provides the representations it is given, which would be more
detailed or accurate to the 3D object). Without subregion masks, the method cannot rely on the
difference between their average depth values. Instead, the agent finds the major axis of the target
mask in (u, v) space, and then creates a “forward” vector from the target center to the boundary
along the major axis, and a “backward” vector from the target center in the opposite direction along
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Figure 6.13: A visualization of the masks for subregions of the self that can be segmented using
the method that assumes the gripper fingers will have distinctive colors. The masks are shown as
boundaries rather than solid masks to allow the original color of the RGB image percept to show.
The gripper fingers are identified by their color, and are bordered in green and blue. The mask for
the robot’s arm is bordered by cyan, and is the largest region of the image that has changed from the
static background, minus the gripper masks. The mask for the full arm is used minimally in this
work, but may be important for obstacle avoidance tasks in future work. The base of the hand is the
intersection of a dilation of the union of the gripper masks and the robot arm mask, and is shown
here with a red border. The full hand of the robot is found as a convex hull around the base and
grippers, shown here in white. The palm mask occupies the pixels inside the hand mask that are
not part of either gripper mask or the base of the hand. In order to make sure the palm corresponds
to the grasping region between the gripper fingers, both gripper fingers must be visible and their
masks nonempty. If only one or zero gripper fingers is visible, it is possible for the convex hull to
indicate a space outside the hand where grasping will not be possible. When the palm mask can
be successfully found, the methods for palm vectors use these subregions of the hand, where one
estimate finds a vector from the center of the red base through the center of the palm, and another
estimate finds a vector perpendicular to the line from the center of the green mask to the center of
the blue mask. Starting in Experiment 6.8, the agent excludes nodes without both grippers visible
and nodes where the estimates for the palm vector are at least 45 degrees apart.
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the major axis until reaching the boundary. The agent creates a “forward” set of disparity values
read from pixels that the forward vector passes through, and a “backward” set of disparity values
from the pixels that the backward vector passes through. The d component is estimated as the mean
of the forward set minus the mean of the backward set. The magnitude of the existing (u, v) vector
for the major axis is set to half the length of the major axis, as this is the distance between the
halfway points of the forward and backward pixel sets. Then the values are combined into a 3D
vector (u, v, d), which is converted to unit length.

In addition to problems with estimating the d component to complete the 3D vector, there are
also problems with the scale of this dimension. Distances along the u and v axes can be measured
in pixels, which are square for the Kinect RGB-D camera that we use in this work. This means their
values are in the same units and the same scale. By contrast, the d component is based on measured
disparity values, which do not share the same units. Further, disparity has an inversely proportional
relationship to depth or distance in the 3D space, so changes are not on a linear scale. In the current
method, these differences are ignored, and the 3D vector is constructed in the straightforward
way without conversions. The agent is able to use features with depth components such as the
palm centers and target centers despite these differences, simply understanding how to increase or
decrease the value of each coordinate according to the relationships modeled by the local Jacobian
estimate for each node. However, the difference in scale and inclusion of nonlinearity for d make
the calculated palm vectors and major axis vectors imply different orientations than the true poses
of the hand or object in 3D space. The vectors used by the agent are also inaccurate when compared
to the pose because the disparity values measured within the masks reflect the front face of the
object visible to the camera, and not necessarily the values for a line passing through the core of the
object. This tends to affect the target object as a single rectangular block more than it affects the
hand, which exposes several more faces and a more complete set of the disparities occupied.

Given these limitations on the accuracy of the d component of each vector, we chose to test if the
current estimation methods are another source of misleading data given to the agent. If this was the
case, the reliability of the agent’s grasp action would decrease. To test this hypothesis, we provided
the agent with only the 2D vectors in (u, v) instead of the 3D vectors in (u, v, d), and evaluated
performance on the same set of 49 object placements, of which 9 are rejected and 40 are attempted.
If the agent performs better, this will be evidence that the current estimates are not sufficient and
should be eliminated or replaced. If the agent performs the same or worse, then we can conclude
that the estimates are accurate enough to provide some useful information that increases success
rates. In that case, the 3D vectors should continue to be used, at least until a more reliable estimate
can replace them.
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6.6.7 Experiment 6.11 Results

The agent performs slightly worse at grasping tasks when using only 2D vectors in (u, v)-space
than the full 3D vectors in (u, v, d)-space. In particular, there is one less successful grasp. With this
method, the agent grasps the object from 12/20 (60%) of placements in L1 and from 10/20 (50%) of
placements in L2, giving an overall reliability of 22/40 (55%). The performance can be considered
even more similar to when the 3D vectors were used because one of the failure cases was a weak
grasp, where the agent temporarily gained control over the object but was not able to maintain it for
the full return trajectory to the home node. The agent also achieved one more Palmar bump and one
less miss, suggesting the approach was closer to correct in those cases. Table 6.3 compares the full
results to the results of Experiment 6.10, where 3D vectors were used, as well as the final results in
the original environment from Experiment 6.5, which this performance remains stronger than.

Results Grasp: Successful Failed
Palmar Reflex: Activated No Activation

Reach: Successful Failed
Weak Palmar

Grasp Grasp Bump Bump Miss
Experiment 6.5 (All) 50% 2.5% 22.5% 20% 5%
Experiment 6.10 (L1) 55% 0% 30% 15% 0%
Experiment 6.10 (L2) 60% 0% 15% 10% 15%
Experiment 6.10 (All) 57.5% 0% 22.5% 12.5% 7.5%
Experiment 6.11 (L1) 60% 5% 20% 15% 0%
Experiment 6.11 (L2) 50% 0% 30% 10% 10%
Experiment 6.11 (All) 55% 2.5% 25% 12.5% 5%

Table 6.3: Tabulated results for Experiment 6.5, which featured the highest grasp success rate in
the original environment, and the two Experiments that outperform it in the new environment by
considering an additional cosine similarity measure for alignment. Experiment 6.5 is only presented
with its full set of 40 trials from random positions across the table and no rejected positions, while
Experiments 6.10 and 6.11 have results split by location as well as the overall result. The agent’s
grasps are slightly more reliable in Experiment 6.10 when they are planned using the 3D vectors
in (u, v, d) image space, compared to Experiment 6.11 when they are planned using only the 2D
vectors that include the (u, v) components only. We can conclude that the d components provide
some useful information, so the method using them will be selected for continued use by the agent
for grasping and pick-and-place actions. Future work may find a more informational or more
accurate d component for the vectors that will improve performance further.

Despite some improvement in the failure cases, only considering 2D vectors achieved slightly
less successful grasps than considering the 3D vectors. This supports keeping the method of
Experiment 6.10 as the final method for grasping within this work, as well as the use of that
method in Chapter 7 as a component of the pick-and-place action. However, the inclusion of the d
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component as the third dimension only produces one additional success with what should intuitively
be important and highly relevant additional data. While this supports continuing to use the current
information for d instead of simply omitting it, this suggests a next step for improving the grasp
action in future work. If either the image processing could produce better depth information or the
agent could better use the limited representation used here, this would likely translate to a higher
success rate for the grasp action.

6.7 Conclusion

By the end of Chapter 5, the agent had learned a fully reliable reach action. Within this chapter,
the agent used the information available from successful grasp trajectories and another iteration of
the learning from unusual events pattern to learn a semi-reliable grasp action.

In Section 6.1, the agent identified subsets of the results of reaching trials that produce unusual
results, with a qualitative difference from the typical result of a bump causing a change to a new
quasi-static position. In one subset, the simulated Palmar reflex is activated and the agent has the
distinctive experience of the grippers closing, which it can measure by the change in aperture a. In
a subset of these trials with Palmar reflex activations, the agent observes the target object take on
a new property where it temporarily becomes part of the self and follows the motion of the hand.
Achieving a state where the object has this property is defined to be the result of a successful grasp
action.

In Section 6.2, the agent repeats its final set of reach trajectories with a range of settings for
the gripper aperture a. Intuitively, one of the requirements for a reliable grasp is that the hand
is sufficiently open. Without being informed of this requirement, the agent learns to satisfy it by
observing that grasps succeed most often when the hand is fully open (a = 100). Using this setting
and the final reaching method the agent triggered the Palmar reflex in 30% of trials, and 12.5% of
trials were successful grasps.

In Section 6.3, the agent addresses the requirement for reliable grasps that the hand is properly
aligned. It learned desirable cosine similarities between the vectors defined in Equation 6.1 and
Section 3.4.4. In particular, the agent observed that grasps occur most frequently when the approach
and hand opening are aligned (cosine similarity ≈ 1), and when both of these are perpendicular to
the target’s major axis (cosine similarity ≈ 0). Planning grasp trajectories with approximately these
cosine similarities increased the success rate to 35%.

In Section 6.4, the agent experiments with the value of q7. With expert knowledge it is clear
that this degree of freedom sets the angle of the most distal wrist joint w2, which will be the best
choice for orienting the hand without a significant change in the hand’s position. The agent can
justify this choice without prior knowledge by observing that the change in (u, v, d)-coordinates of
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the hand in image space for each unit of change to q7 is much smaller than for the other joints, as
calculated in the local Jacobian estimates. A general feature that predicts whether an angle of w2
will be suitable for a grasp has not yet been identified, so the agent simply applies the q7 value from
a previous successful grasp to its new grasp attempts. In combination with the features so far, this
technique produces a 50% success rate for grasps.

In Section 6.5, we discuss the move of the robot that our agent controls to a new environment
in a new building, and many factors that were changed in the process of this move and over time
between experiments. These initially prevent the agent from achieving any successful grasps using
the learned method. However, a process that including recording a new RGB and depth image for
each node and updating the image processing code that extracts representations from the raw images
was able to restore some reliability. In order to return to the success rates that were typical before
the relocation of the robot, we introduced a set of criteria that prevented nodes with unreliable data
from being considered as final node candidates. When using the set of nodes and otherwise the
same decision-making method as the previous section, the agent was again able to achieve a 50%
success rate for grasping.

In Section 6.6, the agent is instructed to evaluate additional options for using the vectors in
Equation 6.1 and Section 3.4.4 to plan a well-aligned grasp approach. Since Section 6.3, the
agent has been focused on finding a final node where the orientation of the hand (measured by
the palm vector) is near perpendicular to the target’s major axis, and relied on adjustments with
the pseudo-inverse of the local Jacobian estimate to produce the aligned vectors that have been
observed to be reliable for the final motion of a grasp attempt. However, the adjustment may fail to
sufficiently align these vectors, so the agent considered selecting final nodes where the alignment
property measured by C(~gf , ~mf,t) was already maximized and required the smallest adjustment.
This was detrimental to the overall success rate until the agent also considered perpendicularity to
the target major axis along with the alignment feature, maximizing the product in Equation 6.4. We
evaluated this final method using both 2D vectors and 3D vectors to ensure the d component of
the vectors was sufficiently accurate to improve performance over a method where it was ignored.
When planning with the 2D vectors, the agent was 55% successful, and 57.5% of grasps succeeded
when planned with the 3D vectors.

While the current best grasp action policy is only semi-reliable, we leave further improvements
in reliability for future work. We instead continue in Chapter 7 of this work by instructing the agent
to move on to a learning phase for the next action, the ungrasp. This transition differs from the
transition from reaching to grasping since an ungrasp is not a specific grasp trajectory in the way a
grasp is a specific reach. However, each successful grasp produces a qualitatively new state due
to the grasped property of the object. When presented with this new state, the agent can explore
by modifying each degree of freedom, and in this process observes ungrasps as an unusual event.
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The ungrasp action can be refined into a place action, giving the agent more control. The current
grasp method can be combined with the placing method in the next chapter to form a pick and
place action. While its success rate is limited by the current reliability of the component actions,
especially the grasp action that remains only semi-reliable, we demonstrate in Section 7.5 that the
resulting pick and place action is also semi-reliable.
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CHAPTER 7

Learning the Pick-and-Place Action

7.1 Introduction

Thus far, we have discussed the peripersonal space graph representation that the agent builds,
and how this facilitates learning of actions to move the arm to reposition the hand, and where more
specific trajectories can be planned to reach or grasp a target object. In this chapter, the agent
will learn actions that are applicable when an object is currently grasped - as the object cannot be
reached or grasped again while it is already in the hand.

Once an object has been grasped, the agent gains control of the object. With fully successful
grasps, this control can be maintained indefinitely and the object will not slip out of the hand without
action from the agent. In Section 7.2, the agent observes the typical result of the maintained grasp
where the object moves along with the hand with highly correlated direction and magnitude of each
motion. It will observe an unusual result where the grasped state ends, and will describe this as
an ungrasp. In Section 7.3, the agent will conduct experiments to learn how to repeat the ungrasp
event with a reliable action.

In Section 7.4, we recall the definition of locations as qualitative regions of interest in the agent’s
environment, initially discussed in Chapter 3. The agent also learns to refine the ungrasp action into
a place action, where the hand is moved to a suitable pose prior to opening the grippers so that the
ungrasped object will transition to a quasi-static pose in a specific desired location.

Section 7.5 presents the final experiment of this dissertation, where the agent combines the
learned grasp action from Chapter 6 with the place action from Section 7.4 in sequence to produce
a pick-and-place action. We will demonstrate that the agent can semi-reliably grasp the object from
one qualitative location and place it into a different qualitative location, gaining a high level of
control over the object and setting up for future learning.
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7.2 Observing the Unusual Event of an Ungrasp

7.2.1 Methods

Once the agent has completed a grasp it produces a state of the environment that is relatively
unfamiliar, even once grasping is semi-reliable. In the majority of the time and observations in the
agent’s experience so far, motion of the arm is not correlated with motion of the block object in
the foreground. Most commonly, motion of the arm does not cause any motion in the object, and it
remains static with the background. In the event of an accidental bump or a bump caused as the
result of a successful reach, the block changes position over a short period of time, and then comes
to rest in a new position (or disappears, if it has been knocked out of view). Only in the subset
of reaches that produce grasps does the block enter a state where it has a qualitatively different
behavior of moving along with the robot’s hand, with magnitude and direction of its motions highly
correlated with those of the hand.

The state reached after a successful grasp is also unique because of the value describing the
gripper aperture, a. As the agent motor babbled to create the PPS Graph, a was fixed at 100 (fully
open - recall that the value of a specifies a percent of the maximum aperture of the grippers) to
increase the apparent size of the hand in the visual percepts and to allow a distinctly colored block
to span the space between the grippers, aiding in the segmentation of the hand to create binary
image masks. a was also fixed at 100 while the agent learned to reach, so that the pose of the
hand best matched those in the stored images. The agent chose to set a to 100 while attempting
grasps as it found that approaching a target object with the hand fully open was the most reliable
option. In contrast, once the grasp occurs, the Palmar reflex has been triggered and the grippers
close, attempting to set a to 0 (fully closed), but often coming to a stop at some fraction open when
contact with the grasped object prevents further closure. This new value, and the adjustment of any
degree of freedom without an intentional command, are both new phenomenon for the agent.

As the state of the agent and its environment are unfamiliar after a successful grasp, and the
property of having the block grasped in the hand violates the preconditions of the learned reach and
grasp actions (the target cannot be in the hand and the hand should be empty and open to begin),
the agent should perform a broad search over its degrees of freedom in order to determine which
may produce new unusual events to study. However, some degrees of freedom can be ruled out
under an assumption that they produce the typical result of maintaining the grasp. Recall that in
order to verify that the grasp occurred and that the agent successfully gained control over the block,
the agent performs a sequence of moves to random PPS Graph nodes and observes the location of
the block in the visual percepts as it arrives at each node. When the current binary image mask
and depth range for the block at each node intersects with the stored representation of the hand at
that node, it is confirmed that the block is moving along with the hand. Since this process involves
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moving between nodes, and does not prevent the observation that the grasp is maintained, it can be
concluded that a divergence from this typical behavior will not be observed by changing degrees of
freedom that are essential to the definition of being at a particular node.

As discussed when learning to grasp, the setting of the most distal joint w2 does not make a
significant contribution to the image-space center of the robot’s hand. This can be quantified by the
small magnitude of its coefficient in the local Jacobian estimates, where changes to q7 are expected
to cause negligible changes to cp. Therefore, it is not essential to set w2 to the stored angle q7i to be
considered to be at a node ni. This has been used previously to justify the rotation of the wrist to
better orient the hand for a grasp. The gripper aperture a has no values recorded in the nodes, and is
not part of their definition. This also allowed a search over the range of all possible values for a to
learn that keeping the gripper fully open (a = 100) during a grasp approach gave the best chance
of success. Further, changes to a have minimal changes to cp and the observed shape of the hand.
These findings that w2 and a can be freely adjusted without being considered to change the nodes
and edges of the trajectory visited are also consistent with the ideas implemented in the Improved
Explored PPS Graph, discussed in Section 3.2.2.3 and that will have applications in future work.

The agent’s experience with states after the initiation of a grasp demonstrates that adjustments
to the major arm joints (s0, s1, e0, e1, w0, and w1), those that remain part of the definition of a
node due to their significant impact on the hand’s image-space position, produce the typical result
of maintaining the grasp. This leaves adjustments to w2 and a to test for unusual results.

In order to more efficiently conduct trials, each begins after the block has been placed in the
robot’s hand by the experimenter. This avoids having to repeat trials where the grasp attempt fails.
The Palmar reflex is activated as normal when the block passes between the gripper fingers, resulting
in a similar value of a and a grasp with similar properties as the agent’s own grasp actions. Due
to these similarities, we assume that the agent will observe the same events with the same motor
commands. Trials will continue to start after an experimenter-aided grasp in Sections 7.3 and 7.4
when the agent is aware of ungrasps and learning to repeat them reliably or use them for the place
action, but we similarly assume that the learned actions will not rely on this assistance from the
experimenter. We confirm that this is the case during the demonstration of the full pick and place
sequence in Section 7.5, where the agent performs a grasp independently and then ungrasps the
object to place it into the desired location using the techniques learned in these experiments.

7.2.2 Experiment 7.1: Motor Babbling with w2 and a after a Grasp

In this experiment, the agent modifies the value of either q7, the angle of the smallest wrist
joint w2, or a, the gripper aperture, and checks for an unusual result as a side effect to the intended
change. The effect of changing the major joints of the arm has been observed, and this is for the
active grasp to be maintained, such that the grasped block continues to follow the hand. With
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this considered the typical result, the agent wishes to determine if changing either of the final two
degrees of freedom produce a qualitatively different result.

The agent will conduct 50 trials beginning at a random node ni (sampled separately for each
trial) and with the object grasped, such that initially q7 = q7i and a reflects that the grippers were
closed as far as possible until stopped by the grasped object. The agent does not have information
to suggest that either w2 or a will be more likely to produce an unusual event of interest, so it will
randomly select between them with uniform probability (50% chance each). To avoid the potential
of confounding, the agent will only modify exactly one of the two in each trial, and never both.
Once a degree of freedom has been selected, the agent will select a random delta to adjust it by
in the same manner as was used for the motor babbling to build the Explored PPS Graph. If q7 is
selected, then w2 will be rotated by

∆q7 ∼ N(0, 0.6117), as 0.1 · range(q7) = 0.6117, (7.1)

and if a is selected, the gripper aperture will be adjusted by

∆a ∼ N(0, 10), as 0.1 · range(a) = 10. (7.2)

For each trial, the agent will record the sampled delta as the intended change as well as the before
and after values of the degree of freedom so that it can compute the actual change realized. After
the delta has been applied, the agent selects another random node nj with a minimum path length
of at least 3 edges between ni and nj . The agent will execute the graph path trajectory from ni to
nj (changing only the major arm joints to their stored values, leaving q7 fixed) and use the visual
observations taken at each node visited to determine whether the grasp was maintained or the
object’s grasped state has ended - an unusual event which we will describe as an ungrasp event.

7.2.3 Experiment 7.1 Results

The agent randomly chose to attempt to change the gripper aperture a in 20 of the 50 trials. The
attempted and actual changes for each trial are shown in Figure 7.1. 19 of these trials exhibited the
typical result where the grasp was maintained. Only the single marked trial produced the unusual
ungrasp result. The presence of at least one ungrasp justifies further testing of a to produce ungrasps.
We can also conclude from the relationship of intended and actual changes that no intended change
∆a < 5.6 produces any actual change. Future trials will only be performed with intended changes
above this threshold, as ungrasps will not occur without an actual change.

In the other 30 trials, the agent attempted to change the angle of w2, q7. The attempted and
actual changes for each trial are shown in Figure 7.2. The grasp was maintained in all 30 trials. As
no adjustment of w2 produced an unusual event, future experiments for ungrasping and placing will
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Figure 7.1: The intended and actual changes to the gripper aperture in 20 trials where the degree of
freedom set by a was selected for adjustment. Each intended change was sampled from a normal
distribution. We see that for negative intended changes there is no actual change, intuitively because
the grippers are already closed as far as the grasped block will allow at the beginning of the trial, so
the grippers cannot close to a narrower setting. We also observe that for positive intended changes,
the actual change tends to be smaller than the intended change. In these cases, the grippers only open
until the value of a enters the tolerated range of errors from the intended value, with this tolerance
specified by the built-in controller for the grippers. The leftmost annotated trial demonstrates that
an intended change of ∆a = 0.63 is too small to produce an actual change as the setting is already
inside the tolerated range before any motion occurs. The next annotated trial shows that an intended
change of ∆a = 5.6 is sufficiently large to be above the error tolerance, and produces an actual
change of 2.08. All trials with intended changes of at least this magnitude had a nonzero actual
change, so this value is treated as a threshold for future experiments to ensure the grippers move.
The final annotated trial, marked in red, has the second largest intended and actual changes, and
was the only trial in this experiment that produced an ungrasp. Using normally distributed deltas for
a has a 5% reliability for producing ungrasps.
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Figure 7.2: The intended and actual changes to the angle of the wrist joint w2 in 30 trials where
the degree of freedom set by q7 was selected for adjustment. All trials produced the typical result
where the grasp was maintained after the adjustment, confirmed by moving along a graph path
trajectory and observing that the block continued to move along with the hand. While the absence
of any unusual events will rule out this degree of freedom for use in further ungrasping experiments,
we can take away the additional observation that the robot and the controller used are proficient
at achieving the intended change in most cases. It is unclear at this time what caused the smaller
magnitude of the actual change for the two trials that did not fit this pattern.

not use w2. We can observe, however, that the intended change to w2 matches up well with the
actual change in almost all cases. This differs from a and the major joints, which tend to fall short
of completing the full intended change once the remaining error from the set point falls is less than
a set tolerance.

7.3 Creating an Action to Ungrasp Reliably

7.3.1 Experiment 7.2: Ungrasping with Larger Adjustments to a

From the results of Experiment 7.1, the agent concludes that modifications to a can produce the
unusual ungrasp event. It is not clear what values of ∆a will be most reliable. However, the agent
can eliminate some unproductive values. The observed relationship between intended changes and
actual changes in Figure 7.1 suggests that if the intended change is less than 5.6, then no actual
change will occur. As trials with no actual change cannot produce an ungrasp, the agent will use
rejection sampling until the intended ∆a ≥ 5.6 to be above this threshold. As before, the agent will
conduct 50 trials, with each starting with the hand at a random node ni and after a block has been
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grasped.

7.3.2 Experiment 7.2 Results

Now that the agent is always adjusting a and only attempting adjustments above the minimum
threshold for the controller to produce an actual change, more ungrasps are observed, as should
be expected. Out of 50 trials, 6 result in an ungrasp. The 50 new trials are shown together with
the previous 20 trials that also attempted to adjust a in Figure 7.3. The ungrasp action policy of
this experiment, using a and the minimum threshold, is 12% reliable. We can also observe that
five of the new ungrasps occur with some of the largest changes toward more open. Of the trials
with intended changes of at least ∆a = 17, 5/7 (71.4%) are ungrasps. While the sample size
is smaller, the trials with intended changes ∆a > 21.5 are even more reliable, with 2/2 (100%)
succeeding. This informs the next experiment, where the agent will attempt to consistently ungrasp
with significantly larger changes to a.

7.3.3 Experiment 7.3: Finding a Minimum Reliable Change to a

The results of Experiment 7.2 show that when the intended change ∆a ≥ 17, the ungrasp action
is 71.4% reliable, and that when ∆a > 21.5, the ungrasp action is 100% reliable. However, these
conclusions are based on only 7 and 2 examples, respectively, casting uncertainty on their accuracy
and generality.

Let ∆a∗ denote a threshold such that all ungrasp attempts so far using ∆a > ∆a∗ have succeeded.
This threshold is valuable because if the agent plans a new ungrasp attempt that also uses ∆a > ∆a∗,
it can be confident that the ungrasp will succeed. After Experiment 7.2, ∆a∗ = 21.5. In order to
test if this is the correct value for ∆a∗, the agent performs 50 additional trials that all use a ∆a

greater than the current value of ∆a∗. If the ungrasp fails (that is, the grasp is maintained) in one of
these trials, the value of ∆a∗ is updated to the ∆a used in that trial, so that it is still the case that
all ungrasps using ∆a > ∆a∗ have succeeded. Any remaining trials will use ∆a greater than the
newly updated threshold.

While it is possible to continue to use rejection sampling from the distribution N(0, 10), the
initial rejection threshold of ∆a∗ = 21.5 is already more than two standard deviations above
the mean and it will be rare for the sampled ∆a to be accepted. Assuming there may be new
failed ungrasps, ∆a∗ will increase, and samples above the threshold may become prohibitively
rare. Instead of N(0, 10), each ∆a will be sampled from a uniform distribution over the half-open
interval (∆a∗, 100− a], where a is the current openness of the gripper at the beginning of the trial.
Like Experiments 7.1 and 7.2, each trial in this experiment will begin with the grippers closed
as far as possible around the object after performing an experimenter-aided grasp, and the value
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Figure 7.3: The results of Experiment 7.2, where the agent performs 50 more trials where the
gripper aperture a is adjusted after determining in Experiment 7.1 that changes to a can produce an
ungrasp but that changes to w2 have not. The plot shows the 50 trials of Experiment 7.2 along with
the 20 trials of Experiment 7.1 that also adjusted a. We can observe a similar trend as in Experiment
7.1 between the intended changes and the slightly smaller actual changes. Due to the rejection
sampling, all new trials from Experiment 7.2 increase the opening by at least 5.6% of the full range.
6 of 50 (12%) of ungrasps attempted with this threshold enforced succeeded, and 7 of 70 (10%)
of all ungrasps attempted with adjustments to a have succeeded. Improving the reliability of the
ungrasp action further relies on the observation that the successful ungrasps are concentrated in
the higher changes to a. Five of the new ungrasps occur with a change of at least 17 percentage
points , and only two trials above that threshold had the typical maintained grasp result instead. This
provides an estimate that a policy using only changes (∆a ≥ 17) will be 71.4% reliable (5 out of 7).
Another estimate that 100% of attempts so far with intended changes of ∆a > 21.5 suggests that a
policy’s reliability may be improved by using increasingly high minimum thresholds.
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of a will reflect this. The introduction of a maximum change is necessary to define the uniform
distribution as well as to guarantee the grippers are never commanded to more than 100% open.
Another advantage of the uniform distribution at this point is that larger intended changes will be
just as likely as those just above the rejection threshold, unlike in the normal distribution where they
are less likely. This will allow the agent to more efficiently explore previously unexplored portions
of the range of possible ∆a values and determine the reliability for ungrasps using those ∆a.

7.3.4 Experiment 7.3 Results

Planning ungrasps by changing the gripper aperture by ∆a ∈ (∆a∗, 100− a] is a highly reliable
method, succeeding in 48 (96%) out of 50 trials. For trials 1-14, ∆a∗ = 21.5 was used. The
agent observed a failed ungrasp in trial 14, while using an intended change of ∆a = 32.74, which
produced an actual change of 29.60. Afterwards ∆a∗ was updated to 32.74, and used in trials 15-40.
∆a∗ was updated to the ∆a used in trial 40, 41.94, which had produced a 38.72 change in the
gripper’s openness but failed to ungrasp the block. This value was used for the remaining trials
41-50, and no grasps above this threshold failed. The full set of results from the ungrasp trials in
this experiment and experiments 7.1-7.2 is shown in Figure 7.4.

At this point, the agent can conclude that ungrasps will be fully reliable if they are performed by
opening the grippers by at least ∆a∗ = 41.94. However, the agent has made similar conclusions in
the past with lower thresholds ∆a∗, and has observed failures when using ∆a > ∆a∗ until the most
recent update to the threshold. Had ∆a∗ been set to 41.94 initially, the agent’s data suggests that it
would not have observed any failures.

These two observations - that the agent would not have observed failures with a higher ∆a∗ and
that the agent has been surprised by failures when using ∆a that it believed were high enough to be
fully reliable - support an extrapolation to conclude that the most reliable threshold choice will be
as large as possible. In practice, the agent can only open the grippers to 100% open, so this can be
achieved in each future ungrasp attempt by using ∆a = 100 − a. This strategy allows the agent
to fully open the gripper in order to perform an ungrasp. Ungrasps planned in this way have been
100% reliable, with the agent always observing the block no longer moves with the hand after this
change to the grippers, signaling that the block has transitioned out of the grasped state.

7.4 Refining the Ungrasp Action into a Place Action

7.4.1 Methods

Recall from Section 3.3 that the agent’s environment can be described by a reachable space
R and a visible space V , and that the peripersonal space graph is a sparse approximation for the
space that is both reachable and visible,R∩ V . We also define the workspace surfaceW ⊂ R∩ V ,
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Figure 7.4: The intended and actual changes to the gripper aperture as a percent openness a used
in experiments 7.1-7.3. The 50 trials from experiment 7.3 are generally the largest changes, due
to sampling the intended changes ∆a from U(∆a∗, 100− a) instead of N(0, 10), which provides
experience in previously untested ranges of values more efficiently. Sampling in this way also
meant that in experiment 7.3, the agent only attempted ungrasps by opening the gripper by at least
an intended amount ∆a∗, a threshold equal to the largest change that has been observed to fail
to produce an ungrasp so far. With this choice, the agent expects all of the attempts to succeed.
However, two attempts unexpectedly fail, and the agent revises ∆a∗ from an initial value of 21.4 to
32.74 and finally 41.94. This pattern demonstrates that the agent may need to increase this threshold
further indefinitely as it encounters rare failures in the future. Instead, the agent will extrapolate
from the trend that larger ∆a tend to be more reliable and conclude that it should always fully open
the grippers to perform an ungrasp.
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which is the tabletop where the foregound objects that the agent interacts with can have stable
positions. Section 3.3 also defines a set of qualitative locations in the agent’s environment. Of
primary importance to this work are two locations of interest within W , L1 and L2, which we
assume the agent can visually identify (in this work, this is facilitated with distinctive colors).
For these locations, the agent will consider an object to be in these locations if its mask has any
nonempty intersection with the mask of the location. This lenient definition does not require precise
coordinates or a particular orientation of the block, and is therefore a better fit for the agent’s
primitive visual sense and early motor skills than if the locations were smaller or if a more strict
definition for in was used. We also define L3 ≡ W− (L1∪L2) that describes the rest of the tabletop,
and can also describe locations outside ofR∩ V , such as the invisible location ¬V . Certain bumps
and ungrasps can cause objects to come to rest out of sight, transitioning to ¬V . While this is
an unusual outcome, the agent will not focus on this in this work since these objects cannot be
observed or interacted with further without intervention by the experimenter. While objects can still
be observed and interacted with in L3, we assume for this work that only L1 and L2 are of interest.
These locations can be compared to bins that it is desirable to sort certain objects into, where they
will have new states or affordances.

For each trial of Experiment 7.1, the agent modified the degree of freedom for either the wrist
joint w2 or the gripper aperture a after the hand was at a position corresponding to a random node
ni, and one of these modifications produced an ungrasp. The ungrasp attempts in Experiments 7.2
and 7.3 similarly began at random nodes ni. By performing the ungrasps from different points
in space, the agent was able to observe a variety of post-ungrasp states for the object. Of the 55
successful ungrasps, the post-ungrasp state of the block was observed to be in the blue location
L2 14 times (Figure 7.5), in the green location L1 19 times (Figure 7.6), in the remainder of the
tabletop L3 11 times (Figure 7.7), and in the out of view location ¬V 11 times (Figure 7.8). For
each location, the object came to rest in it in a minority of trials, and an end state outside of any
particular location can be expected as a typical result. With the assumption that L1 and L2 are
regions of interest for the agent or are desirable positions for the block, the agent will focus on the
unusual events of the object coming to rest in these regions.

A place action, also referred to as a placement, will be defined as an ungrasp that is intended
to achieve the unusual result of a non-self foreground object being in a specified location. The
place action will always include the opening of the grippers to perform the ungrasp component, and
may also include an earlier step of moving the arm along a graph path trajectory to a node that is
reliable for the intended placement. Experiments 7.4-7.6 will allow the agent to determine how to
identify nodes where ungrasping will reliably place the object into the desired location. Specifically,
in Experiment 7.4, the agent will evaluate the reliability of the nodes suggested by Experiments
7.1-7.3 and will identify a feature that that can predict the reliability of candidate placement nodes
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Figure 7.5: Of the 55 successful ungrasps during Experiments 7.1-7.3, these 14 resulted with
the object coming to rest into the blue location L2. The RGB images shown are those recorded
immediately after the change to a that caused the ungrasp. The nodes these ungrasps were performed
from, where the arm is still positioned in these photos, will be evaluated for their reliability for
placing into the blue location in Experiment 7.4. The agent will learn and evaluate a technique for
placing into the blue location in Experiment 7.5.

in order to determine a potential policy for planning reliable place actions. In Experiment 7.5, the
agent will determine the success rate of the place action when using this policy for the location
where the learning took place (L2), and in Experiment 7.6, the agent will determine the success rate
when this learned policy is transferred to be used for another location (L1). This process will not
yield an exhaustive list of the nodes or other positions that can place into the locations with some
reliability, rather, its goal will be to find at least one policy for placements that is fully reliable.

7.4.2 Experiment 7.4 - Testing the Reliability of L2 Placement Nodes

The agent first selects the more rare event of placing into the blue location L2 to study. From
the ungrasps performed from random nodes, the agent has observed a set of 14 nodes where it
is possible for an ungrasp performed at those nodes to result in a successful placement into L2.
However, the agent does not have information about how reliable each of these nodes is for the
place action - attempts from one of these nodes could succeed consistently, or the observed success
could have been a rare fluke. The agent will gather information about the reliability of each node
by performing 4 additional ungrasps at each, and counting the number of successful placements
observed (out of 5, as the total success rate will include the first placement when the node was used
after random selection for ungrasping).
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Figure 7.6: Of the 55 successful ungrasps during Experiments 7.1-7.3, these 19 resulted with the
object coming to rest into the green location L1. This was the most common result. The agent will
learn to reliably place into the green location as a transfer of the learning it performs to reliably
place into the blue location. This will be tested in Experiment 7.6.

Figure 7.7: Of the 55 successful ungrasps during Experiments 7.1-7.3, these 11 resulted with the
object coming to rest in view and on the table’s surface, but outside of both the blue and green
locations. We expect a technique for purposefully placing in this region (L3) to be more difficult
to learn than a technique for the blue and green locations, due to the more complex shape and the
presence of “holes” where the other locations appear. Learning this technique will be left for future
work.
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Figure 7.8: Of the 55 successful ungrasps during Experiments 7.1-7.3, these 11 resulted with the
object coming to rest out of the agent’s field of view. While this disappearance of the object is
qualitatively unique, the agent will not study this phenomenon until future work. We have made this
decision as placing the object out of view and out of reach cannot be part of a continuing sequence
of pick and place actions (it will always be the final time the object can move without experimenter
intervention), and as we expect it to be more difficult to make a general rule for which nodes or
positions can be used to repeat this event of placement into an out of view location.

After collecting enough data to more accurately estimate the reliability of each node, the agent
will examine properties of the nodes in search of a predictive feature for which nodes will be reliable
for placing. Perhaps the most straightforward relationship that can be calculated between the nodes,
which have stored image data, and the locations, which are only represented visually, is the center to
center Euclidean distance in image space, ||cL2 − c

p
i ||. The agent will consider this feature first, and

may end its search if a clear trend is found that may be sufficient for prediction of a place action’s
success.

7.4.3 Experiment 7.4 Results

The agent performed an additional four ungrasps (all of which succeeded using the learned
policy of fully opening the gripper) with the hand at each of the 14 nodes where an ungrasp
was observed to place into L2, and the number of successful placements is recorded in the first
column of Table 7.1. Figure 7.9 displays the image-space position of the location along with the
(u, v, d) coordinates of the palm centers of the 14 nodes, color coded by the amount of successes.
The agent observed a full range of reliability within this sample, from nodes with no additional
successful placements occurring during Experiment 7.4 to nodes where all ungrasps were successful
placements.

175



Successful placements observed ||cL2 − c
p
i ||

5 (100%) 10.22
4 (80%) 12.56

5 (100%) 15.17
5 (100%) 15.59
3 (60%) 26.00
2 (40%) 26.63
1 (20%) 30.48
1 (20%) 31.58
3 (60%) 32.93
2 (40%) 35.68
1 (20%) 42.71
2 (40%) 43.07
1 (20%) 50.19
2 (40%) 52.49

Table 7.1: The agent has identified 14 nodes where successful ungrasps also successfully placed
the object into the blue location, L2. The first column shows the number of successful placements
observed out of five successful ungrasps. Note that this value is always at least one due to the
selection of these 14 nodes as those where one placement had been observed while performing
ungrasps from random nodes. Since four additional ungrasps were performed from each node, the
highest possible number observed is five. The success rate out of five is shown along with the
number of successes observed, as this can be used by the agent as an estimate for the reliability of
the node for the place action. This table is sorted by the second column, which is the Euclidean
distance in image space between the center of the palm mask for each node, cpi , and the center of
the mask for the blue location, cL2 . From this ordering, we can observe that nodes that are closer
to the location are more reliable for placing into it, though the reliability does not monotonically
decrease as distance increases. This trend is examined further in Figure 7.10.
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Figure 7.9: The colored surface depicts the approximately planar set of observations (u, v, d) of
the blue location L2 in image space. The 14 blue placement nodes are also plotted by the (u, v, d)
coordinates of their palm centers. The color and shape of the plotted points varies with the number
of successful placements were observed for that node out of the five attempted. Note how the green
points with 4 and 5 successes tend to be near and just above the location (these four nodes are all in
the closest 100 nodes to the location’s center out of all nodes in the graph), while the red nodes that
only had one success are further away (the closest of these is more distant than 493 other graph
nodes). The agent continues looking at the relationship between the success rate of the place action
using a given node ni and the distance ||cL2 − c

p
i || in the remainder of Experiment 7.4.
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As discussed, ||cL2 − c
p
i || is a natural value to examine for each node ni used in this experiment

given the visual representations of both the location and each node. The distance for specific
nodes relative to the distance for all nodes in the graph gives the first suggestion that this will
be a useful feature for distinguishing between reliable and unreliable placing nodes. Out of the
2946 nodes in the Explored Peripersonal Space Graph with defined distances to the blue location’s
visual center (the other 54 are NaN due to missing or invalid depth readings in the original set
of images collected for the Explored PPS Graph), the three nodes that were observed to always
place into the blue location (L2) were the 29th, 85th, and 94th closest to its center. The node with
a 4 out of 5 success rate was the 52nd closest. By contrast, the nodes that were only observed
to place into the blue location once (during ungrasps from random nodes and never again when
intentionally repeating them) were the 494th, 530th, 964th, and 1285th closest. These rankings
create a clear division between reliable and unreliable placing nodes. The distance from the center
of the location is provided in the second column of Table 7.1, which the rows are sorted by. The
decrease in reliability as distance increases that is shown in Table 7.1 is also shown in Figure 7.10
as a conditional probability of success given that the placement is attempted with a node less than a
certain distance from the location. There is a clear trend that the conditional probability of success
decreases as the distance increases, so the agent will attempt to use a policy of placing the object
from the node that is least distant from the center of the location.

7.4.4 Experiment 7.5 - Placing into L2 from the Nearest Nodes

From the analysis in Experiment 7.4, the agent has learned that nodes with shorter distances
between their centers and the center of the desired location L2 tend to be more reliable for placing.
If this is the case, the node ni ∈ N that minimizes ||cL2 − c

p
i || will be expected to be the most

reliable choice. In this experiment, the agent will test this closest node in five trials and verify that it
is fully reliable for placing into L2. In order to further support the conclusion that the nearest nodes
are most reliable, the agent will also test the next four closest nodes (as with the single closest node,
these are selected from the entire PPS Graph) for five trials each. While verifying the reliability of
only the single closest node is necessary to ensure the agent has a reliable policy, if additional nodes
prove to be fully reliable, the agent will have alternative methods for placements in future work
that may have additional considerations that rule out using the single closest node, such as obstacle
avoidance or if the graph path to that node from the current node is overly long.

7.4.5 Experiment 7.5 Results

The agent attempted 25 placements, with five trials at each of the five closest nodes to L2.
Figures 7.11-7.15 show the before image of the object grasped at one of the five closest nodes along
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Figure 7.10: Conditional probabilities that an ungrasp will result in a successful placement into the
desired location L2 given that the node where the ungrasp was performed is at most x units from
the location in image space. The probability values shown are based on the success rates of the 14
nodes tested in Experiment 7.4, so the values change when the value of x is equal to ||cL2 − c

p
i ||

for any of those nodes ni. At those points, the total number of successes in the calculation of the
probability increases by the number of successes observed at that node, and the total number of
trials increases by five. Due to a single failure to place into L2 when using the second closest node,
the estimate of conditional probabilities that the agent calculates is not monotonically decreasing as
x increases. The failure at this node despite its closeness can be attributed to factors that are not
modeled by the agent, such as the orientation of the object in the hand when a grasp is maintained
at that node, or whether the displacement from the location’s center in image space corresponds to a
displacement in workspace that would have the object near the table’s surface and squarely “above”
the location for an ungrasp. Despite this anomaly, the agent can conclude that it should use nodes
with minimal distances ||cL2 − c

p
i || so that they fit into the condition of a lower threshold x, and so

that successful placements are expected to be more likely.
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Figure 7.11: Images when placing into the blue location L2 from the closest node. The top-left
panel shows the observation just before the grippers are opened, and the remaining panels show
images from after a placing trial when the agent has returned to the home node. As expected due
to its minimum distance from the location’s center, this node is fully reliable for placing. Each
after image is annotated with the distance between the final target mask center and the center of the
location, which is ideally low and consistent between trials.

with the after image for each place action trial performed at that node. Using these after images, the
agent observes that the object is in the blue location in all 25 trials, and this evaluation matches the
ground truth that every placement was successful. The agent has successfully identified a policy for
the place action that is 100% reliable, and this consists of moving along graph edges to the node
that minimizes ||cL2 − c

p
i || and then fully opening the grippers to ungrasp. In the remainder of this

work, the agent will always attempt to place into L2 using the single closest node, but in future work
it could use alternative nearby nodes - for example to use a node more likely to place the block in an
upright position, like the second closest node in Figure 7.12 - and still expect a 100% success rate.

7.4.6 Experiment 7.6 - Transferring the Nearest Nodes Policy to L1

Having learned a fully reliable policy for placing into L2, the agent changes its attention to
finding a policy for placing into L1, the green location that the object was in at the end of 19 of the
ungrasp trials. While the learned policy was based on observations of the nodes that placed into
L2 during ungrasping and was verified on the closest nodes to L2, an analogous distance feature
can be defined using the green location’s image-space center instead: ||cL1 − c

p
i ||. If using the node

that minimizes this distance is fully reliable, the policy transfers between locations successfully,
and it will not be necessary to evaluate the reliability of the original 19 nodes further, and the agent
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Figure 7.12: Before and after images for place action trials, similar to Figure 7.11 except using the
second closest node. This node is also fully reliable. This node may be desirable for use due to
its tendency to place the block in an upright position, as it did in three out of five trials. However,
when the block does not land in a stable upright position, it seems to tip in any direction, causing
the final position to be less consistent than when other nearby placing nodes. This may make the
node undesirable as well. The agent will need to determine the fit of this and other reliable placing
nodes for more specific future actions.

Figure 7.13: Before and after images for place action trials, similar to Figure 7.11 except using the
third closest node. This node is also fully reliable.

181



Figure 7.14: Before and after images for place action trials, similar to Figure 7.11 except using the
fourth closest node. This node is also fully reliable.

Figure 7.15: Before and after images for place action trials, similar to Figure 7.11 except using the
fifth closest node. This node is also fully reliable. Despite the node’s center being further away
from the location’s center, the orientation the hand holds the block in at this node allows it to be
dropped a short distance into a nearly consistent final position which is very close to the location’s
center. Since the agent has found that each node tested was fully reliable, in future work it may
wish to evaluate other characteristics of the resulting positions to determine which should be used.
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Figure 7.16: Images when placing into the green location L1 from the closest node, which is
expected to be reliable based on the minimum distance policy transferred from placing experiments
with L2. As before, the top-left panel shows the observation just before the grippers are opened,
and the remaining panels show images from after a placing trial when the agent has returned to the
home node. This node is fully reliable for placing, but despite the node’s closeness to the location
the final positions of the block do show some variation.

will not have to repeat the examination of the distance feature or other potential features. In order
to test the transferred policy, the agent will again attempt 25 placements, this time into the green
location L1, and with five each being performed from the five nearest nodes to L1’s center in image
space. That is, the nodes from the full set of graph nodes N that have the five shortest distances
||cL1 − c

p
i || will be identified, and five placements into L1 will be attempted from each.

7.4.7 Experiment 7.6 Results

Of the 25 attempted placements into L1, the agent’s evaluation of after images taken while
at the home node determines that 24 succeeded (which agrees with the ground truth from the
experimenter’s assessment). The before and after images for the trials at each node are presented
in Figures 7.16-7.20. Using this set of the five closest nodes had a 96% success rate. The failed
placement in one of the trials using the fifth closest node (Figure 7.20), and the larger distance from
the location’s center in each trial with that node, suggests that the agent may have fewer policies that
use alternative placing nodes that it can expect to be 100% reliable. However, it would be feasible
for the agent to evaluate additional nodes, starting with the sixth closest, to find another node that
is 100% reliable if all closer nodes cannot or should not be used according to a consideration that
could be added in future work.
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Figure 7.17: Before and after images for place action trials, similar to Figure 7.16 except using the
second closest node. This node is also fully reliable.

Figure 7.18: Before and after images for place action trials, similar to Figure 7.16 except using the
third closest node. This node is also fully reliable, and has resulting position of the block has a more
consistent center and orientation than in either of the closer nodes, which may make it desirable for
use.
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Figure 7.19: Before and after images for place action trials, similar to Figure 7.16 except using the
fourth closest node. This node is also fully reliable.

Figure 7.20: Before and after images for place action trials, similar to Figure 7.16 except using the
fifth closest node. When placed from this node, the object ends up much further from the location’s
center, and in one case has no intersection with the location’s mask at all. This does not meet
the agent’s definition for being in the location, so this node is only 80% reliable for placing into
L1. In order to retain a fully reliable place action, the agent can place from a closer node, or may
continue to experiment to potentially find nodes that are further but still place into L1 100% of the
time. In this work, the agent is only concerned with being in the location, so it adopts the most
straightforward strategy of only using the single closest node.
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Treating the five trials as tests of a policy of only using the single closest node, and the agent
has found this policy for the place action to be 100% reliable when the target location is L1. This
conclusion is based on only five trials, but it does not appear likely that additional trials would have
different results, as the IOU between the object and the location is approximately 1 in each of the
five trials, and the object’s center in the image taken after placing is relatively consistent.

The transfer learning process was successful, and the method of minimizing the distance to
the location before performing the ungrasp component of the place action appears to be equally
applicable to the green location as it was to the blue location. Since the feature is not specific to
these locations, but only parameterized with the center of a mask and depth range that could be
found for any location, the agent can safely assume that this policy will work in general, including
if either of these locations of interest is moved or if the agent is presented with additional locations.

7.5 Sequencing Component Actions to Pick-and-Place

7.5.1 Methods

As the agent learned to move the arm in Chapter 4, we assumed that one of its innate capabilities
was to combine independent actions in parallel. This was important so that the agent could use the
learned actions for moving single joints to set point angles to create an action that moved all the
joints of the arm to set points simultaneously. For this experiment, we must assume that the agent is
also capable of combining actions in sequence to construct higher order actions. When constructing
a new action as a sequence of component actions, the order of the sequence is constrained by a need
to ensure that the prerequisites of each action will be met when the previous action is completed
successfully. Each trial in this section will begin with a single block placed in either L1 or L2 by the
experimenter, and the agent’s hand will be empty. As a consequence of this initial state, the agent
may choose between the move arm, reach, and grasp actions for the first component action. If the
agent chooses to move the arm or reach and bump the block, it is still the case that the block is in
a quasi-static position on the table and the agent’s hand is empty, so the same set of actions may
be considered. Once the agent chooses to attempt a grasp and the grasp succeeds, the set of valid
actions for the agent to attempt will change. In particular, with the block in the hand instead of on
the table, the prerequisites for the reach and grasp actions are not met, and they cannot be attempted.
Instead, the agent may move the arm, or it may attempt an ungrasp or place action. The sequences
that may be carried out follow this pattern, and this pattern can be repeated for an indefinite number
of cycles:

1. 0 or more actions from [move arm, reach]

2. grasp action
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3. 0 or more move arm actions

4. 1 action from [ungrasp, place]

In this work, we have assumed that L1 and L2 are regions of interest, and that the agent will
always either have an intrinsic motivation to place into these locations for continued learning
opportunities or an extrinsic motivation to place into these locations, similar to an older child using a
shape sorting toy or being rewarded for putting toys into their correct storage container. This is done
much more reliably with the place action that uses a well-chosen node where the grippers should
be opened than with the unrefined ungrasp action that opens the grippers at any node. Therefore,
during the demonstration of the sequence in this work, the agent will always choose to perform
the place action during the final step of the pattern. In order to collect samples of the sequence
more efficiently, for this work we also restrict the agent’s ability to perform option actions that do
not change the set of actions that may be performed next. That is, the agent will not be allowed to
choose to perform any actions in step 1 or 3 of the pattern. This leaves a streamlined set of steps
that we have used to collect data on the reliability of the pick-and-place sequence:

1. The object is placed in a random position within L1 (respectively, L2) by the experimenter.

2. The agent grasps the object.

3. The agent places the object into L2 (respectively, L1) - the agent can verify the grasp was
successful using observations of the object along the trajectory to the most reliable placing
node.

4. The agent returns to the home node - the agent can verify the placement was successful using
the after image taken from the home node.

In future work, the agent will be allowed to continue to practice and improve its action policies
in autonomously chosen sequences that are only constrained by the prerequisites of the actions
rather than the most efficient pick-and-place sequence of a grasp followed by a placement. The
implications of the extension to autonomously chosen sequences is discussed in the conclusion of
this chapter in Section 7.6. At the time of this work, the grasp action is prohibitively unreliable for
objects that violate the assumed shape and orientation of an upright block with one long dimension.
This is due to the Explored PPS Graph being especially sparse this close to the table’s surface (the
agent was prevented from motor babbling to positions low enough to potentially contact with the
table) and because of the rarity of nodes that point downward at the table to be suitably perpendicular
to the perceived major axis of object masks for blocks that are laying down. Given that a majority
of placements leave the block laying down in the desired location at the time of this work, the first
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step of experimenter intervention to position the block before each pick-and-place trial is necessary.
We will also discuss how this step could be eliminated in Section 7.6.

When performing the grasp action component of the pick-and-place sequence, the agent will
use the criteria learned in Chapter 6 for choosing the most reliable grasping node for the specific
target position. When performing the place action component of the pick-and-place sequence, the
agent will use the fully reliable policy it has found where it always uses the single closest node
to the desired location. This means the agent will always plan to place into L1 with the closest
node to its center, n79 (Figure 7.21), and similarly will always plan to place into L2 with the closest
node to its center, n1251 (Figure 7.22). Note that all work with the pick-and-place sequence was
performed using the second set of images for the Explored PPS Graph with the robot in the new
environment, and these nodes are the closest according to that image data. Because the agent uses
observations from the next steps of the sequence to check if the previous step was successful, it will
always attempt to carry out the full sequence even if an early component action fails.

7.5.2 Experiment 7.7 - Performing the Pick-and-Place Action Sequence

In order to test the reliability of the full sequence of learned actions together to perform a
pick-and-place action, the agent will perform 40 trials and evaluate the number of successes. Each
sequence will consist of a grasp, a placement, and a return to the home node to observe the result.
The agent is given the option to reject any trial where the initial placement of the block - performed
by the experimenter according to randomly generated coordinates in one of the locations of interest
- is determined to have no candidate nodes to perform the grasp portion with. In order for there
to be no candidate nodes, there must be no node with valid image and depth information that has
intersections between both its stored mask and the perceived target mask and the stored depth range
and perceived target depth range. When a trial is rejected, the placement of the block is recorded, but
no movement is attempted. The experimenter will use a new set of random coordinates to replace
the block, and this new placement will be accepted for an attempt or rejected again if there are still
no candidate nodes. In order to test the performance evenly, the agent will make 20 attempts to
grasp the block from the green location L1, where the Explored PPS Graph is dense, and the agent
will also make 20 attempts to grasp the block from the blue location L2, where the graph is much
more sparse and requires an extension of the arm across the robot’s body to reach. When grasping
from L1, the agent will place into L2, and when grasping from L2, the agent will place into L1.

7.5.3 Experiment 7.7 Results

The agent rejected 8 of the initial placements of the target block, so it was necessary to generate
48 positions for the agent to attempt 40 pick-and-place actions. Of these 40, 21 were successful
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Figure 7.21: The stored RGB image for n79 superimposed with an observation of tabletop locations
of interest L1 and L2 that was taken without the arm present. The boundary and center of the
mask for the green location L1 are highlighted in green. n79 will be used for all placements into L1

because its palm mask center is the closest in image space to the center of L1, that is, it minimizes
||cL1 − c

p
i ||. The agent has learned that it can expect placements from the closest node to be 100%

reliable.
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Figure 7.22: The stored RGB image for n1251 superimposed with an observation of tabletop locations
of interest L1 and L2 that was taken without the arm present. The boundary and center of the mask
for the blue location L2 are highlighted in blue. n1251 will be used for all placements into L2 because
its palm mask center is the closest in image space to the center of L2, that is, it minimizes ||cL2−c

p
i ||.

The agent has learned that it can expect placements from the closest node to be 100% reliable.
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pick-and-place actions, with a successful grasp followed by a successful placement into the desired
location. 10 of the successes were trials where the agent grasped from the green region L1 and
placed into the blue region L2, and the other 11 were in the opposite direction, moving the block
from L2 to L1. As seen in the flowchart in Figure 7.23, the 19 failed trials consist of 3 misses (failed
reaches), 6 bumps (successful reaches but where neither the Palmar reflex or an intentional closing
of the hand creates a grasp), 8 Palmar bumps (successful reaches that activate the Palmar reflex
but where the closing grippers fail to temporarily bind the object to the hand), and 2 weak grasps
(successful reaches that do gain control over the block, but in a way that is not stable and the block
is dropped before an intentional ungrasp). While the agent cannot distinguish between upright
blocks and blocks that are laying down, we also note three of the 21 successful placements where
the block is upright at the end of the trial. Any orientation satisfies the agent’s definition of being in
a location, but upright block results like these are important and desirable as it would enable the
agent to continue to interact with the block in autonomous action practice in future work.

Another depiction of the pick-and-place results is given in Figure 7.24, where boundaries of
the target mask of all 48 initial object positions are shown in colors according to their results. This
figure also shows the number of candidate nodes for each target mask that was generated. All 8
of the rejected positions are in the furthest corner of L2 where the graph is most sparse, and the 3
trials with miss results are also on the far edge with a very low number of candidates. The failure of
the reach in these cases was due to the selection of a final node for grasping that actually had false
positive intersection features with the target, and should not have been considered as a candidate.
For the rest of the placements, the successes appear to be mostly clustered in regions with more
candidates and where these candidate nodes correspond to poses that are well aligned for grasping.
The localization is likely related to where in the image the agent is best able to identify desirable
palm vectors and accurate masks and depth ranges (which appears to be generally about halfway
up the vertical axis before the zoom used in Figure 7.24). An alternative explanation is that it
is localized to the highest number of candidates, but this would not explain failures in the green
location with more than 40 candidates while many succeed in the blue location with less than 20.
As the initial positions become more distant from these high performance areas, the results tend to
shift to weak grasps and palmar bumps, and then bumps and misses at the furthest points. We can
also note that the 3 trials where the block was placed upright all began with the block in the blue
location. In these cases, the block was grasped from an upright position with the hand and posed
very similarly to how it would be posed at n79 for placing into the green location, so the block was
upright again when it was placed.

Prior to this experiment, the agent had only performed place actions in isolation, where it had
been presented with the block instead of independently performing a grasp of an object on the
table. A key observation from this experiment is that the success or failure of the pick-and-place
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successfully gains and maintains control

object not in desired location object in desired location and upright

object in desired location but not upright

Figure 7.23: A flowchart detailing the 21 successful pick-and-place trials and a breakdown of the
errors that caused the 19 failed trials, beginning with experimenter placement in the top-left node.
Nodes are annotated with the number of trials that reached them.
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Figure 7.24: The 48 initial positions of the target object when testing the reliability of the agent’s
pick-and-place action. Each position is shown as a boundary of the target mask that corresponded to
the block when placed upright at random coordinates within one of the locations by the experimenter.
Each boundary is superimposed on a zoomed-in image of the locations without the block or arm
present. Each position is annotated with the number of candidate nodes found when planning the
grasp component of the pick-and-place. The relative sparsity of the graph in the blue location L2

is evident in the lower numbers of candidates. 8 of 28 positions generated for L2 were rejected
by the agent for having 0 candidates. Of the 20 trials that were attempted from L2, 11 succeeded,
outperforming the 10 out of 20 successes when grasping from the green location L1. No straight-
forward threshold or trend exists relating the number of candidates and the likelihood of success,
other than failing each trial with less than 3 candidates. One trial succeeds with 4 candidates while
another fails with 69. While it is necessary to have enough candidates for one to exist with reliable
features, outside of localized areas where the images have less noise and the image processing is
more accurate, having too many candidates appears to increase the chance of selecting a node with
false positive desirable features, leading to a failure. This image resembles the visualizations of
grasp results because the current method for pick-and-place only fails if the grasp fails, as the place
action remains 100% reliable. Note that we require a successful place action to end the agent’s
control over the object that was maintained during a grasp, so this makes weak grasps a failed grasp,
rather than a failed placement. Similarly, even if the agent would bump the block into the desired
location without a grasp - a possible edge case that did not occur in these trials - the agent would
not consider this a successful placement because it can determine it never had full control of the
block with a grasp.
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sequence was entirely dependent on the success or failure of the semi-reliable grasp action. The
overall success rate of the pick-and-place sequence was 52.5% (21/40), but the success rate of
pick-and-place sequence given that the grasp was successful was 100% (21/21). Importantly, this
allows us to conclude that our methodology where the agent learned to ungrasp and place without
performing a typical grasp first yielded a placing policy that is 100% reliable for both locations
whether the block was grasped from the table or with experimenter assistance. The reliability only
being limited as a result of the grasp action also makes it clear that to improve performance the
agent should focus on improving the grasp action in future work.

7.6 Conclusion

In this chapter, the agent has learned to make two new actions reliable and has sequenced actions
to construct a higher order action that gives a significant amount of control over the objects in
the environment and will facilitate future learning, by continuing to identify unusual events and
using the pattern in this work, or by using the experience gathered in another approach, such as
reinforcement learning or deep reinforcement learning to advance to smooth, expert forms of the
early actions.

In Section 7.2, the agent observed many examples of the typical result when changing a degree
of freedom after a grasp. When changing any of the six major (proximal) joints of the arm to move
the hand in space, the grasp is maintained, and the grasp is also maintained when rotating the wrist
with the most distal joint w2 or attempting to close the grippers further by decreasing the aperture a.
However, commanding an increase ∆a ≥ 5.6 does result in a physical opening of the grippers that
loosens the grip on the grasped block, and in one case with ∆a = 16.75 (Figure 7.1), the grippers
open enough and the block is oriented in a way that it falls out of the hand, ending the grasped state.
The agent can verify that this has occurred by moving the arm along any trajectory and noting that
the block’s current mask no longer intersects with each node in the trajectory’s stored mask, so the
property of following the motion of the hand is ended by this successful ungrasp.

In Section 7.3, the agent conducts ungrasping trials, and now only modifies a since no other
degree of freedom ever produced an ungrasp. The agent also rejects any ∆a < 5.6, as it has found
these values to be below a minimum threshold of intended change to have the grippers physically
move. Out of 50 trials, the agent observes 6 more successful ungrasps, and identifies a threshold
∆a∗ = 21.5 where no attempt with a larger ∆a has failed. An additional 50 trials with these larger
commanded openings of the grippers produce 48 successes and allow the agent to revise ∆a∗ to
41.94 so that its threshold property still holds. These results lead to a decision to extrapolate, and
the agent is able to ungrasp with full reliability for all following experiments by setting the grippers
to 100% open.

194



In Section 7.4, the agent considers the qualitative locations L1 and L2 on the tabletop for the
first time, and discovers that for either location it is more rare for random ungrasps to send the
object into the location than outside of the location. This becomes the next unusual event to focus
on, and the agent begins to define a place action that ends a grasp and results in the new quasi-static
location of the block being in a specific location. Since the agent already has learned to end grasps
with a fully reliable ungrasp, the only necessary learning remaining to refine an ungrasp into a place
is how to select the pose for the hand where the ungrasp will be performed. By examining the
ungrasps from section 7.3 the agent identifies a clear trend that as the image-space center to center
distance decreases, the reliability of a node for placing increases. The suitability of this feature is
evaluated on the five nearest nodes to each location of interest, and the agent finds that nine of the
10 nodes are 100% reliable. In both cases, the single closest node is 100% reliable for placing, and
the agent will perform all placements from the closest node to the intended location in this work.
Learning to choose the closest node was first done in the original environment for our agent and
the first set of images for the Explored PPS Graph, and a sample place action can be viewed at
https://youtu.be/KBeuamdgDkE. As can be seen in the video, all trials for learning to ungrasp and
to place were performed from a starting state with the block already in the hand, to avoid additional
time requirements when trials with failed grasps would be rejected.

Before the experiment in Section 7.5 was performed, the agent moved to a new environment
and collected a new set of images for the nodes of the Explored PPS Graph (as discussed in Section
6.5). With the changed positions of the robot, table, and camera relative to each other and the new
set of images were taken, the closest node to the green location was n79 and the closest node to the
blue location was n1251. Although the closest nodes were different from the original image set, the
agent used the same policy of using these closest nodes to place into the green and blue locations
and found placing to still be 100% reliable.

In Section 7.5, the agent combines the newly learned place action with the most reliable grasp
action from Chapter 6 to form a policy for the pick-and-place action, which takes the block from
one qualitative location and moves it to a different qualitative location. The place component of
the pick-and-place is 100% reliable, demonstrating that the ungrasping and placing techniques
that were learned starting with a block in the hand do not receive any essential assistance from
the experimenter - the placements work equally well when the state of the block in the hand is
one that arises from a typical independent grasp. However, the overall reliability of the pick-and-
place action is only 52.5% (succeeding in 21 out of 40 trials) because it cannot succeed without a
successful grasp, and the grasp action is at best semi-reliable (57.5% was the best success rate seen
in Chapter 6). An example of a pick-and-place action with the current best policy can be viewed at
https://youtu.be/afiG2o8Rlgc. Identifying additional features and continuing practice for grasping
will be the most efficient way to improve the reliability of the pick-and-place action.
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Given the limited information provided to our agent throughout this work and the limited
assumptions of prior knowledge and innate capabilities, the result of 52.5% successful pick-and-
place actions is significant progress. As the agent moves from this early form of the action, it may
continue to improve its reliability and the efficiency with which it can be executed. With the current
learned semi-reliable policy, we have demonstrated that an agent can apply the pattern of learning
from unusual events all the way from motor babbling with single joints to an action as complex
as pick-and-place. Achieving semi-reliable pick-and-place is also significant for expanding the
potential application of this work to other works that may use pick-and-place or its component
actions as action primitives.

Along with improving the reliability of the pick-and-place action, a good candidate for a next
step after this work is to allow the agent to practice through play, autonomously choosing targets
and executing pick-and-place actions in continuous cycles. At this time, we can already show a
proof of concept for this method, as seen in the video found at https://youtu.be/xnNfqUmlCKI.
In this video, the agent is able to perform a grasp from the blue location and place into the green
location, and then observe from the home node that the block is in a position where it is upright
and can be grasped again. After taking 12 seconds for this observation and trajectory planning, the
agent performs a second pick-and-place action to take the object from the green location back to the
blue location. The agent could hypothetically continue this back and forth process indefinitely, each
time gaining experience that could improve all of the component actions. The ability to practice the
actions in a self-guided setting will also allow the agent to re-attempt failed component actions. If
the agent observes that the grasp has failed, it may attempt it again with a new plan until it succeeds
before moving on to attempt the placement, which cannot succeed if the grasp preceding it failed.
And if a placement would fail, the agent could return to the grasp portion to regain control and
attempt the placement again. The ability to retry difficult cases presents the agent with valuable
experience and may increase the success rate from what can be achieved in one-shot actions.

In order to take the step from performing pick-and-place actions in isolated trials that each begin
after the block is set up by the experimenter to repetitive pick-and-place actions in a self-guided
learning by play setting (such as the one formalized in [42]), the only issue that must be resolved is
reducing the number of trials that leave the block prohibitively difficult for the agent to grasp. Many
failed grasp attempts and many successful placements knock over the block, leaving it with a very
low profile near the table. The agent was not allowed to collect nodes this close to the table’s surface
to avoid collisions during motor babbling. As a result, few nodes appear to have intersecting depth
ranges, and of those that do, many must be modified far enough from their stored center that the
local Jacobian estimate will be inaccurate. It is also the case that almost no nodes in the graph have
the grippers pointing downward to approach the block from above, with a crane-like method. This
is likely due to the initial pose for n0 being mostly horizontal, and that the random motor babbling
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changes to the joints would have to change all of the vectors by a significant amount and within
a particular range all for the same node to have even one with the hand pointed downwards. This
suggests one improvement would be to gather additional nodes in another round of motor babbling
starting from a crane-like position. These new nodes would be connected to each other and any
existing nodes by the same heuristic of edge length as before. An alternative to better handling
of targets that are not upright blocks is to increase the frequency with which objects stay upright.
This could involve succeeding with grasping so that the block is not knocked over by a bump, and
could also involve using nodes for the place action that have been identified as likely to leave the
block upright. The agent cannot currently distinguish upright blocks from other orientations, but
has observed both orientations, so it should be possible to learn a classifier. Once the agent can
identify upright placements, it can begin to use only nodes that produce them reliably, and then has
much more potential to perform long loops of practicing actions through play.

In the following chapter, we will continue the discussion of future work that has been suggested
here and throughout the dissertation, as well as the contributions and significance of the work in its
current state.
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CHAPTER 8

Discussion

8.1 Contributions and Importance

8.1.1 The Peripersonal Space Graph Model

We present the Peripersonal Space (PPS) Graph, a model of the space surrounding the agent
that it can reach with its manipulators. A PPS Graph P = 〈N , E〉 is composed of a set of nodes
N and a set of edges E . The structure of the PPS Graph resembles a probabilistic roadmap (PRM)
[25] and the Visual Roadmap (VRM) proposed in [39], which also stored types of visual and
configuration data. Unlike in [39], the PPS Graph is constructed through unguided exploration and
the agent must autonomously learn to interpret and use the information stored in the graph. The
formalization for the general PPS Graph model is given in Section 3.2.1, and the construction of a
specific implementation, the Explored PPS Graph, is discussed in Section 4.3.

The exploration that the agent uses to build the PPS Graph is carried out by motor babbling
with the arm. Beginning from an arbitrary pose, each subsequent pose is generated by moving to a
configuration that differs from the current configuration by a small randomly sampled amount for
each joint angle. At each pose, the agent records a node ni, which stores the configuration qi that
was held to produce the pose and the visual percept Iqi

of the environment while the arm is in that
pose. By storing this pair of corresponding percepts, each node maps from a configuration to the
associated image features for the pose it produces. The set of all nodes then serves as a discrete
mapping between the configuration space and the image space. Even though the nodes are produced
with random motions, they provide coverage for most of the spatial region that is in view and in
reach of the agent, such that most points in peripersonal space are near at least one node.

The motor babbling process also produces the first edges of the graph, connecting each ni to
ni+1 with an edge ei,i+1 because the motion between the nodes has been demonstrated to be feasible
when the arm was moved from ni to ni+1. In general, edges will represent affordances for safe
motion between the nodes they connect. As it is not feasible to test the motion between all pairs
of nodes ni and nj , additional edges ei,j are added according to a heuristic. If ||qi − qj|| is less
than the median length of all edges that were added during motor babbling, ni and nj are assumed
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to be sufficiently close for the move between them to be safe, and ei,j is added to the graph. All
graph nodes are in a single connected component, so planning trajectories to move between any two
nodes, however distant they are in configuration or image space, is possible by finding a graph path
between them. As almost all points in peripersonal space are near at least one node, and such a node
can be identified by visual similarity (overlapping masks or depth ranges, or nearby image-space
centers), trajectories planned as paths along PPS Graph edges may move the hand near almost any
point in peripersonal space.

We also present a novel application of estimated Jacobian models for the relationship between
changes in configuration and changes in image space. As the global Jacobian is prohibitively
complex for the infant-like agent to learn and use, the estimates are linear approximations calculated
for the neighborhoods of individual nodes, and remain sufficiently accurate when these changes are
small enough that the configuration and position in image space remain local to those of the node
used for the calcuation. These estimates can be computed using the information stored in a node
ni and its neighborhood N(ni), the set of all nodes it is directly connected to by an edge. These
estimates are calculated to extend the Explored PPS Graph in Section 4.4. Often more important
than using a local Jacobian estimate to predict how a perturbation of the joint angles will affect
the position of the hand in image space is the ability to use the pseudo-inverse of a local Jacobian
estimate to predict the adjustment to the joint angles necessary to produce a desired change in
image space (such as to move the center of the hand to the center of an observed foreground object).
This allows a more precise move to a desired position since it is not limited by the closeness of
the nearest stored pose. In addition to the capability to move to configurations that have not been
previously visited, the extension to a locally continuous model allows the agent to more fully and
more accurately represent peripersonal space.

It is also noteworthy that the PPS Graph model can be constructed and used without any forward
or inverse kinematics models that relate the configuration of the robot to a 6D pose of the hand
in standard coordinates for the workspace. Further, the agent does not have access to or make an
attempt to recreate the workspace coordinates and orientation of the hand or other objects. The
agent only represents the self with the joint angles of the arm and the hand’s position and orientation
in image space, and as the agent can only sense nonself objects with vision, they can only be
represented by their position and orientation in image space. These simple representations of the
hand and foreground objects are sufficient for the agent’s actions in this work, and more detailed
information, such as geometric models, point clouds, or grasp points are not provided to or needed
by the agent. Instead of using inverse kinematics to plan a reach to an object, the agent will select
the node that best matches the node visually according to the criteria for the action, and then map
from that node’s visual features to the configuration that is also stored in the node. The agent
determines that this configuration, modified as necessary according to the node’s local Jacobian
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estimate, will be the final position. Finding the shortest graph path to the selected node completes
the trajectory and produces a reliable plan for completing the action.

The nodes, edges, and neighgborhoods of the PPS Graph allow the agent to make safe motions
with predictable results throughout the environment. The agent may learn the typical results
for these motions and then observe unusual results that qualitatively differ, and repeating these
becomes the goal of new actions. The PPS Graph has further significance for action learning as it
provides a mapping between the internal state of the arm (sensed as a vector of joint angles through
proprioception) and the external state of the arm (sensed with a camera that provides an RGB image
and a disparity image of the environment). This mapping allows the agent to model the consequences
of changes to its configuration, and to determine the changes to its configuration necessary to interact
with the environment in specific learned ways that reliably accomplish self-defined goals.

8.1.2 A Method for Autonomous Learning From Unusual Events

We present a method that applies the principles of intrinsic motivation to allow an embodied
robotic agent to learn to perform self-defined actions reliably. See Sections 1.3-1.4 for a full
description of this method, and the representation and features learned are discussed throughout
Chapter 3. We also provide a high level abstraction of this procedure in Figure 8.1. This method
begins with the agent performing a known action repeatedly to observe its typical results, as well as
a small number of unusual events where the results were qualitatively different from the typical
results. These unusual events will fall into one or more clusters corresponding to the same type of
event, and the agent will focus on one cluster at a time. The agent will define a new action that has
a goal of repeating this type of unusual event. The definition of actions according to the experience
of the agent is a key feature of this work, and contributes to the justification that the agent learns
from unguided exploration. In many robotics approaches, the agent is provided with a detailed
definition and policy for the actions that will be performed as innate knowledge, so that the agent
can immediately perform them successfully and the execution may be fine-tuned by expert designers.
In alternative robotic learning approaches, the agent may still be explicitly provided with the goal
of the action it is to learn. Methods such as reinforcement learning and deep reinforcement learning
do not require an explicit statement of the action or goal, but provide a reward signal that implicitly
conveys information about the goal to the agent. Our method avoids providing this information
in any form, and the actions created are entirely dependent on what the agent has observed. The
methodology we present supports the creation of any number and any type of actions and could
allow the agent to pursue learning to make these actions reliable in any order or simultaneously, but
to ensure timely evaluation in this work, the agent has been prevented from creating actions that are
not discussed, even if the observations of unusual events are available, and continues with a single
action until its evaluation is complete.
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1. Begin with a set of known actions A = {move the arm to a selected node}

2. Repeat these steps, producing a new reliable or semi-reliable action each iteration:

(a) Select an action a from A to perform

(b) Execute multiple trials of a and observe the results of each trial

(c) The typical result of a is learned by determining the most common type of qualitative
result observed.

(d) Clusters of trials with results that qualitatively differ from the typical result are examples
of unusual events.

(e) Define a new action b with a goal to repeat one of these newly observed types of unusual
events. The initial policy for b is equivalent to the policy for a.

(f) While b is not yet fully reliable, and while the reliability of b is improving:

i. Generate a new feature, selection criterion, or sensorimotor technique
ii. Modify the policy of b to consider the newly generated aspect

iii. Evaluate the modified b action over a set of trials
iv. Keep the modification if b has an increased success rate, otherwise revert to the

previous policy

(g) Add b to the set of known actions A using its most reliable policy
Figure 8.1: The agent’s learning procedure, which produces a set of infant-like early actions from
autonomous experience. The agent is intrinsically motivated to define new actions to repeat unusual
events and learn to make them reliable. In this work, features, criteria, and techniques are sometimes
provided instead of autonomously generated to constrain the search space and allow more efficient
evaluation. This learning focuses on producing actions that reliably achieve their goals, but may be
awkward or inefficient when performed. A second learning process in future work could transition
from these to more skillful late actions with smooth, efficient executions.
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Once an action has been defined by the agent, the agent will be intrinsically motivated to make
the action reliable. Once the action is reliable, its outcome is predictable and the agent will be able
to repeat the unusual event when desired. In order to increase the reliability of an action, the agent
will practice the action as planned by the most reliable method available (which may initially be
random motion or the policy for a previous action that sometimes produces the new unusual result).
Examination of success and failure cases will allow the agent to identify features and contingencies
that can be used to increase the likelihood of success. In general, the agent will be searching for
candidate nodes, trajectories, or methods to use in future attempts that have similar properties to
those used in prior successes. At this time, our implemented model differs from the proposed ideal
methodology in that some individual features or feature sets to select from are provided to the agent,
and the agent performs the selection of the best feature or features and is always responsible for
finding the most reliable values of each feature autonomously and with domain-general statistical
methods. This assistance consists of providing exhaustive feature sets or instruction to perform
grid searches over a full range of values when possible, but without the scope restrictions of this
work the agent can increase the amount of learning that it does autonomously by always generating
features without input.

The process of learning from unusual events is demonstrated well by the reach and grasp actions,
which are also important to this work given their fundamental roles in an agent’s ability to influence
its environment. Prior to learning the reach action, the agent has learned to move the arm and
has constructed the PPS Graph, which allows a wide range of motions throughout peripersonal
space using safe graph path trajectories. As the agent practices the move action in the presence
of a foreground object (a distinctive yellow rectangular prism block in this work), it observes the
typical result of these moves, where the hand moves back to the position where it was observed
when first visiting the randomly chosen destination node and the appearance of the background is
unchanged. However, given the wide distribution of the nodes being moved to, with enough trials
the agent also observes the unusual result of a change in the appearance of the object in addition to
the movement of the hand. This change is observed as a significant change in the set of pixels in
the binary image mask of the object when segmented before and after the move. This method only
relies on a comparison of 2D image projections of the object, and allows change-detection without
detailed knowledge of the nature or structure of the object. Importantly, the change persists even
once the hand has been moved away or moved back to the home node to observe the result, ruling
out that the change was a temporary occlusion. This significant persistent change characterizes the
bump type of unusual event, and a reach is defined as an action that causes a bump.

Given that the bumps were observed while performing move arm trajectories to random nodes,
the agent will continue to use move arm trajectories to perform the reach, and will make the reach
action more reliable by learning better criteria for the selection of the final configuration. The first
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improvement comes from finding which of a set of intersection criteria have been most reliable for
past reach attempts. The agent finds that the conditional probability of a bump is highest when the
final node of the trajectory has a stored binary image mask and depth range that have nonempty
intersections with the binary image mask and depth range of the target object in the current visual
percept. It also determines that the intersection of masks is most predictive of success when the mask
for the smaller grasping region of the hand, the “palm”, is used rather than the mask corresponding
to the full hand or the mask containing all pixels the hand passes through during the final motion.
For each placement of the target object, the agent can identify a set of candidate final nodes that
have these most reliable nonempty intersection features, and successfully causes a bump more often
by selecting one of these candidates instead of a random final node. To improve reliability further,
the agent learns to select the most reliable candidate node instead of a random candidate. The agent
considers four distance measures, and by each measure observes that the conditional probability of
a bump decreases as the distance between the image-space center of the palm and the center of the
target increases. The Euclidean distance between image-space centers is identified as the measure
that best differentiates reliable and unreliable candidates, and the agent begins planning reaches
as a trajectory to the final node candidate with a minimum distance by this measure. The final
improvement to the reach action policy that makes it 100% reliable is the use of the pseudo-inverse
of the local Jacobian estimate for the selected closest final node to modify the image-space center of
the palm to be equal to the target’s image-space center. Within the margin of error of the estimate,
which will be smaller when using the nearest node, this produces a distance of zero between the
centers, which the agent correctly predicts will be highly reliable.

A strength of our learning from unusual events method is its ability to be applied iteratively to
learn progressively more complex actions. Once the reach action is reliable, the agent observes
interactions with the target object regularly as it continues to practice reaching, and these will
typically be simple bumps. However, if the gripper aperture is also changed during these trajectories,
it is possible for the agent to observe a new unusual event where the reach produces a persistent
change that is not a typical bump, but instead an accidental grasp. The agent can identify that a
grasp has occurred by the unusual behavior of the block after the grasp, as it moves along with the
hand. However, if the agent relies only on random reach trajectories to explore the interactions
between the hand and the object, then accidental grasps will be very rare indeed. An accidental
grasp would require first a reach with the hand, with proper orientation and the grippers open, to a
pose surrounding an object, followed immediately by a random motion to close the gripper securely
on the object. The product of these two low probabilities would be very low. By contrast, in human
infants, an object touching the palm triggers the Palmar reflex that closes the fingers, eliminating
one of the two low-probability factors. We add a break-beam sensor to our robot’s hand to act as
a simulated Palmar reflex, sending a signal that commands the grippers to close when an object
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passes between them, breaking the beam. The presence of the simulated Palmar reflex removes the
additional condition of timing the closing of the grippers correctly, allowing some accidental grasps
to be observed, though they are still rare, as most reaches do not approach the target in the correct
manner to allow a grasp. Given the important role of the simulated Palmar reflex for our agent, one
might speculate that the Palmar reflex is present in humans as an evolved mechanism for gathering
enough relevant information to allow grasping to be learned. Searches over potential feature values
allow the agent to learn to approach the target with the grippers fully and to approach in a direction
that aligns several vectors describing the motion, and that is approximately perpendicular to the
major axis of the target. The orientation of the hand with the wrist is also a factor in grasp reliability,
and the agent can reuse angles for the wrist joint w2 that have been observed to succeed before.
Planning the final motion according to these criteria allows grasp trajectories to be 57.5% reliable.

Grasping (and the pick-and-place action of which it is a component) stand out from the other
actions that have been made 100% reliabile within the scope of this work. But why is it the case
that grasping remains only semi-reliable? The task of learning the grasp action is more difficult
than learning any of the other actions, given the number of factors that must all be accounted for
simultaneously. This difficulty is even more pronounced for our embodied robotic agent with a
parallel gripper hand, which is structurally inferior to a human’s hand and must grasp in a much
more specific manner. Compared to the natural Palmar reflex, the simulated Palmar reflex also limits
the types of grasp approaches that are viable, as objects must enter the space between the grippers
through the front of the hand, past the tips of the gripper fingers, rather than the top or bottom. The
mechanism of closing the grippers to produce a grasp also requires a more immediate, one-shot
success, whereas the flexibility and dexterity of the human hand allow adjustments over time to
create a secure grasp after a subpar first contact. Grasping is also a more demanding sensorimotor
task. Unlike reaching where the final configuration is sufficient if it produces a significant collision
between any parts of the hand and object, the preshaping and final configurations for grasping
must be precise enough to satisfy all conditions for a grasp with the position and orientation of
each component of the hand. We speculate that highly reliable grasping may require improved
perception or a more informative representation of the workspace than the distorted image space.
With these difficulties considered, the agent’s significant progress to semi-reliable grasping is a
valuable contribution and strengthens the demonstration of our method of learning from unusual
events.

Observing and learning from unusual events also allows the agent to learn to ungrasp and place
in this work. The method may be applied additional times to learn additional manipulation actions.
For example, the agent may learn to perform a more specific type of grasp from unusual grasp action
results, or the agent may identify rare types of placements, such as when the block lands upright or
is stacked on another object, and learn actions to repeat these reliably. It would also be possible to

204



return to the move arm action and observe other types unusual events than bumps and grasps.
An advantage of the learning method we present is its generality, which extends beyond the

learning of manipulation actions. Given an agent physically capable of other types of actions,
unusual events could be observed that prompt the definition of actions for navigating a large scale
space, communicating with other agents, processing images, or numerous other domains. Our
method also allows a single learning agent to learn multiple actions, and to utilize significant transfer
of knowledge from an existing action policy to the policy to a new action so that the same features
need not be relearned each time.

8.1.3 Learned Manipulation Actions

While high success rates for specific actions were not a key goal of this work, and we do not
intend to compete with other methods in terms of success rates, the actions that can be performed
are significant evidence for the strength of the learning method. While the grasp action, and the
pick-and-place action that the grasp is a component of, remain only semi-reliable at the conclusion
of this work, their reliability is a considerable improvement over the performance of random action
baselines and is impressive in light of the limited information provided to the agent. Each learned
action policy is also significant as one that may be implemented for other embodied robotic agents
in other works, whether those works intend to continue to use the infant-like, but reliable (or
semi-reliable) early actions or to develop more skilled late action policies after using the early
actions for initialization. The actions learned in this work are:

• Move Joint – The agent is able to use the robot’s built-in Joint Position Control mode to
consistently bring any joint angle within 0.0087 radians of the desired set point. This is
the primary control mode used throughout this work. The agent is also capable of using
the robot’s built-in Joint Velocity Control mode and a simple control law that commands a
velocity of −kp(x− xset) to bring any joint angle within 0.01 radians of the desired set point
while the velocity was less than 0.01 radians/second. When kp = 1.25, the motion appeared
to have a desirable property of being nearly critically damped, with changes in kp allowing
the production of overdamped, underdamped, and divergent motions. Further detail about the
move joint action can be found in Section 4.2.

• Move Arm – The agent is assumed to be capable of combining move joint actions in parallel
to produce the move arm action. With this move arm action the agent uses Joint Position
Control mode to bring all joints to the desired set points simultaneously and without increasing
the threshold for error. This action can be combined with the mapping provided by the PPS
Graph to move the arm in a way that reproduces a previously observed visual state reliably, by
returning to the configuration stored in the same node. By estimating a local Jacobian in the
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neighborhood of an observed node, the move arm action may also be used to bring the hand
to positions in image space that were not previously visited, with accuracy dependent on the
number of nearby nodes and their information. The edges of the PPS Graph also provide the
agent with a feasible, safe trajectory from the initial configuration to a desired configuration,
an improvement over the capabilities of the Joint Position control mode alone, which moves
along a linear interpolation between the configurations and may be unsafe for long moves.
From a developmental psychology perspective, the trajectories used by this move arm action
along the edges of the graph may be desirable for attempts to model the movements of infants
that also tend to contain jerky submotions, as observed in [49]. Further detail about the move
arm action can be found in Sections 4.3-4.4.

• Reach (100% reliable) – The agent defines the reach action after discovering the unusual
event of a bump. The agent’s reach action was defined with a goal of repeating the bump type
of event, and is 100% reliable by using a trajectory that ends at a configuration near a well-
selected final node, and that has been modified according to that node’s local Jacobian estimate
and its displacement from the target. All of these reaches were successful at the intended final
node, rather than accidental successes earlier in the trajectory. This is a significant increase
from the baseline of causing bumps in 20% of moves to randomly selected nodes, where half
of those successes were at early, unintentional points in the trajectory. Further detail about
the reach action can be found in Chapter 5.

• Grasp (57.5% reliable) – The agent defines the grasp action after discovering that some
reach trajectories produce accidental grasps while the Palmar reflex is present. The agent
learns to more reliably repeat the grasp event by choosing a well-aligned final motion,
orienting the wrist, and fully opening the grippers before the grasp approach. The most
reliable grasping method in this work is 57.5% reliable, which is a significant increase over
the baselines of 2.5% when performing moves to random nodes and 12.5% when performing
reach trajectories. Both baselines were determined in trials where the Palmar reflex was active,
as the reflex is necessary to make observing accidental grasps tractable. Because the grasping
method changes the final node selection to prioritize alignment during the final motion, the
success rate of the reaching component of the grasp (how many attempted grasps at least
caused bumps) is reduced to 92.5%, but reaches planned with the learned reach action policy
can still be used to bump the object with 100% reliability. Further detail about the grasp
action can be found in Chapter 6.

• Ungrasp (100% reliable) – The typical behavior of an object that has been grasped is to
move along with the hand. The agent defines an ungrasp action to release an object and
repeat the unusual event where the previously grasped object stops moving along with the
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hand. A technique of fully opening the grippers is 100% reliable, a significant improvement
over an initial motor babbling method of adding a small delta to the gripper aperture, which
ungrasped in 5% of trials, and all methods that adjusted other degrees of freedom, which never
ungrasped the object. Further detail about the ungrasp action can be found in Sections 7.2-7.3.

• Place (100% reliable) – The agent observes that typical ungrasps do not result in the object
coming to rest in a qualitative location of interest, but the object does land in the location of
interest as an unusual event. The agent defines the place action to repeat this event, and learns
to accomplish it reliably by moving to the node nearest to the location in image space before
opening the grippers to perform the ungrasp. This method is 100% reliable for placing into
either of two locations, one of which where the PPS Graph is sparse and another where it
is dense. This is a significant improvement over the baseline observed when ungrasps were
successfully performed with the hand at random nodes. To use the ungrasp action evaluation
results as as a baseline, 34.5% of successful ungrasp trials ended with the object in the location
where the graph is dense, 25.5% ended with the object in the location where the graph is
sparse, and 40% ended with the object outside of both locations of interest. When the agent
instead uses the learned place action policy of moving to the nearest node before performing
an ungrasp, the object is placed into the intended location in 100% of trials. The agent also
observes that placing from any node near the center of the location is highly reliable, which
could be useful if movement to the nearest node is blocked. Further detail about the place
action can be found in Section 7.4.

• Pick-and-Place (52.5% reliable) – The pick-and-place action is created using the assumption
that the agent can combine previously learned actions in sequence. For evaluation in this
work, a pick-and-place action always consists of only a grasp action followed by a place
action, but the agent could optionally perform move and reach actions at some points during
the sequence without violating the preconditions of any of the component actions in the
sequence. The reliability of the pick-and-place action is only limited by the reliability of the
grasp component, which was 52.5% during the pick-and-place evaluation. In all trials with a
successful grasp, the place component was successful. The pick-and-place action may also be
used to move an object back and forth between two locations of interest - a useful way of
independently generating additional opportunities to practice - but only as long as the target
object continues to be placed in an upright orientation. Grasping is not yet reliable for other
orientations of the object, so a placement that results in one of these orientations ends the
cycle. Further detail about the pick-and-place action can be found in Section 7.5.
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8.2 Directions for Future Work

Throughout this dissertation, we have included discussion of opportunities for future work.
These discussions have included cases where it may be possible to improve upon results with the
consideration of new features, where it may be possible to increase the autonomy of the agent
with changes to the methods and assumptions, or for new directions that can be investigated as
a continuation of this work. While these cases are identified in context, we highlight some key
directions here.

In order to guarantee the timely evaluation of the agent’s learned actions within this work,
we have needed to provide some guidance that is not present in the ideal unguided method we
propose. The removal of this guidance and an evaluation over the agent’s autonomous behavior
is an important step for future work to build on and strengthen the contributions in this work. As
discussed above, the procedure for generating actions autonomously may produce a wide variety
of actions. For the sake of timely evaluation in this work, we artificially restrict the agent’s focus
to only certain actions. In future work, the agent may be allowed to create actions for any event
that it observes, and may practice executing the actions to make them reliable in any order, or in
intermingled trials. This extension could be performed by applying the framework for open-ended
action learning suggested by Kumar et al. (2021) [26], which includes a formalization for the agent’s
selection of an action to attempt given the current environmental state and a target for that action.
A flexible learning order will also be significant for future work, as the experimenter-determined
learning stages are a source of guidance that could be removed to make the agent more autonomous
and more natural. Removing the learning stages will also allow for intrinsic motivation to be more
explicitly modeled and used by the agent to choose the action it is currently most ready to practice
and learn, rather than assuming the actions in each stage correspond to the actions with the highest
intrinsic reward. Another step toward making the agent fully unguided is to give the agent sufficient
capabilities for generating its own features and defining its own search problems, to replace portions
of the current algorithm that assume the results of the generate and test process by providing a
useful feature or set of features that is analogous to what would be found by a successful search.
We claim that the resulting action qualities and success rates would be the same with each facet of
guidance removed, but the proposed unguided method must be tested to support this claim.

There are also specific results that may be improved upon in future work. The grasp action
is only semi-reliable at the conclusion of this work, and may be improved. The result of 98%
successful grasping in Luo et al. (2018) [32] demonstrates that reliable grasping is attainable using
sensorimotor learning models that can be trained from agent experience. As an alternative to their
assumed kinematics knowledge and 3D object pose representations, we have proposed the Improved
Explored PPS Graph that allows more detailed segmentation of the parts of the hand and that adds
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an assumption that the most distal joint w2, which rotates the hand, and the gripper aperture are
degrees of freedom of the hand, rather than degrees of freedom of the arm as the other six arm
joints are. This separation allows nodes to be defined with only the degrees of freedom of the arm,
and at each node images may be recorded with multiple settings for the degrees of freedom of the
hand, providing more data on how the orientation, size, and appearance of the hand is changed. The
additional data reduces the reliance on estimating or ignoring the effects of the rotation of the wrist
and the aperture of the grippers. We have not yet performed grasping experiments that use the data
available in the Improved Explored PPS Graph, but expect that the general reliability of the grasp
action can be improved using the additional features and more accurate feature estimates that can
be extracted from the new implementation of the graph model.

The current grasp action is not capable of grasping blocks that are not upright. This appears to
be caused by a lack of nodes close enough to the table to have intersections with a block laying
down on its surface, as well as a lack of nodes that hold the grippers pointed down at the table for a
well-aligned and perpendicular approach. While additional features may be identified to mitigate
these issues, it may be the case that nodes would need to be added to the graph to resolve them
completely. In order to produce more nodes near the surface of the table, the agent may need to
perform motor babbling with less strict rejection criteria. As the graph tends to be sparse near edges
of the explored space that are created either by the rejection criteria or the maximum extent of the
arm’s reach, it may be a better solution to perform motor babbling without the table present so that
its surface need not be an edge. Once the table (or any other workspace surface) was introduced to
the environment, nodes that fall beneath or inside its surface could be removed from consideration
and have all edges to them disconnected. The lack of nodes with an orientation that would allow
the hand to grasp the object in a crane-like maneuver can also be addressed by changes to the
motor babbling method for building the graph. We hypothesize that since the initial pose for n0

was approximately parallel to the table’s surface and pointed to the right, it is unlikely that the arm
will reach a configuration that points the hand downward by adding small random deltas to each
joint. The configurations required to point the hand downward are quite distant from those of n0,
and also require each joint angle to be in a relatively specific range. The rejection criteria that keep
all node configurations within reduced ranges may further limit the possible paths to arrive at one of
these nodes while motor babbling. Instead of constructing a single chain of nodes, we hypothesize
that the agent may be better served by constructing a few chains that each begin with a qualitatively
different pose (such as pointed to the right for swinging motions or or pointed down for crane-like
motions), and then connecting a number of nearest pairs of nodes between each chain in addition
to adding edges that satisfy the configuration-space distance heuristic for feasibility. Experiments
could be performed to determine if the additional types of nodes would require a larger total to be
collected to cover the space equally well, and to determine if grasping or other actions become more
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reliable.
These improvements to the grasp action may also be complemented by improvements to the

place action, so that the object may be placed upright and be in an orientation that allows it to be
more easily grasped. Steps toward more precise and stable placements may also advance the agent’s
capabilities so that it can place in smaller qualitative locations, near specific coordinates, or on
another object to create a stack. With enough improvements to either the grasp or place action or
both, the agent may practice pick-and-place tasks in long cycles without requiring experimenter
intervention, which is currently necessary whenever the object transitions to a state that is too
difficult to grasp with the current method.

The graph representation may also be improved by giving the agent the capability to add nodes
to the graph after the initial motor babbling is complete. Assuming the image processing system
used is capable of accurately identifying the features of the hand in an image with an object present
(and potentially adjacent to the hand), one approach would be to add a node whenever the arm is
moved to a configuration that has been adjusted according to a local Jacobian estimate. This node
should record the actual configuration reached (not the intended configuration, which may differ
slightly due to the error tolerance in the built-in Joint Position Control mode) and derive the visual
features from new images taken of the hand at this pose, not simply the intended image-space center
(which may not be produced due to errors from the local Jacobian estimate). Nodes added in this
way would be near the position of a block that was the target of a reach or grasp, which ensures that
the new nodes could be near future target positions and may become useful final node candidates.
Since objects are at the depth of the table’s surface, these nodes are also likely to be added where
the graph is sparse and improve density in that region. We also suggest an approach where the agent
identifies the sparse regions of the graph and creates one or more new nodes in each. “Holes” in the
graph may be identified by examining heat maps of the coverage of the existing nodes’ palm masks
or depth ranges, or by identifying a position (u, v, d) in image space that has the most distance to
the nearest node’s palm center. Once the hole or sparse region is identified, the agent can perform a
move into it using a local Jacobian adjustment from a nearby node, and record the resulting pose.
Once the nodes have been added, the agent will have a more complete model of peripersonal space.
The added density in regions that were sparse is also likely to improve the reliability and generality
of the agent’s actions, as this depends on the availability of a candidate node with reliable features
for the current target.

Another opportunity for future work is to extend the usage of the local Jacobian estimates
to modify aspects of the full trajectory, rather than to adjust only the final configuration or final
move. We have carried out a preliminary reaching experiment where instead of using a graph path
trajectory, the agent extracts the center of the target ct from the current images and estimates the
configuration required to reach it based on its displacement from the current nearest node, which is
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initially the home node nh, so q̂t = (ct − cph) · Ĵ+(nh). Given that the target is generally distant and
well outside the neighborhood of nh, the estimate q̂t will be inaccurate. However, the estimate is
still accurate enough that moving towards q̂t tends to decrease the distance from the target. Each
time during this reach that the arm configuration becomes nearest to that of a different node nn,
the estimated configuration for reaching the target is updated to q̂t = (ct − cpn) · Ĵ+(nn). If the
estimate is ever particularly poor, the motion can still be corrected once a different node is nearest
and gives a different estimate. Since the distance ||ct − cpn|| tends to decrease over time, eventually
the estimates are accurate and the reach succeeds with a bump of the target object. When this is
recognized, the agent stops the motion of the arm and the reaching trial ends. A demonstration
of this approach can be viewed at: https://www.youtube.com/watch?v=MSbbPwWCgd8. While
this motion still has some peculiarities, it looks significantly smoother, faster, and more efficient
than a reach along a graph path trajectory to a target at the same position, which can be viewed at:
https://www.youtube.com/watch?v=3yiEK99bKNE. We have not yet pursued this reaching method
further as it is unclear how to retain some advantages of graph path trajectories. In particular, this
preliminary new reaching method does not have a mechanism for avoiding obstacles, and it also
cannot guarantee a specific well-aligned direction of approach that would be necessary to use the
same method for planning a successful grasp trajectory.

We also intend for our work to contribute to conversations in other fields, where work may be
continued by experiments in those fields or through collaboration. There are clear points where
approaches from reinforcement learning and deep reinforcement learning could be combined
with our approach for mutual benefit. Reinforcement learning and deep reinforcement learning
approaches could be applied to extend this work in multiple places, and we suggest two here. First,
these methods could be used by the agent to select the best control law to use with Joint Velocity
Control. At this time, we have demonstrated different behaviors through a grid search of coefficient
values carried out at experimenter direction, and found that kp = 1.25 produces motions that appear
to be nearly critically damped. A reinforcement learning approach with appropriate rewards for
reaching the set point as well as penalties for additional time or total rotation would allow a more
precise optimal control law to be determined, and to be determined in a more automated method.
Second, (deep) reinforcement learning methods can use the information in the PPS Graph and
the learned action policies as an initialization rather than a random initialization, and train more
efficiently by searching in this neighborhood rather than the space of all possible motions. Of
particular interest would be the use of a reward signal to make the motion trajectories smoother and
more efficient, allowing for a transition from early action forms learned in this work to more skillful
late action forms. The agent could also become more skilled through a form of apprenticeship
learning[1] where the required demonstration could be performed using the agent’s previously
learned early action policies. While these learned policies are unlikely to produce a fine-tuned
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“expert” demonstration, they are capable of serving an analogous role of directing the attention of
the reinforcement learner to a neighborhood of the solution space that reliably achieves the goal.
Smoother and more controlled motions may also be important to making actions that require high
precision, such as grasping, significantly more reliable.

Our learning model and implementation on an embodied robotic agent also allow the expression
and testing of hypotheses of interest to developmental psychologists. We have already shown
that our model produces behaviors that are consistent with those observed in typical infants, and
future collaboration could help to determine if the cause of the behavior in our model is a plausible
cause in infants. Additional biases, constraints, and capabilities could also be added to the PPS
Graph Representation to support the testing of additional theories, and experiments with the robot
can provide faster and more transparent results than those that can be obtained directly from
the observation of infants. After obtaining results with our model, this will suggest a focus for
experiments with infants, which would provide important support for any theories generated beyond
the consistencies in behavior that can be documented with the robot.

8.3 Conclusion

We have presented a learning algorithm where the observation of unusual events leads to the
definition of actions to repeat them, and where exploration reveals features that can be used to make
reliable plans for these actions that can be executed by an embodied robotic agent. In an amazing
phenomenon, human infants and other natural agents can be observed to learn to successfully
perform a multitude of actions that they are not innately capable of performing. This provokes a
fundamental question of how this learning could be possible. Our implementation of a computational
model illuminates a sufficient set of knowledge that can be gained to make these foundational
actions reliable and a plausible way to represent this information. Our model is consistent with
natural agents as it initially produces infant-like early actions and allows for these actions to be
refined with additional practice and learning. For the set of actions considered in this work, our
agent follows a learning process that demonstrates learning these actions from experience, as infants
do, is feasible.
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Shen. Discovering schema-based action sequences through play in situated humanoid robots.
IEEE Transactions on Cognitive and Developmental Systems, 2021.

214



[27] Suresh Kumar, Patricia Shaw, Alexandros Giagkos, Raphäel Braud, Mark Lee, and Qiang
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