
In Proceedings of the Ninth National Conference
on Artificial Intelligence (AAAI-91)
Cambridge, MA: AAAI/MIT Press, 1991. Negation and Proof by Contradiction inAccess-Limited Logic �J. M. Crawford B. J. KuipersDepartment of Computer SciencesThe University of Texas At AustinAustin, Texas 78712jc@cs.utexas.edukuipers@cs.utexas.eduAbstractAccess-Limited Logic (ALL) is a language forknowledge representation which formalizes the ac-cess limitations inherent in a network structuredknowledge-base. Where a deductive method suchas resolution would retrieve all assertions that sat-isfy a given pattern, an access-limited logic re-trieves all assertions reachable by following anavailable access path.In this paper, we extend previous work to includenegation, disjunction, and the ability to make as-sumptions and reason by contradiction. We showthat the extended ALLneg remains SocraticallyComplete (thus guaranteeing that for any factwhich is a logical consequence of the knowledge-base, there exists a series of preliminary queriesand assumptions after which a query of the factwill succeed) and computationally tractable. Weshow further that the key factor determining thecomputational di�culty of �nding such a series ofpreliminary queries and assumptions is the depthof assumption nesting. We thus demonstrate theexistence of a family of increasingly powerful in-ference methods, parameterized by the depth ofassumption nesting, ranging from incomplete andtractable to complete and intractable.IntroductionPast work in ALL [Crawford & Kuipers, 89, 90]has shown Socratic Completeness and computationaltractability for a language with expressive power equiv-alent to that of a deductive database. In this pa-per, we extend the expressive power of ALL to thatof �rst order logic without existential quanti�cation,and thus for the �rst time demonstrate the existence�This work has taken place in the Qualitative Reason-ing Group at the Arti�cial Intelligence Laboratory, TheUniversity of Texas at Austin. Research of the Qualita-tive Reasoning Group is supported in part by the TexasAdvanced Research Program under grant no. 003658-175,NSF grants IRI-8905494 and IRI-8904454, and by NASAgrant NAG 2-507.

of a tractable and Socratically Completeness inferencemethod for a language in which complete inference isknown to be NP complete [Cook, 1971]. The heartof the extension is the addition of `classical' negation(i.e., not negation by failure) to ALL. The addition ofnegation is important because it allows one to expressnegative and disjunctive information. Further, the ad-dition of negation allows us to augment inference bymodus ponens (the only inference method required ina deductive database) with inference by reductio ad ab-surdum | the ability to make assumptions and reasonby contradiction.Socratic Completeness guarantees that for any factwhich is a logical consequence of the knowledge-basethere exists a series of preliminary queries and assump-tions after which a query of the fact will succeed. Sincecomplete inference in �rst order logic without existen-tial quanti�cation is known to be NP complete, theproblem of generating such series must be NP com-plete. However, we will show that the key factor de-termining the di�culty of �nding such a series is thedepth of assumption nesting in the series. Given anyknowledge-base and any fact, if there exists a seriesof preliminary queries and assumptions after which aquery of the fact will succeed, and the series only nestsassumptions to depth n, then the series can be foundin time proportional to the size of the knowledge-baseraised to the nth power. This result is particularlysigni�cant since we expect common-sense reasoning torequire large knowledge-bases, but relatively shallowassumption nesting.It has been apparent at least since the work of[Woods, 75] that a knowledge representation languagesu�cient to support the building of large knowledgebases must have a clear semantics. Without a clearsemantics one can never be sure exactly what a givenexpression represents, which deductions should followfrom it, or how it compares to an expression in a dif-ferent knowledge representation language. Experiencewith formally speci�ed knowledge representation sys-tems has revealed a trade-o� between the expressivepower of knowledge representation systems and theircomputational complexity [Levesque, 86]. If, for exam-

ple, a knowledge representation language is as expres-sive as �rst-order predicate calculus, then the prob-lem of deciding what an agent could logically deducefrom its knowledge is unsolvable [Boolos & Je�rey, 80].There are several possible solutions to this problem:(1) restrict the expressive power of the representationlanguage, (2) describe the reasoning ability of the sys-tem with an operational semantics rather than a modeltheoretic semantics, or (3) give up completeness butguarantee Socratic Completeness.Unfortunately, there are problems with each of thesesolutions. If one is interested in expressing the fullrange of human common-sense knowledge then re-stricting the expressive power of the representation lan-guage is not an option. An operational semantics maysu�ce to describe the reasoning ability of the system,but it does not de�ne the semantics of statements inthe representation language.One can attempt to give a model theoretic semanticsfor the representation language, and an operational se-mantics to reasoning. However, reasoning will then beincomplete with respect to the semantics of the rep-resentation language.1 That is, there will be casesin which according to the model theoretic semanticsTh j= f , but the system cannot derive f from Th.Thus the meaning ascribed to statements by the modeltheoretic semantics will not always match their mean-ing to the system.The third solution, Socratic Completeness, doesguarantee that the model theoretic semantics describesthe potential reasoning ability of the system, and thus(together with soundness) guarantees that the mean-ing ascribed to statements by the model theoretic se-mantics is the same as that ascribed to statements bythe system. However, Socratic Completeness is a weakproperty and can be satis�ed by any system of infer-ence with a complete set of proof rules.In ALL we use a model theoretic semantics to de-scribe the potential reasoning ability of the system(by guaranteeing Socratic Completeness), but uses anoperational semantics to describe the behavior of thesystem on individual operations. In a sense it is notsurprising that complete inference (with respect to amodel theoretic semantics) is intractable; the modeltheoretic semantics was not intended to describe whichinferences are easy to make, or are useful in a given con-text. The model theoretic semantics describes whichinferences are permissible, and is thus an appropriatedescription of the potential long term reasoning abilityof the system. We expect a single operation to permitonly deductions which are \obvious". The behaviorof the system on single operations can thus best be1One could achieve completeness by giving up tractabil-ity, however, if a system is intractable then in practice thismeans that it does not return on some inputs (or returnsonly after some unacceptable period of time), and thus ise�ectively incomplete.

described operationally.2 In ALL, deductions whichfollow simply by rule chaining are \obvious" and canbe made by a single operation. The deductive power ofALL on a single operation is thus roughly equivalent tothat of a deductive database.3 As will be seen below,the more complex deductions are those which requirereasoning by contradiction (or equivalently, reasoningby cases).Our approach in ALL begins with the well knownmapping between atomic propositions in predicate cal-culus and slots in frames; the atomic proposition thatthe object a stands in relation r to the object b can bewritten logically as r(a; b) or expressed, in frames, byincluding object b in the r slot of object a [Hayes, 79]:r(a; b) � a: r: values: f . . .b . . . gALL allows forward-chaining and backward-chaininginference rules. Antecedents of ALL rules must al-ways de�ne access paths through the network of frames.Access paths are sequences of predicates which canbe evaluated by retrieving values from known slots ofknown frames. For example, in ALL one could writethe backward-chaining rule:aunt(John; y) parent(John; x); sister(x; y)But one cannot write the (logically equivalent) rule:aunt(John; y) sister(x; y); parent(John; x);since evaluation of the antecedent would require aglobal search of the knowledge-base for pairs of framesin a sister relation.4 The use of access paths allowsALL operations to be performed in time proportionalto the size of the accessible portion of the knowledge-base [Crawford & Kuipers, 89].In order to add negation to ALL, we begin by addingfor each relation r an additional relation :r. If wemade no other changes this would give us a languagewith the expressive power to represent negation, butwe would have lost Socratic Completeness. In orderto maintain Socratic Completeness, we have to con-nect r with :r. We do this by adding the notion of aninconsistent knowledge-base, and the ability to make2A model theoretic semantics may well not be appropri-ate, since obviousness often depends as much on the formof knowledge as its meaning | e.g., p is obvious from q andq ! p, but is not so obvious from q and :p! :q.3ALL allows both backward and forward chaining rules.If one uses only backward chaining rules (or only forwardchaining rules) then the deductive power of ALL on a singleoperation is equivalent to that of a deductive database.4The restriction to access paths limits the syntax ofALL, but is not a fundamental limit on its expressive powersince one could always add a new constant and make it the�rst argument to every predicate. This would amount tomaking the entire knowledge-base a single frame.

Example 1:1. If Mary waters the
owers, then the
owers bloom.2. If the
owers bloom, then Mary is happy.3. Mary waters the
owers.Q: Is Mary happy?Example 2:1. If Mary waters the
owers and the
owers bloom,then Mary is happy.2. If Mary does not water the
owers, then they do notbloom.3. Mary is not happy.Q: Do the
owers bloom?To a human, the solution to �rst example is obvious,while the second requires some thought. To a reso-lution theorem-prover, both are two-step proofs. InALLneg, the �rst question is answered immediately,while the second requires a nested proof by contradic-tion. It is our goal to build systems that reason e�-ciently on problems people �nd easy, even at the costof requiring help on problems people �nd di�cult.Figure 1: Two Examples.assumptions and reason by reductio ad absurdum. Fig-ure 1 shows an example of a conclusion which can bedrawn using rules alone, and a conclusion which re-quires reasoning by reductio ad absurdum.The �rst section below presents the formal develop-ment of ALLneg, including sketches of the proofs of So-cratic Completeness and polynomial time complexity.We next turn to the problem of generating the prelim-inary queries and assumptions, and shows that the keyfactor determining the complexity of generating suchseries is the depth of assumption nesting. Finally weoverview related work, and discuss current and futurework. Formal DevelopmentThis section formally develops ALL with nega-tion. A more detailed development can be found in[Crawford, 90].SyntaxALLneg relies on the de�nitions of queries and asser-tions in ALL. The syntax and semantics of ALL (with-out negation) are over-viewed in [Crawford & Kuipers,89, 90b], and discussed in detail in [Crawford, 90]. Forpurposes of the discussion below, it su�ces to knowthat ALL de�nes the operations query and assert,

both of which operate on a knowledge-base by applyingall accessible inference rules, and both of which returnpairs:h `set of substitutions', `new knowledge-base' i.We use sub and kb as accessors on the �rst and secondcomponents respectively.In ALLneg, we use the function negate to returnthe negation of a relation or proposition in the obvi-ous way: negate(r(t1; . . . ; tn)) = :r(t1; . . . ; tn), andnegate(:r(t1; . . . ; tn)) = r(t1; . . . ; tn).5 A knowledge-base is f-inconsistent i� there exists a fact f such thatf 2 K and negate(f) 2 K.6When an assumption is made in ALLneg, the stateof the knowledge-base is saved so that, if the assump-tion leads to a contradiction, it can be restored. Thus,in general ALLneg operations operate on stacks ofknowledge-bases which we refer to as knowledge-basestructures. Formally, a knowledge-base structure, orkbs for short, K, is a stack of pairs:han;Kni; . . . ; ha1;K1isuch that, for 1 � i � n, Ki is a knowledge-base andai is nil or a fact allowed in Ki.7 We access the topelement of such a stack using the function head, andrest of the stack using rest. height(K) denotes thenumber of pairs in the structure. For any pair ha;Kiwe access the �rst and second components using thefunctions assump and kb respectively. We use top kband top assump to access the `top' knowledge-base andassumption in a structure: top kb(K) = kb(head(K)),and top assump(K) = assump(head(K)). We denotethe structure formed by adding the pair ha;Ki to thetop of the the structure K by: push(ha;Ki;K).To di�erentiate them from ALL operations, we sub-script ALLneg operations by neg. Thus query(q) isan ALL operation and operates on a knowledge-base,while queryneg(q) is an ALLneg operation which oper-ates on a kbs. The same holds for variables rangingover operations: if O = query(q) then Oneg is the cor-responds ALLneg operation queryneg(q).Three types of operations are supported in ALLneg:queries, assertions, and assumptions. If � is a non-empty path then queryneg(�) is a query. If f is a factthen assertneg(f) is an assertion. Finally, if a is a factthen assumeneg(a) is an assumption. If an operationOneg is allowed in a kbs K then Oneg(K) is an ALLnegformula.5The distinction between : and negate is important: :is simply a character which can occur in names of relations,while negate is a function; : is a part of ALL, while negateis a part of the mathematical language used to de�ne ALL.6Since knowledge-bases may not be deductively closed,a knowledge-base may be inconsistent (i.e., it may not havea model), but not be f-inconsistent.7A fact is allowed in a knowledge-base i� it contains onlyconstants and relations which are allowed in the knowledge-base.

Knowledge TheoryThe knowledge theory de�nes the values of ALLnegformulas by de�ning the e�ect of operations. ALLnegoperations map a kbs to a set of substitutions and anew kbs. We denote these returned values with pairs: h`set of substitutions', `knowledge-base structure' i. Weuse sub and kbs as accessors on the �rst and secondcomponents respectively.Performing an ALLneg operation involves perform-ing it as an ALL operation on the top knowledge-basein the structure, and then checking for, and dealingwith, contradictions. Consider a kbs K and a queryor assertion Oneg (allowed in K). If kb(O(top kb(K)))(i.e., the knowledge-base produced when O is per-formed as an ALL operation on the top knowledge-base in the structure) is f-consistent then it just re-places the old top knowledge-base in K. If, how-ever, kb(O(top kb(K))) is f-inconsistent, then the mostrecent assumption is retracted (i.e., the stack is`popped'), and the negation of the most recent assump-tion is asserted as a fact (unless the stack has onlyone element in which case there are no assumptions todrop and the knowledge-base is inconsistent).8 Figure2 shows the formal de�nitions of ALL operations.Socratic CompletenessAs discussed in the introduction, reasoning in ALLnegis not complete but it is Socratically Complete: for anyfact which is a logical consequence of a knowledge-base,there exists a series of preliminary queries and assump-tions, after which a query of the fact will succeed. Toprove this, we �rst de�ne the semantics of ALL by amapping to predicate calculus, and then de�ne prov-ability in ALLneg and show it satis�es the proof rulesModus Ponens and Reductio Ad Absurdum. From theseproof rules we show Socratic Completeness.Mapping ALLneg to predicate calculus is straightfor-ward; each knowledge-base in the structure is believedunder its assumption and all assumptions `under' it.For any kbs K such that K = han;Kni; . . . ; ha1;K1i:PC(K) = (V i : 1 � i � n: (^ j : 1 � j � i : PC(aj))) PC(Ki))8The assumption management techniques used in thisformalism have been chosen to make the formal develop-ment as transparent as possible. More e�cient techniquesare used in the implementation of ALL. The major di�er-ence between the formalism and the implementation is thatthe formalism uses chronological backtracking while the im-plementation uses dependency directed backtracking. Inchronological backtracking, when a contradiction is foundthe most recent assumption is retracted. In dependencydirected backtracking, the dependencies of facts in theknowledge-base on assumptions are explicitly maintained(often as labels on the facts [Stallman & Sussman, 77]).When a contradiction is found, an assumption which thefact depends on is retracted.

For a knowledge-base, K, PC(K) simply returns theconjunction of the facts and rules in K (with all vari-ables in the rules universally quanti�ed). Note thatwe overload PC in that it maps knowledge-base struc-tures, knowledge-bases, and facts to predicate calculus.A kbs K is consistent i� there exists a modelM suchthatM j= PC(K).A fact is provable in ALLneg i� there exists a seriesof queries and assumptions deriving it. For a seriesof operations �, we use the notation �(K) to denotethe result produced by performing the operations in �on K in turn (e.g., unless � of length zero: �(K) =kbs(head(�)(rest(�)(K)))).Def 1 Given a kbs K = ha;Ki, and a ground pathf1; . . . ; fn allowed in K:K `ALL f1; . . . ; fni� there exists a series � of queries and assumptionsallowed in K such that:�(K) = ha;K 0i ^ (8i : 1 � i � n : fi 2 K 0):The key lemmas for `ALL are the proof rules ModusPonens and Reductio Ad Absurdum. In stating theselemmas we use the shorthand K+ f to denote the ad-dition of f to the top knowledge-base in K.Lemma 1 (Reductio Ad Absurdum)For any well-formed kbs K and any fact a allowed inK, if there exists a fact f allowed in K such that:(K + a `ALL f) ^ (K + a `ALL negate(f)) then:K `ALL negate(a).Proof: (Sketch) Intuitively, the series of operationsderiving negate(a) is one which �rst assumes a, andthen derives f and :f (one can show such a seriesexists since K+a `ALL f and K+a `ALL negate(f)).9This leads to a contradiction, causing the assumptiona to be retracted and negate(a) asserted.Lemma 2 (Modus Ponens) For any well-formed kbsK, any (if-added or if-needed) rule � 2 top kb(K) suchthat Ant(�) = b1; . . . ; bn, and any ground substitution� such that vars(�) � domain(�), if (8i : 1 � i � n :K `ALL bi�) then: K `ALL Conseq(�)�.Proof: (Sketch) (8i : 1 � i � n : K `ALL bi�)implies that for all i there is some �i such that bi� 2top kb(�i(K)). Intuitively, one can append these �itogether and produce some � such that Ant(�)� 2top kb(�(K)) (formally a bit more work is required,but one can show that such a � exists). Finally, ifa knowledge-base contains the antecedent of a rulethen we know from the study of ALL without negation[Crawford, 90] that there must always exist a series ofqueries deriving the consequent of the rule.9Actually such a series may not exist as some other `acci-dental' contradiction may occur before f and negate(f) arederived. Such contradictions are not a problem, however,as they only cause negate(a) to be derived more quickly.

For any query or assertion, Oneg, allowed in a kbs K:If kb(O(top kb(K)) is f-consistent or height(K) = 1 then:Oneg(K) = hsub(O(top kb(K)); push(htop assump(K); kb(O(top kb(K)))i; rest(K))ielse (an inconsistency has been found and there is an assumption to drop):Oneg(K) = h;; kbs(assertneg(negate(top assump(K)))(rest(K)))iFor any fact a allowed in a kbs K, assuming a requires adding a new pair to the stack and then asserting a:assume(a)(K) = assertneg(a)(push(ha; top kb(K)i;K))Figure 2: Formal de�nitions of ALL operations.Proving Socratic Completeness is now only a matterof using lemmas 1 and 2 to show that PC(K) j= PC(f)implies K `ALL f . This can be done using a standardHenkin style proof [Hunter, 71].Theorem 1 (Socratic Completeness for ALLneg)If K is a well-formed kbs of height one and f is a factallowed in K then: PC(K) j= PC(f))K `ALL f .Time ComplexityWe show in [Crawford & Kuipers, 89, Crawford, 90]that ALL operations can be performed in time poly-nomial in the size of the accessible portion of theknowledge-base. ALLneg operations require only a lin-ear number of ALL operations and thus must also becomputable in time polynomial in the size of the ac-cessible portion of the knowledge-base.Generating the Preliminary OperationsConsider a kbs K and a fact f logically entailed by K.Socratic Completeness guarantees that there exists aseries of operations deriving f , but says nothing aboutthe di�culty of �nding such a series. Intuitively, such aseries makes assumptions and then performs queries touncover contradictions. In this section, we show thatthe depth of assumptions nesting in the series (e.g.,the maximum height reached by the kbs as the seriesof operations is performed) determines the complexityof generating the series.In order to state this result formally, we need someadditional notation.Def 2 For a kbs K, let �K be the series of queriesof ground instances of consequents of the backward-chaining rules in K.�K is important because one can show (from lemmasused in proving the Socratic Completeness of ALLwithout negation [Crawford, 90]) that iterating �K asu�cient number of times is su�cient to derive any factwhich can be derived without making assumptions.

We also formalize the idea of limiting the depth ofassumption nesting. Consider a kbs K and series ofoperations allowed in K, � = O1; . . . ;Om. Let K0 = Kand Ki = Oi(Ki�1). We use the shorthand:max height(K;�) = (Max i : 1 � i � m : height(Ki))Def 3 For any kbs K, any fact f allowed in K, andany n > 0: K `nALL fi� K `ALL f by some series of queries and assump-tions � such that max height(K;�) � n.Finally, we de�ne parameters which measure the sizeof a kbs. Consider a kbs K. Let len be the maxi-mum length of any rule in K, mvars be the maximumnumber of variables in any rule in K, and ma be themaximum arity of any relation allowed in K. Further,let r be the number of rules in K, f be the numberof frames (e.g., constants) in K, and s be the numberof slots (e.g., relations) in K. One important measureof the size of K is the bound on the number of factswhich could be added to K by any operation or seriesof operations:10 m = s � cmaThe other important measure is the bound on the timecomplexity of any single ALL operation. Past workhas shown that the time complexity of any ALL op-eration is bounded by a polynomial function of thesize of the accessible portion of the knowledge-base.The size of the accessible portion of the knowledge-base varies from one operation to the next, but itclearly cannot exceed the bound on the possible sizeof the knowledge-base. From the previously derivedbound on the time complexity of ALL operations[Crawford & Kuipers, 89, Crawford, 90], one can showthat for a kbs of height n or less, the time complex-ity of any ALL operation (performed on K or on any10Such a bound exists since ALL operations never createnew frames or new slots.

Function Prove(K, f , n)Until K unchanged doK := �K(K)Unless n = 0For each fact a allowed in K doK0 := Prove(assume(a)(K), :a, n� 1)if height(K0) � height(K) then K := K0ododFigure 3: Algorithm for determining whetherK `nALL f .kbs produced by a series of ALL operations on K) isbounded by:o = n� r � len5 �m2+6mvars+maThus we have:Theorem 2 For any kbs K, any fact f allowed in K,and any n > 0: there exists an algorithm with worstcase time complexity of order o�m2n for determiningwhether K `nALL f .Proof: (Sketch) The algorithm is shown in �gure 3.It performs a search for a series of operations derivingf . A more e�cient algorithm could certainly be found,but our focus here is on illustrating the dependenceof the time complexity of inference on the depth ofassumption nesting.The analysis of the time complexity of Prove isstraightforward | one need simply notice that bothloops can be executed at most m times. The key cor-rectness property for Prove is that:K `nALL f , f 2 Prove(K; f; n):The reverse implication (() can be seen by observ-ing that Prove only performs ALL operations (andthe depth of assumption nesting never exceeds n).The forward implication ()) is more complex. As-sume K `nALL f . This implies that there exists some� such that f 2 �(K). One can show that everyquery and proof by contradiction performed by � isalso performed by Prove (or is unnecessary), and sof 2 Prove(K; f; n).Related WorkWork on vivid reasoning has similar goals to ALL. Avivid knowledge-base \. . . trades accuracy for speed. . ." [Etherington et al., 89] by constructing a databaseof ground facts, from statements in a more expressivelanguage. ALL represents all the knowledge that hasbeen asserted (though some of it may not be accessibleat a given time) while a vivid knowledge-base is anapproximation of the asserted knowledge (thus SocraticCompleteness does not hold for vivid reasoning).

A comparison between ALL and Prolog is illuminat-ing. ALL implements `classical' negation (i.e., nega-tion as in predicate calculus), while Prolog implementsnegation as failure (i.e., the negation of a goal succeedsi� the goal fails). In ALL, the negation of a fact is im-plied by a knowledge-base i� the fact is false in allmodels of the knowledge-base. ALL's implementationof negation allows one to express disjunctions (e.g.,\John is the banker or the lawyer") which cannot beexpressed directly in Prolog. Negation as failure is pro-vided in Algernon, the lisp implementation of ALL, bya syntactically distinct form.A complete natural deduction system (or resolutionbased theorem prover) with a bound on proof lengthis trivially Socratically Complete. Such systems di�erfrom ALL in several important respects. While nat-ural deduction like inference rules do appear in themeta-theory of ALL, single operations in ALL do notcorrespond to a bounded number of applications ofthese rules. In a single ALL operation, rules may for-ward and backward chain to a depth bounded onlyby the size of the accessible portion of the knowledge-base. Thus, any deduction which follows simply by rulechaining will succeed in a single ALL operation. Thisgives a considerably simpler picture of the power of asingle operation than is possible in a system in whichtractability is guaranteed by a bound on proof length.Further, when preliminary operations are required, thedi�culty of �nding a series of preliminary operationsis related to the depth of assumption nesting, which isa considerably more intuitive metric that proof length.Recently there has been growing interest in dif-ferent aspects of tractable inference. One interest-ing result is that the tractability of inference rulesis dependent on the syntax of the language used[McAllester et. al., 89, ,McAllester, 90, p. 1115].[Shastri & Ajjanagadde, 90] show that, using a highlyparallel implementation, certain queries can be an-swered in time proportional to the length of theshortest derivation of the query. Term subsumptionlanguages (over-viewed in [Patel-Schneider et al., 90])also support a particular kind of tractable inference(the computation of subsumption relations between de-scriptions). ALL provides a tractable inference methodwhich applies to a network structured knowledge-base,and which is powerful enough to guarantee SocraticCompleteness.Current and Future WorkALL cannot currently represent mixed existential anduniversal quanti�cation. When mixed quanti�cation isallowed, inference can result in the creation of a poten-tially unbounded number new frames. The key require-ment for tractable inference with full quanti�cation isthus careful control over the creation of new frames.We expect that common-sense reasoning requires thecreation of a relatively small numbers of new frames,while the cleverness required for more complex reason-

ing often involves knowing which sets of new frames toconstruct.Algernon, our Lisp implementation of ALL, is ane�ective knowledge-representation language which hasbeen used to implement several substantial knowledge-basedsystems, including QPC, a qualitative model builderfor QSIM [Crawford, Farquhar, & Kuipers, 90]. Alger-non has been an integral part of our work on ALLsince our research methodology involves an interplaybetween theory and experimentation (for example, theimportance of the depth of assumption nesting was �rstobserved in solving logic puzzles using Algernon). Thenatural language group at MCC has recently begun us-ing Algernon, and has developed functions which trans-late from an abstract knowledge-base interface basedon Ontolingua [Gruber, 90] down to Algernon queriesand assertions [Barnett et al., 91]. Algernon is some-what more powerful than the currently formalized ver-sion of ALL and supports full quanti�cation and cer-tain types of default reasoning.ReferencesBarnett, J., Rich, E., and Wroblewski, D. (1991). A func-tional interface to a knowledge base for use by a natu-ral language processing system. Manuscript. Knowledge-Based Natural Language Project, MCC, 3500 West Bal-cones Center Dr., Austin, Texas.Boolos, George S., and Je�rey, Richard C. (1980). Com-putability and Logic, Cambridge University Press, NewYork.Brachman, R.J. and Levesque, H.J. (1985). Readings inKnowledge Representation, Morgan Kaufmann, Los Altos,Cal.Cook, S.A. (1971). The complexity of theorem-provingprocedures. Proc. 3rd Ann. ACM Symp. on Theory ofComputing Association for Computing Machinery, NewYork, pp. 151-158.Crawford, J., Farquhar, A., and Kuipers, B. (1990). QPC:A compiler from physical models into Qualitative Di�er-ential Equations. AAAI-90.Crawford, J. M., and Kuipers, B. (1989). Towards a the-ory of access-limited logic for knowledge representation.In Proceedings of the First International Conference onPrinciples of Knowledge Representation and Reasoning,Morgan Kaufmann, Los Altos, California.Crawford, J. M., and Kuipers, B. (1991). Algernon |A tractable system for knowledge representation. AAAISpring Symposium on Implemented Knowledge Represen-tation and Reasoning Systems. Palo Alto, CA. Also toappear in special issue of SIGART on implemented knowl-edge representation systems.Crawford, J. M., and Kuipers, B. (1990). Access-LimitedLogic | A language for knowledge-representation. Uni-versity of Texas at Austin dissertation. Available as Tech-nical Report number AI90-141, Arti�cial Intelligence Lab-oratory, The University of Texas at Austin.Etherington, David W., Borgida, Alex, Brachman,Ronald J., and Kautz, Henry (1989). Vivid knowledge

and tractable reasoning: preliminary report. IJCAI-89 pp.1146-1152.Fine, Kit (1985). Reasoning With Arbitrary Objects, Aris-totelian Society Series, Volume 3, Basil Blackwell, Oxford.Gruber, T., Pang, D., and Rice, J. Ontolingua: A Lan-guage to Support Shared Ontologies. Technical Report,Stanford Knowledge Systems Lab, Palo Alto, California.Hayes, Patrick J. (1979). The logic of frames. In FrameConceptions and Text Understanding, ed. D. Metzing,Walter de Gruyter and Co., Berlin, pp. 46-61. (Reprintedin [Brachman & Levesque, 85], pp. 288-295.)Hunter, G. (1971). Metalogic: An Introduction to theMetatheory of Standard First Order Logic. University ofCalifornia Press, Berkeley, CA.Levesque, H. J. (1986). Knowledge representation and rea-soning. In Ann. Rev. Comput. Sci. 1:255-87. Annual Re-views Inc, Palo Alto, California.McAllester, D., Givan, R., and Fatima, T. (1989). Taxo-nomic syntax for �rst order inference. In Proceedings of theFirst International Conference on Principles of Knowl-edge Representation and Reasoning, Morgan Kaufmann,Los Altos, California, pp. 289-300.Patel-Schneider, P.F., et at. (1990). Term subsumptionlanguages in knowledge representation. In AI Magazine11(2):16-22.An Optimally E�cient Limited Inference System. (1990).In AAAI-90, pp. 563-570.Stallman, R.M. and Sussman, G.J. (1977). Forward rea-soning and dependency-directed backtracking in a systemfor computer-aided circuit analysis, Arti�cial Intelligence9:135-196.Woods, W. (1975). What's in a link: foundations for se-mantic networks. In Representation and Understanding:Studies in Cognitive Science, ed. Bobrow, D. and Collins,A., Academic, New York, pp. 35-82.

