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Abstract— We describe a new algorithm for occupancy grid
mapping using LIDAR in the presence of glass and other non-
diffuse surfaces. This is a major problem for robot navigation
in many indoor environments due to the prevalence of glass
paned doors, windows, and even glass walls, as well as mirrors
and polished metal surfaces. Current formulations of occupancy
grid mapping make the assumption that objects in the environ-
ment are detectable from all angles. However, glass and other
specular surfaces are invisible to LIDAR at most angles and
so become washed out as “noise”. We modify the standard
occupancy grid algorithm to allow for mapping objects that are
only visible from certain view angles, by tracking the subset
of angles from which objects are reliably visible. We show
that these angles can be determined reliably with a single pass
through the environment, and that the information can be used
to map both diffuse and specular surfaces.

I. INTRODUCTION

Occupancy grid mapping is one of the most common
methods of LIDAR mapping currently in use. By divid-
ing the world into a uniform grid of cells and solving
the mapping problem locally at each cell, occupancy grid
mapping provides a representation of the environment that is
general, robust, and easy to manipulate [1]. Occupancy grid
maps are also inherently suitable for online mobile robot
applications. Common uses for occupancy grid mapping
include localization, path planning, and detection of motion.

Modern environments – like the one shown in Figure 1 –
commonly contain glass architectural features such as glass
paned doors, full height windows, glass dividers and so forth.
Unfortunately, current implementations of occupancy grid
maps tend to delete glass obstacles, as shown in Figure 2(a).

We show that the problem is caused by an overly simplistic
model of the world and sensor that only accounts for diffuse
objects. Our algorithm corrects this by substituting a more
general model that takes into account the visibility of glass
from different angles. At most angles, glass is transparent to
LIDAR, or reflects the laser away from the sensor, creating
spurious readings. The key insight to the algorithm is that
– from the perspective of LIDAR – glass behaves like a
diffuse object at some view angles, while from other angles
it appears like free space. By learning these angles and only
using LIDAR readings that are consistent with diffuse object
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behavior, we convert the problem of mapping glass back into
the problem of mapping diffuse objects. Although our focus
is on glass, the method applies equally well to mirrors, metal,
and most other non-diffuse solids.

Our algorithm consists of a simple online heuristic for
discovering a subset of the diffuse-like angles, and a method
for reconstructing the observations from these angles in the
presence of localization error. The latter is necessary because
the diffuse-like angles often span a < 2◦ range around the
surface normal, which is less than the uncertainty in the view
angle at short range.

Fig. 1. Many modern built environments include highly transparent glass
obstacles that are difficult for robot mapping methods to see. The maps
presented in Figure 2 are of the environment shown, which includes both
straight and curved glass walls.

II. PRIOR WORK

Previous work has attempted to address the problem of
mapping glass with LIDAR by using sensor fusion, by mod-
eling the probability of receiving direct reflections back from
glass, using mirror symmetry of reflections, or analyzing the
surrounding environment. This work has suffered from major
problems with reliability, precision, and generality.

Diosi and Kleeman [2] attempt to get around the problem
by using sonar to detect glass. This causes an unnecessary
loss of precision in location and shape of the glass. Awais
[3] attempted to model the probability of receiving a direct
reflection back from the glass as a function of angle and
distance. This is similar to our approach, but Awais makes
the assumption that this function is gaussian, and the same
for all pieces of glass, leading to gross errors in the detection
of glass. Yang and Wang [4] attempt to take advantage
of mirror-like reflections and locate glass by detecting the
mirror symmetry of these reflections. However, detecting this



(a) Traditional occupancy grid mapping of the
environment in Figure 1 (LIDAR sensor path
shown as dashed line) produces a map in which
most of the highly transparent glass walls are
entirely missing, giving the illusion of navigable
free space across the atrium. (Only 13% are
correctly detected, mostly small regions of glass
near the spiral staircase, which are visible due to
subtle optical effects, refer to Section III-A.2).
The shiny metal doors of the elevator are also
missing, showing that the problem is general to
other non-diffuse materials as well.

(b) Hand labeling the observations as glass
walls (blue), diffuse walls(orange) and mo-
tion/reflection/noise(gray) shows that the glass
information was available from the LIDAR,
but was discarded. Three pedestrians traveling
through the area are also visible as streaks of
motion. There are also several complex reflec-
tions, which appear as clouds beyond the glass.
Ideally, an occupancy grid map should be able
to preserve the glass wall information while
rejecting the observations caused by motion,
reflections and noise.

(c) Using our algorithm, we preserve almost all
of the glass walls (94%) while still eliminating
nearly all of the unwanted cells. 99% of the glass
detected is also correctly localized to within
1 cell (5 cm). The only missing segments are
small pieces of glass near the pillars which
are removed by our motion removal heuristic
for the first pass through the environment.(Cells
are not colored because our algorithm does
not categorize materials into discrete glass and
diffuse categories, instead modeling them as a
continuum based on angles at which they are
visible.)

Fig. 2. Maps of the environment in Figure 1.
(5 cm cell size.)

symmetry is computationally challenging for flat surfaces
and nearly intractable for curved surfaces. Another approach,
seen for example in Pu and Vosselman [5], is to infer glass
by detecting things like window frames, but this approach is
limited to the model of the surroundings.

There has also been work on segmenting glass once
mapped, as in Tatoglu and Pochiraju [6], but it did not
address the problems of mapping glass in the first place.

In contrast to the above, our method directly locates glass
with high precision using only LIDAR information, including
the case of curved surfaces.

III. PHYSICS AND SENSOR MODELS

Before discussing how our algorithm deals with glass, we
need to review how a LIDAR works and the behavior of a
LIDAR in the presence of glass.

A LIDAR works by sending out pulses of laser light and
then waiting for the light to come back. By measuring the
time between sending and receiving the pulse, the LIDAR
measures the distance to the target. 1 In this sense, LIDAR

1Some scanners, such as Hokuyo URG models, also use phase shift
mechanisms [7] which are more affected by background objects, but the
physics is similar.

behaves very much like sonar. If the light doesn’t come back,
no distance is measured.

A. Physics Background

1) Light and Glass: As shown in Figure 3, when light
hits a diffuse surface, it scatters equally in all directions,
traveling outward in a hemispherical region. Because the
power is distributed over the hemisphere, the power per unit
solid angle is greatly reduced. The intensity measured by
LIDAR is actually the power intercepted by the aperture of
the LIDAR. The solid angle that this represents falls off with
distance

This effect is important because it means that the relative
distances to the sources of returns has a large effect on their
relative intensities.

As shown in Figure 3 light hitting glass at an angle θ
will be both transmitted and reflected at the same angle on
the opposite side of the normal. Typically, about 8% of the
light is reflected and the rest transmitted. Because of dust
and microscopic imperfections in the surface of the glass,
some of the light is scattered to nearby angles.

A quantitative discussion of the scattering physics of glass
is beyond the scope of this paper, but notice that when θ is



(a) (b)

Fig. 3. Light behaves very differently when it hits different materials.
Traditional LIDAR mapping algorithms assume that all surfaces are diffuse,
as in (a), meaning they scatter incoming light equally in all directions. Light
hitting glass however, as in (b), is split into three components. About 92%
is transmitted through the glass; 8% reflects back at an angle opposite the
incident angle, forming the specular reflection; and a very small percentage
is scattered to angles near the specular direction by surface imperfections
and dust. The glass therefore tends only to be detected when the laser ray
strikes the surface at a near perpendicular angle. The effect is similar for
mirrors and other shiny surfaces, except that they tend to lack the transmitted
component.

near 0, the intensity of the return from the glass is much
brighter than the intensity of the return from a diffuse object
at the same distance.

2) LIDAR and Multiple Returns: Many LIDARs used in
mobile robotics are designed to return only one distance
reading per sample. In the case where light from more than
one object is returned at the same time, the LIDAR must
choose what range to report. For ranging purposes, it is more
useful to read a range that corresponds to one of the returns
than an averaged return. Therefore manufacturers go to some
trouble to produce devices that distinguish the returns and
choose one of the ranges to report [7], [8].

The methods that a LIDAR uses to distinguish multiple
returns are fairly complex [9], [10]. In both time of flight and
phase shift based LIDARs, the reported range is a function
of the amount of light in each return and the range of
each return. However for any fixed difference of ranges,
increasing the light of a return tends to make it dominate
the reported range reading [9],[11]. Because the intensity
of the return from the glass changes suddenly with angle,
the return from glass quickly goes from having little effect
on the range reading to completely dominating the reading.
For our purposes, a good working approximation to the
LIDAR’s behavior is that the range reading is not of the
closest reflection, but of the brightest reflection.

Consider the case in Figure 4 where there is a diffuse wall
behind a glass wall. The intensity of the returns for each is
shown schematically as a function of angle in Figure 5. When
the LIDAR is at a near normal angle to the glass, the return
will be greater from the glass, and so the range to the glass
will be read. At wider angles, the range to the diffuse wall
will be read. There is some critical angle between the two
where the returns are of equal intensity. Due to noise in the
measurement, there is also a small range of angles near the

Fig. 4. When a diffuse wall is behind a piece of glass the returned light
is a mixture from both. The received return intensities vary with angle and
distance (See Figure 5).

Fig. 5. When a diffuse wall is behind a piece of glass, as in Figure 4,
the light returned to the LIDAR is made of a component from the diffuse
wall(red) and the glass (blue), with some random variation (lighter areas).
Because the LIDAR uses the light of the brightest return there are distinct
ranges of angles where only the glass is detected or the diffuse wall. These
are separated by a small range where the choice is indeterminate.



critical angle where either return may be selected.
The exact value of the critical angle is sensitive to the

distance between the glass and the diffuse wall, and the dis-
tribution of dust on the glass. In complicated real world en-
vironments, with smudged glass and cluttered backgrounds,
it is very difficult to predict the critical angle. There may
even be multiple regions where the glass is visible.

Despite all of the uncertainty, the angles where glass is
visible are fixed given a static background. Also, the glass is
always visible when seen from directly normal to its surface.
Our algorithm exploits this fact to find the angles where glass
is reliably visible, and builds up an occupancy grid using the
observations within those angles.

B. Sensor and World Models
1) World Model: We model the world as a grid of cells.

Each cell may be occupied by a static object or a dynamic
object, or may be empty. A dynamic object may appear in
an empty cell or leave a cell it previously occupied. Each
occupied cell has a visibility function, VIS(φ), which is the
probability, as a function of view angle2, φ , that the return
from that cell will be brighter than all farther3 cells.
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Fig. 6. With no objects behind the glass, it is visible to the lidar from a very
wide range of angles. For any given angle, the probability of detection tends
to be very close to 1 or 0. We call this probability the visibility function.
For an ideal diffuse object the visibility function is always 1, so we refer to
the range of angles where the visibility function is close to 1 as diffuse-like
angles. (0.25◦ bins shown, dg=1 m, dd >20 m)
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Fig. 7. The visibility function for the same glass as in Figure 6 with
a diffuse wall 1 m behind. The glass is now visible from only a small
range of angles, corresponding to the central peak in Figure 5 (0.25◦ bins
shown,dg=1 m, dd=2 m)

An example of this function taken from a point on a piece
of glass is shown in Figure 6. It the following figure, the

2The incidence angle (Figure 3(b)) θ = φ−φN where φ is the view angle
(in a world centered frame) and φN is the (unknown but fixed) surface
normal in the same frame.

3In this sense farther means optically farther, i.e. all reflections of other
objects in a mirror are farther than the mirror.

visibility function for the same glass with a wall 1 m behind
it is shown. As predicted by the theory above, the visibility
is composed of blocks of angles where the probability of
detection is nearly 1 separated by the critical angles, where
the probability is intermediate, from angles with probability
near 0. Even in the unusually bad case of a diffuse wall
directly behind the glass, there is still a reliable set of angles
from which the glass is detectable.

We assume the prior probability of a cell containing a
static obstacle is a small value, and it is therefore safe to as-
sume that a cell is empty, in the absence of other knowledge,
in accordance with the observation that surfaces typically
make up a small fraction of the cells in the environment.

2) Sensor Model: In our model, the LIDAR shoots a laser
into the environment with angle φ. The laser returns from
the first surface with a probability VIS1(φ), from the second
surface with a probability (1 − VIS1(φ)) · VIS2(φ), and so
on. Thus, the probability of observing a return from surface
n, an event which we denote Zn, can be written as

p(Zn) = V ISn ·
n−1∏
i=0

(1− V ISi) (1)

Aside from the process of selecting the brightest return,
the behavior of the LIDAR is considered the same as for the
diffuse single return case. We assume gaussian distributed
range error, and have small probability, prand (≈ 1 × 10−3

for our LIDAR), that the LIDAR will fail and produce a
random reading4.

This is nearly identical to the normal sensor model, except
that the standard model assumes that VIS ≈ 1 at all angles.
Therefore, if it is possible to discover the ranges of angles
where VIS(φ) ≈ 1 and only use measurements taken from
those angles, then standard occupancy grid methods can be
used for mapping glass. We refer to these angles as the
diffuse-like view angles for each cell.

IV. VISAGGE

The core of our algorithm consists of a standard occupancy
grid which is only updated when viewing objects from
known diffuse-like angles. To this is added a second layer
where we store a range of diffuse-like angles for each cell. In
order to provide high confidence updates to the occupancy
grid, we use an algorithm to check that we have actually
passed through a diffuse-like angle before updating, which
requires a third layer where we store recent angles of view
relative to each cell. Finally, we use a heuristic to improve
motion detection when traversing the environment for the
first time.

In deriving our algorithm we start with a static world
assumption, which will be corrected in Section IV-B. To
simplify discussion, we also assume the size of a cell is
significantly larger than the error in the range or localization,
and that localization information is already given, although

4Many implementations artificially inflate prand in order to cause motion
to wash out as sensor noise. Because glass can appear identical to a moving
object, we must deal with motion explicitly to distinguish it from glass.



it is relatively straightforward to adapt our algorithm to
situations where this is not the case.

A. Static world approximation

Occupancy grids work by accumulating nominally inde-
pendent evidence for the competing hypotheses that a cell is
occupied or empty [1].

The evidence for the hypothesis that a cell is occupied is
simple: when an observation lands in that cell, it is more
likely to be occupied. This is true for all materials.

The problem lies in determining evidence that a cell is not
occupied. Recall that the standard occupancy grid assumes
that VIS ≈ 1 for all surfaces. This would imply that (1)
becomes:

p(Zn) ≈

{
1, if n = 1

0, otherwise
(2)

assuming that there is at least one obstacle in the path of the
laser.

In other words, observing a cell makes it very likely that
the cell contains the closest obstacle along the path of the
laser. Conversely, it is unlikely the laser would get that far
if there were any closer surfaces.

In the presence of glass, the situation is entirely different.
For glass, VIS(φ) ≈ 0 at most angles, so any observations
beyond the glass tend to give very little information on
whether the glass is actually present.

One possible solution to this problem is simply to never
count any observation as evidence against a cell being
occupied. This amounts to never freeing a cell once it is
occupied. In a truly static world, this works surprisingly
well because prand is so low. As long as the sensor is not
stationary for a long time, random errors will not accumulate
in any given part of the map.

B. Detecting motion in multiple passes

Unfortunately for this mapping approach, the world is
rarely completely static. It is essential to have a method
for detecting that cells are no longer occupied. We solve
this by noting that observations of static objects are highly
repeatable because VIS(φ) usually only takes on values close
to 1 or 0.

In Figure 8 we show that if a static object at point P is
observed from a known diffuse-like angle then it is sure to
be re-observed when passing through the same angle again,
even taking into account localization and range error.

What if we don’t observe anything at P? This would imply
that one of our assumptions is wrong. Either the LIDAR is
in error, or the object has moved.

Recall that the LIDAR very rarely produces false nega-
tives. This means that the most likely explanation is that the
object at P has moved, and that the cells it occupied are now
empty. If we consider our occupancy grid as storing the log
odds likelihood that a cell is occupied (the “occupancy”),
then this is equivalent to saying that we should decrement
the occupancy of cells near P. If we decide that the object in
the cell really has moved, we should discard any knowledge

Fig. 8. Suppose that an object exists at point P, that we have observed this
object from A, and by means of some external information we know that
VIS(φ) = 1 for whatever φ we were observing from. In other words, we
observed it from a diffuse-like angle. Due to localization and range error,
we may actually have observed P from anywhere within the circle around
A. This means that somewhere in the shaded region is a line of sight to P.
If at some later time we travel from B to C, and, taking uncertainty into

account, we know that our path from B to C must have passed through the
cross hatched region. Then, assuming the LIDAR has not made a mistake,
and the object is static, we are certain to re-observe the object at P from
somewhere along our path.

we have about VIS(φ) for that cell, since presumably the
visibility function for whatever might be in the cell now is
unrelated to whatever was in it before.

Why this relatively complicated mechanism for showing
that a cell is empty? By using the probability distribution
for the position of A, we could work out a probability
distribution for the line of sight, and then estimate our chance
of seeing the object at P again, at any given time. Then the
lack of observations along our path would provide evidence
against P being in the same location as before.

The problem with simply using the probabilities at each
time step is that it assumes the observations (or lack thereof)
are independent. At every moment the best we can do is
say that we probably should have seen the object if our
assumptions are correct. With the proposed method we know
when we almost certainly should have seen the object. In
other words, the proposed method significantly increases
the strength of the evidence against the hypothesis that
the cell still contains the object. This increases the rate of
convergence for our algorithm.

As an example, consider the case where the object at
P is visible from only a single angle and that angle is
equally likely to be anywhere in the shaded region. We
would then have a 50% probability of seeing the object when
passing through the first half of the shaded region, and 50%
probability of seeing it when passing through the second
half. If we treat these two events as independent, then we
would say that when passing through the entire region the
chance of not seeing the object, given that it is static, is
25%. However, the real probability of not seeing the object is
0%. In other words, we should be absolutely certain that the
object has moved (neglecting the possibility of unexpectedly



large LIDAR or localization error).
For glass, the range of angles where VIS(φ) ≈ 1 is very

small, 2◦ in the case shown in Figure 7. This means the
expected number of observations in a single pass by the glass
is very small. It is therefore desirable to have a very high
confidence method for detecting that cells are unoccupied,
to make the best use of what little information is available.

Notice that this repeatability argument works equally well
for diffuse objects. In fact our algorithm uses exactly the
same procedure for all materials. This allows our method
to deal with all materials on the continuum from diffuse
to specular or transparent, relying only on the fact that the
material has at least some diffuse-like angles.

1) Determining diffuse-like angles: To use the preceding
argument, we need a way to determine that VIS(φ) ≈ 1.
The most accurate method would be simply to traverse the
environment repeatedly to sample VIS(φ). However, this is
impractical both because of the number of passes needed
and the amount of memory needed to store VIS(φ) to a
sufficient resolution. A heuristic is necessary to approximate
VIS(φ) in a single pass. Awais [3] assumed that VIS(φ) was
a gaussian which significantly reduced the complexity of the
problem, but as shown in Figure 6, VIS(φ) is not even close
to gaussian, leading to poor results.

As noted earlier, VIS(φ) tends to be made up of blocks of
angles where VIS(φ) ≈ 1 or VIS(φ) ≈ 0. This means that
any given observation tends to correspond to a place where
VIS(φ) ≈ 1. Also, because VIS(φ) has a blocky distribution,
and the centers of blocks are closer to 1, a contiguous
string of observations tends to contain many angles where
VIS(φ) ≈ 1.

A simple way to take advantage of this structure is to
record the widest range of angles from which the cell has
been continuously observed.

This heuristic is also convenient in that it is easy to update
online by keeping track of the range of angles in the current
run of observations, and replace the previous best whenever
it is exceeded by the current range.

In a similar fashion, it is easy to keep track of the range of
angles traversed by the sensor since the cell was last observed
or occluded. These angles sweep out a sector that can be used
as the crosshatched region in Figure 8.

2) Determining occlusion: The above implicitly assumes
that the object at P is not occluded. If a cell is occluded,
then no information can be gained about that cell because
the laser didn’t reach it. In other words we should not alter
the cell’s occupancy if it is occluded.

Usually, when a cell is occluded, the LIDAR returns the
range of the occluding object. We are not aware of any
process by which the LIDAR produces a range reading closer
than the closest object. Thus, if the range reading was closer
than P , then the cell was definitely occluded and we gain
no information.

A cell may also be occluded if an object such as a mirror
or glass reflects the laser to some other object, producing an
anomalously long range reading. If we have already mapped
the offending surface, we can check for this as well and

prevent readings that pass through the surface from affecting
further cells.

3) Summary: Our main algorithm algorithm is as follows:

VISAGGE CORE
1: When an observation lands in a cell, increment its

occupancy.
2: For every cell, record the widest range of angles (rela-

tive to the cell) from which the cell was continuously
observed. Call this range φVIS.

3: For every cell, keep track of the angular range traversed
by the LIDAR since the cell was last observed or
occluded. Call this range φMISS.

4: When φMISS overlaps φVIS by more than can be ex-
plained by localization uncertainty, decrement the oc-
cupancy.

5: When a cell’s occupancy drops low enough that it is
probably free, delete φV IS .

C. Detecting motion in a single pass

It is always possible for an object to move in such a way
as to simulate the pattern of observations hitting a piece of
glass. However, in the case of multiple passes, the pattern of
observations on glass repeats in concert with the motion of
the sensor. This is unlikely for a moving object unless the
object’s motion is dependent on the motion of the sensor.
Because the algorithm discussed so far works by eliminating
points that are not repeatably observed it requires two passes
to distinguish motion from glass.

Nevertheless, in many situations, such as a robot initially
exploring an unknown environment, the sensor only traverses
the environment once. In this case, the sensor is quite
likely to pass through any given range of view angles only
once, so it is desirable to produce a correct map of the
environment after a single pass. We also note that when
considering a single point seen from only a single pass,
glass is indistinguishable from an object in motion. This is
because at any given cell, a moving object manifests itself as
an isolated period of time when the cell is observed, which
is precisely how glass appears.

It is possible, however, to distinguish glass based on non-
local information. The reason that we can detect glass at all is
that light is reflected back when it hits the surface at a normal
angle. This means that the diffuse-like angles of the surface
definitely includes the normal to the surface. Similarly, the
range of diffuse-like angles for all surfaces in a region of
space is a superset of the range of surface normals in that
region of space. So, if we pass a region of space and only
observe cells in that region from a very narrow angular range,
the surfaces in that region must have a very small range of
normals, assuming the surfaces are stationary. This means
that we know the surfaces in that region of space must be
both very flat and fall within a small range of orientations.
Such a surface will very likely extend into neighboring cells
in both directions perpendicular to the normal direction.



A cell containing a moving surface also tends to have a
small number of observations coming from a single direction,
corresponding to the direction to the sensor at the time the
moving moving surface happened to be in that cell. However,
there are no constraints on how the neighboring cells are
occupied.

We distinguish these two cases by a heuristic for separat-
ing motion after a single pass:

SINGLE PASS MOTION REMOVAL
1: Select the cells whose φV IS have a low width (< 6◦ in

our implementation). Mark these cells as uncertain.
2: Find any uncertain cells that don’t have occupied or

uncertain neighbors on both sides normal to the direction
of observation (the mean of φV IS). Mark those cells as
unoccupied.

3: Repeat 2 until convergence.

This heuristic is less reliable in the long run than the
core algorithm because it does not eliminate motion that
consistently travels perpendicular to the line of sight from
the LIDAR to the object, such as a pedestrian walking side
by side with the LIDAR at a fixed distance, or a self reflection
when moving parallel to a piece of glass or mirror. The
heuristic may also eliminate glass that has a small diffuse
surface behind it (as is the case with the pillars in Figure
2(c)), because in these cases we may select a φV IS that
doesn’t include the normal. Because of this, we recommend
not using this heuristic when two or more passes have been
made by a cell.

V. EXPERIMENTS AND RESULTS

In order to evaluate our algorithm, and the sensor model it
is based on, we ran two experiments using a Hokuyo UTM-
30LX LIDAR with intensity reporting information producing
scans at 40Hz.

A. Validation of sensor model

We evaluated our sensor model by comparing intensity
readings from diffuse and non-diffuse surfaces.

As shown in Figure 9, the intensity readings closely
parallel the theoretical shapes shown in Figure 5. In addition,
the intensity of the diffuse surface falls away with distance.
From Figure 9, it can be seen that the glass is brighter than
the diffuse wall for an incidence angle of ±1◦ when both
are at about the same distance. This would imply that the
glass should be visible in a 2◦ wide range, as was indeed
observed in Figure 7. Similarly, when there is nothing behind
the glass, it should be visible for a wide but more variable
angle due to the noise at low intensity, as was observed in
Figure 6.

B. Mapping

We evaluated the actual mapping performance of our algo-
rithm by driving a LIDAR equipped wheelchair through the
environment shown in Figure 1. We drove at approximately
1 m/s in a single pass around the walkway, which covers a

−10 −7.5 −5 −2.5 0 2.5 5 7.5 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Angle of View (degrees)

In
te

ns
ity

 

 
Glass Intensity
Diffuse Intensity

2 m

1 m

3 m

Fig. 9. Our sensor model assumes that the brightest return is used to
compute the range reading for the LIDAR. To test this, we measured the
intensity reported by a Hokuyo UTM-30LX (not linear with true intensity)
from the glass and diffuse surfaces in Figures 6 and 7. As expected, the
intensity varied mainly as a function of distance for a diffuse surface, and
mainly by angle for glass (for readability, 1 m shown only). With the diffuse
surface at 2 m, the glass is brighter over a range of approximately 2◦. This
closely parallels the range in which the glass was detected in Figure 7,
validating the theory.

20 m x 20 m floor space, as shown in Figure 2. The walkway
is entirely enclosed by glass on its inner wall. We ran our
algorithm in an online manner (i.e. incrementally) on a previ-
ously collected dataset with precomputed sensor localization
information 5 with the single pass motion removal included.
The algorithm averaged 9.1 ms/scan running on a 2.0 GHz
Intel R© CoreTM2 CPU. We also ran a standard occupancy grid
algorithm on the same data for comparison.

The results are displayed graphically in Figure 2.
As shown in Figure 10 our algorithm performs signifi-

cantly better than the traditional occupancy grid mapping
method on glass walls, correctly detecting 95% of the glass,
as compared to 13% for the traditional method.

We also noted that our algorithm correctly detected the
stainless steel surface of the elevator, seen at the top of Figure
2(b), validating our assumption that our algorithm works on
partially specular materials.

As expected from the discussion in Section IV-C, our
algorithm intermittently failed to detect glass when an iso-
lated object (usually a pillar) was directly behind the glass.
Qualitatively, this is not a particularly bad failure mode for
a mobile robotics application since the nearby object would
prevent a path planner from trying to plan paths through the
missing section.

The performance of our algorithm in terms of false
positives is similar to the traditional occupancy grid, with
somewhat more errors in rejecting reflections, due largely to
reflections of the wheelchair moving parallel to the glass,

5Both MATLAB and C++ implementations without single pass motion re-
moval are available at http://irlab.eecs.umich.edu/website/
dataset/Glass_wall_icra2013.html as well as the datasets used.
Single pass motion removal is withheld because our implementation used
modified versions of internal MATLAB functions. We are working to
provide a free version of this code.

http://irlab.eecs.umich.edu/website/dataset/Glass_wall_icra2013.html
http://irlab.eecs.umich.edu/website/dataset/Glass_wall_icra2013.html


Glass
Correctly Detected 13.29% 99 94.90% 707
Incorrectly Localized 1.21% 9 0.94% 7
Total Ground Truth 745

Motion
False Positive 1.09% 43 0.35% 14
Total Ground Truth 3954

Reflection
False Positive 2.24% 61 5.17% 141
Total Ground Truth 2727

Traditional Grid 
Mapping

VisAGGE

Fig. 10. The performance of our algorithm (VisAGGE) and the standard
occupancy grid algorithm were measured by comparing with a ground truth
generated by hand labeling each cell observed as glass, diffuse, motion, or
reflection (Figure 2(b)). Diffuse cells were excluded from further analysis.
The values in the table were derived as follows:
The walls from the algorithms’ outputs and the ground truth were thinned

before comparison to determine localization accuracy, and to measure total
glass length. Glass cells on the ground truth were considered correctly
detected if they were within one cell of an occupied cell in the output,
and detected but incorrectly localized if they .
The un-thinned versions of the maps were used to determine false positives.

Any cells reported as occupied and coincident with cells marked as motion
or reflections in the ground truth were considered false positives.
Finally, in the top right corner of the map there was a set of chairs with

seats at precisely the same height as the LIDAR plane, causing ”flickering”
detection, making it unclear whether they should have been detected as
motion or not. These cells were ignored in the analysis.

and somewhat fewer errors caused by moving objects, due
to having a more sensitive motion detection scheme.

A separate qualitative6 evaluation was done with a mir-
rored wall. Our algorithm showed slightly faster detection
and less noise with the mirror than the glass, presumably
because more light was reflected back, but was generally
quite similar to glass. We emphasize that the algorithm was
not modified in any way to deal with the mirror.

VI. CONCLUSION

In this paper we have detailed an online algorithm for
performing occupancy grid mapping in the presence of glass
and other non-diffuse surfaces.

Our method is based on a sensor model which allows the
problem of mapping glass to be converted into a standard
occupancy grid mapping problem given knowledge of a
set of of angles from which glass appears like a diffuse
surface. We have given a heuristic for determining a subset
of these diffuse-like angles and a method for generating high
confidence inferences from observations at these angles. We
have also given a heuristic to improve discrimination between
motion and glass in cases where the environment has only
been traversed once.

Experimental investigation of the behavior of our LIDAR
has shown good agreement with the predictions of our sensor
model. We have shown experimentally that this algorithm is
robust to motion and can be used to build a map of the
environment in a single traversal, with quality comparable
to a standard occupancy grid on diffuse surfaces while
simultaneously providing good detection and localization of
both flat and curved glass surfaces. In the future we hope
to implement our algorithm in a realtime mobile robotics

6Due to having only 1m of mirrored wall, equating to only 20 cells in
our map. Dataset is available from the website.

environment and evaluate its performance on a wider range
of materials.
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