In Proceedings of the Ninth National Conference
on Artificial Intelligence (AAAI-91)
Cambridge, MA: AAAI/MIT Press, 1991.

Negation and Proof by Contradiction in

Access-Limited Logic

J. M. Crawford

*

B. J. Kuipers

Department of Computer Sciences
The University of Texas At Austin
Austin, Texas 78712
jcQ@cs.utexas.edu
kuipers@cs.utexas.edu

Abstract

Access-Limited Logic (ALL) is a language for
knowledge representation which formalizes the ac-
cess limitations inherent in a network structured
knowledge-base. Where a deductive method such
as resolution would retrieve all assertions that sat-
isfy a given pattern, an access-limited logic re-
trieves all assertions reachable by following an
available access path.

In this paper, we extend previous work to include
negation, disjunction, and the ability to make as-
sumptions and reason by contradiction. We show
that the extended ALL,., remains Socratically
Complete (thus guaranteeing that for any fact
which is a logical consequence of the knowledge-
base, there exists a series of preliminary queries
and assumptions after which a query of the fact
will succeed) and computationally tractable. We
show further that the key factor determining the
computational difficulty of finding such a series of
preliminary queries and assumptions is the depth
of assumption nesting. We thus demonstrate the
existence of a family of increasingly powerful in-
ference methods, parameterized by the depth of
assumption nesting, ranging from incomplete and
tractable to complete and intractable.

Introduction

Past work in ALL [Crawford & Kuipers, 89, 90]
has shown Socratic Completeness and computational
tractability for a language with expressive power equiv-
alent to that of a deductive database. In this pa-
per, we extend the expressive power of ALL to that
of first order logic without existential quantification,
and thus for the first time demonstrate the existence

*This work has taken place in the Qualitative Reason-
ing Group at the Artificial Intelligence Laboratory, The
University of Texas at Austin. Research of the Qualita-
tive Reasoning Group is supported in part by the Texas
Advanced Research Program under grant no. 003658-175,
NSF grants IRI-8905494 and IRI-8904454, and by NASA
grant NAG 2-507.

of a tractable and Socratically Completeness inference
method for a language in which complete inference is
known to be NP complete [Cook, 1971]. The heart
of the extension is the addition of ‘classical’ negation
(.e., not negation by failure) to ALL. The addition of
negation is important because it allows one to express
negative and disjunctive information. Further, the ad-
dition of negation allows us to augment inference by
modus ponens (the only inference method required in
a deductive database) with inference by reductio ad ab-
surdum — the ability to make assumptions and reason
by contradiction.

Socratic Completeness guarantees that for any fact
which is a logical consequence of the knowledge-base
there exists a series of preliminary queries and assump-
tions after which a query of the fact will succeed. Since
complete inference in first order logic without existen-
tial quantification is known to be NP complete, the
problem of generating such series must be NP com-
plete. However, we will show that the key factor de-
termining the difficulty of finding such a series is the
depth of assumption nesting in the series. Given any
knowledge-base and any fact, if there exists a series
of preliminary queries and assumptions after which a
query of the fact will succeed, and the series only nests
assumptions to depth n, then the series can be found
in time proportional to the size of the knowledge-base
raised to the nth power. This result is particularly
significant since we expect common-sense reasoning to
require large knowledge-bases, but relatively shallow
assumption nesting.

It has been apparent at least since the work of
[Woods, 75] that a knowledge representation language
sufficient to support the building of large knowledge
bases must have a clear semantics. Without a clear
semantics one can never be sure exactly what a given
expression represents, which deductions should follow
from it, or how it compares to an expression in a dif-
ferent knowledge representation language. Experience
with formally specified knowledge representation sys-
tems has revealed a trade-off between the expressive
power of knowledge representation systems and their
computational complexity [Levesque, 86]. If, for exam-

ple, a knowledge representation language is as expres-
sive as first-order predicate calculus, then the prob-
lem of deciding what an agent could logically deduce
from its knowledge is unsolvable [Boolos & Jeffrey, 80].
There are several possible solutions to this problem:
(1) restrict the expressive power of the representation
language, (2) describe the reasoning ability of the sys-
tem with an operational semantics rather than a model
theoretic semantics, or (3) give up completeness but
guarantee Socratic Completeness.

Unfortunately, there are problems with each of these
solutions. If one is interested in expressing the full
range of human common-sense knowledge then re-
stricting the expressive power of the representation lan-
guage is not an option. An operational semantics may
suffice to describe the reasoning ability of the system,
but it does not define the semantics of statements in
the representation language.

One can attempt to give a model theoretic semantics
for the representation language, and an operational se-
mantics to reasoning. However, reasoning will then be
incomplete with respect to the semantics of the rep-
resentation language.! That is, there will be cases
in which according to the model theoretic semantics
Th = f, but the system cannot derive f from Th.
Thus the meaning ascribed to statements by the model
theoretic semantics will not always match their mean-
ing to the system.

The third solution, Socratic Completeness, does
guarantee that the model theoretic semantics describes
the potential reasoning ability of the system, and thus
(together with soundness) guarantees that the mean-
ing ascribed to statements by the model theoretic se-
mantics is the same as that ascribed to statements by
the system. However, Socratic Completeness is a weak
property and can be satisfied by any system of infer-
ence with a complete set of proof rules.

In ALL we use a model theoretic semantics to de-
scribe the potential reasoning ability of the system
(by guaranteeing Socratic Completeness), but uses an
operational semantics to describe the behavior of the
system on individual operations. In a sense it is not
surprising that complete inference (with respect to a
model theoretic semantics) is intractable; the model
theoretic semantics was not intended to describe which
inferences are easy to make, or are useful in a given con-
text. The model theoretic semantics describes which
inferences are permissible, and is thus an appropriate
description of the potential long term reasoning ability
of the system. We expect a single operation to permit
only deductions which are “obvious”. The behavior
of the system on single operations can thus best be

! One could achieve completeness by giving up tractabil-
ity, however, if a system is intractable then in practice this
means that it does not return on some inputs (or returns
only after some unacceptable period of time), and thus is
effectively incomplete.

described operationally.? In ALL, deductions which
follow simply by rule chaining are “obvious” and can
be made by a single operation. The deductive power of
ALL on a single operation is thus roughly equivalent to
that of a deductive database.® As will be seen below,
the more complex deductions are those which require
reasoning by contradiction (or equivalently, reasoning
by cases).

Our approach in ALL begins with the well known
mapping between atomic propositions in predicate cal-
culus and slots in frames; the atomic proposition that
the object a stands in relation » to the object b can be
written logically as r(a,b) or expressed, in frames, by
including object b in the » slot of object a [Hayes, 79]:

a:

r(a,b) = values: {...b... }

ALL allows forward-chaining and backward-chaining
inference rules. Antecedents of ALL rules must al-
ways define access paths through the network of frames.
Access paths are sequences of predicates which can
be evaluated by retrieving values from known slots of
known frames. For example, in ALL one could write
the backward-chaining rule:

aunt(John,y) < parent(John, z), sister(z,y)
But one cannot write the (logically equivalent) rule:
aunt(John,y) « sister(z,y), parent(John, z),

since evaluation of the antecedent would require a
global search of the knowledge-base for pairs of frames
in a sister relation.? The use of access paths allows
ALL operations to be performed in time proportional
to the size of the accessible portion of the knowledge-
base [Crawford & Kuipers, 89].

In order to add negation to ALL, we begin by adding
for each relation » an additional relation —r. If we
made no other changes this would give us a language
with the expressive power to represent negation, but
we would have lost Socratic Completeness. In order
to maintain Socratic Completeness, we have to con-
nect » with —». We do this by adding the notion of an
inconsistent knowledge-base, and the ability to make

2 A model theoretic semantics may well not be appropri-
ate, since obviousness often depends as much on the form
of knowledge as its meaning — e.g., p is obvious from ¢ and
g — p, but is not so obvious from ¢ and —p — —gq.

ALL allows both backward and forward chaining rules.
If one uses only backward chaining rules (or only forward
chaining rules) then the deductive power of ALL on a single
operation is equivalent to that of a deductive database.

*The restriction to access paths limits the syntax of
ALL, but is not a fundamental limit on its expressive power
since one could always add a new constant and make it the
first argument to every predicate. This would amount to
making the entire knowledge-base a single frame.

Example 1:

1. If Mary waters the flowers, then the flowers bloom.
2. If the flowers bloom, then Mary is happy.

3. Mary waters the flowers.

Q: Is Mary happy?

Example 2:

1. If Mary waters the flowers and the flowers bloom,
then Mary is happy.

2. If Mary does not water the flowers, then they do not
bloom.

3. Mary is not happy.
Q: Do the flowers bloom?

To a human, the solution to first example is obvious,
while the second requires some thought. To a reso-
lution theorem-prover, both are two-step proofs. In
ALLy.g4, the first question is answered immediately,
while the second requires a nested proof by contradic-
tion. It is our goal to build systems that reason effi-
ciently on problems people find easy, even at the cost
of requiring help on problems people find difficult.

Figure 1: Two Examples.

assumptions and reason by reductio ad absurdum. Fig-
ure 1 shows an example of a conclusion which can be
drawn using rules alone, and a conclusion which re-
quires reasoning by reductio ad absurdum.

The first section below presents the formal develop-
ment of ALL, .4, including sketches of the proofs of So-
cratic Completeness and polynomial time complexity.
We next turn to the problem of generating the prelim-
inary queries and assumptions, and shows that the key
factor determining the complexity of generating such
series is the depth of assumption nesting. Finally we
overview related work, and discuss current and future
work.

Formal Development

This section formally develops ALL with nega-
tion. A more detailed development can be found in
[Crawford, 90].

Syntax

ALLy,.g4 relies on the definitions of queries and asser-
tions in ALL. The syntax and semantics of ALL (with-
out negation) are over-viewed in [Crawford & Kuipers,
89, 90b], and discussed in detail in [Crawford, 90]. For
purposes of the discussion below, it suffices to know
that ALL defines the operations query and assert,

both of which operate on a knowledge-base by applying
all accessible inference rules, and both of which return
pairs:

(‘set of substitutions’, ‘new knowledge-base’).

We use sub and kb as accessors on the first and second
components respectively.

In ALL,.y, we use the function negate to return
the negation of a relation or proposition in the obvi-
ous way: negate(r(ti,...,t,)) = —7(t1,...,tn), and
negate(—r(t1,...,tn)) = P(t1,...,ts).> A knowledge-
base is f-inconsistent iff there exists a fact f such that
f € K and negate(f) € K.®

When an assumption is made in ALL,.g, the state
of the knowledge-base is saved so that, if the assump-
tion leads to a contradiction, it can be restored. Thus,
in general ALL,., operations operate on stacks of
knowledge-bases which we refer to as knowledge-base
structures. Formally, a knowledge-base structure, or
kbs for short, KC, is a stack of pairs:

<anaKn>a . '7<a17K1>

such that, for 1 < i < n, K; is a knowledge-base and
a; is nil or a fact allowed in K;.” We access the top
element of such a stack using the function head, and
rest of the stack using rest. height(IC) denotes the
number of pairs in the structure. For any pair {(a, K)
we access the first and second components using the
functions assump and kb respectively. We use top_kb
and top_assump to access the ‘top’ knowledge-base and
assumption in a structure: top_kb(K) = kb(head(K)),
and top_assump(K) = assump(head(K)). We denote
the structure formed by adding the pair {(a, K} to the
top of the the structure K by: push({a, K), K).

To differentiate them from ALL operations, we sub-
script ALL,., operations by neg. Thus query(q) is
an ALL operation and operates on a knowledge-base,
while queryneg(g) is an ALL,.4 operation which oper-
ates on a kbs. The same holds for variables ranging
over operations: if O = query(q) then O, is the cor-
responds ALLy.4 operation queryneq(q).

Three types of operations are supported in ALLy4:
queries, assertions, and assumptions. If a is a non-
empty path then querynes(a) is a query. If f is a fact
then assert,cy(f) is an assertion. Finally, if a is a fact
then assumeneg(a) is an assumption. If an operation
Ohpeg is allowed in a kbs K then O,.4(K) is an ALLy.,
formula.

®The distinction between — and negate is important: —
is simply a character which can occur in names of relations,
while negate is a function; — is a part of ALL, while negate
is a part of the mathematical language used to define ALL.

®Since knowledge-bases may not be deductively closed,
a knowledge-base may be inconsistent (z.e., it may not have
a model), but not be f-inconsistent.

7 A fact is allowed in a knowledge-base iff it contains only
constants and relations which are allowed in the knowledge-
base.

Knowledge Theory

The knowledge theory defines the values of ALL,.,
formulas by defining the effect of operations. ALLy.q
operations map a kbs to a set of substitutions and a
new kbs. We denote these returned values with pairs: {
‘set of substitutions’, ‘knowledge-base structure’). We
use sub and kbs as accessors on the first and second
components respectively.

Performing an ALL,., operation involves perform-
ing it as an ALL operation on the top knowledge-base
in the structure, and then checking for, and dealing
with, contradictions. Consider a kbs X and a query
or assertion On., (allowed in K). If kb(O(top-kb(K)))
(é.e., the knowledge-base produced when O is per-
formed as an ALL operation on the top knowledge-
base in the structure) is f-consistent then it just re-
places the old top knowledge-base in K. If, how-
ever, kb(O(top_kb(K))) is f-inconsistent, then the most
recent assumption is retracted (i.e., the stack is
‘popped’), and the negation of the most recent assump-
tion is asserted as a fact (unless the stack has only
one element in which case there are no assumptions to
drop and the knowledge-base is inconsistent).® Figure
2 shows the formal definitions of ALL operations.

Socratic Completeness

As discussed in the introduction, reasoning in ALL,.4
is not complete but it is Socratically Complete: for any
fact which is alogical consequence of a knowledge-base,
there exists a series of preliminary queries and assump-
tions, after which a query of the fact will succeed. To
prove this, we first define the semantics of ALL by a
mapping to predicate calculus, and then define prov-
ability in ALL,., and show it satisfies the proof rules
Modus Ponens and Reductio Ad Absurdum. From these
proof rules we show Socratic Completeness.

Mapping ALL,.4 to predicate calculus is straightfor-
ward; each knowledge-base in the structure is believed
under its assumption and all assumptions ‘under’ it.
For any kbs I such that K = {(a,, Ky), ..., {a1, K1):

PCK) =(Ai :1<i<n

1(N\7:1<5<i:PC(e;)) = PC(K;))

8The assumption management techniques used in this
formalism have been chosen to make the formal develop-
ment as transparent as possible. More efficient techniques
are used in the implementation of ALL. The major differ-
ence between the formalism and the implementation is that
the formalism uses chronological backtracking while the im-
plementation uses dependency directed backtracking. In
chronological backtracking, when a contradiction is found
the most recent assumption is retracted. In dependency
directed backtracking, the dependencies of facts in the
knowledge-base on assumptions are explicitly maintained
(often as labels on the facts [Stallman & Sussman, 77]).
When a contradiction is found, an assumption which the
fact depends on is retracted.

For a knowledge-base, K, PC(K) simply returns the
conjunction of the facts and rules in K (with all vari-
ables in the rules universally quantified). Note that
we overload PC in that it maps knowledge-base struc-
tures, knowledge-bases, and facts to predicate calculus.
A kbs K is consistent iff there exists a model M such
that M = PC(K).

A fact is provable in ALL, 4 iff there exists a series
of queries and assumptions deriving it. For a series
of operations ?, we use the notation ?(K) to denote
the result produced by performing the operations in ?
on K in turn (e.g., unless ? of length zero: ?(K) =

kbs(head(?)(rest(?)(K)))).

Def 1 Given a kbs K = (a,K), and a ground path
fiye, fn allowed in K:

Krarr fi,. o fn

iff there exists a series 7 of quertes and assumptions
allowed in K such that:

T(K)={a, KYAN(Vi:1<i<mn:fi e K).

The key lemmas for - 41,7, are the proof rules Modus
Ponens and Reductio Ad Absurdum. In stating these
lemmas we use the shorthand K + f to denote the ad-
dition of f to the top knowledge-base in K.

Lemma 1 (Reductio Ad Absurdum)

For any well-formed kbs K and any fact a allowed in
K, if there exists a fact f allowed in K such that:
(K +a Farr f) A (K + a Fapr negate(f)) then:
K Farr negate(a).

Proof: (Sketch) Intuitively, the series of operations
deriving negate(a) is one which first assumes a, and
then derives f and —f (one can show such a series
exists since KX +a barr f and K+a 411 negate(f)).°
This leads to a contradiction, causing the assumption
a to be retracted and negate(a) asserted. |

Lemma 2 (Modus Ponens) For any well-formed kbs
K, any (if-added or if-needed) rule p € top kb(K) such
that Ant(p) = b1,...,b,, and any ground substitution
6 such that vars(p) C domain(9), if (Vi:1< i< n:
K Farr b;0) then: K b4, Conseq(p)b.

Proof: (Sketch) (Vi : 1 < i < n: K Farp b9)
implies that for all ¢ there is some 7; such that b;60 €
top-kb(?;(X)). Intuitively, one can append these ?;
together and produce some ? such that Ant(p)f €
top_kb(? (K)) (formally a bit more work is required,
but one can show that such a ? exists). Finally, if
a knowledge-base contains the antecedent of a rule
then we know from the study of ALL without negation
[Crawford, 90] that there must always exist a series of

queries deriving the consequent of the rule. |

9 Actually such a series may not exist as some other ‘acci-
dental’ contradiction may occur before f and negate(f) are
derived. Such contradictions are not a problem, however,
as they only cause negate(a) to be derived more quickly.

For any query or assertion, O,.g, allowed in a kbs K:

If kb(O(top_kb(K)) is f-consistent or height(X) = 1 then:

Oneg(K) = (sub(O(top-kb(K)), push({top-assump(K), kb(O(top_kb(K)))), rest(K)))

else (an inconsistency has been found and there is an assumption to drop):

Oneg(K) = (0, kbs(assert,.q4(negate(top_assump(K)))(rest(K))))

For any fact a allowed in a kbs K, assuming a requires adding a new pair to the stack and then asserting a:

assume(a)(K) = assert,.q(a)(push({a,top_kb(K)),K))

Figure 2: Formal definitions of ALL operations.

Proving Socratic Completeness is now only a matter
of using lemmas 1 and 2 to show that PC(K) = PC(f)
implies K F4rr, f. This can be done using a standard
Henkin style proof [Hunter, 71].

Theorem 1 (Socratic Completeness for ALL,.,)
If K is a well-formed kbs of height one and f is a fact
allowed in K then: PC(K) EPC(f) = KtaLr f-

Time Complexity

We show in [Crawford & Kuipers, 89, Crawford, 90]
that ALL operations can be performed in time poly-
nomial in the size of the accessible portion of the
knowledge-base. ALL,.4 operations require only a lin-
ear number of ALL operations and thus must also be
computable in time polynomial in the size of the ac-
cessible portion of the knowledge-base.

Generating the Preliminary Operations

Consider a kbs K and a fact f logically entailed by K.
Socratic Completeness guarantees that there exists a
series of operations deriving f, but says nothing about
the difficulty of finding such a series. Intuitively, such a
series makes assumptions and then performs queries to
uncover contradictions. In this section, we show that
the depth of assumptions nesting in the series (e.g.,
the maximum height reached by the kbs as the series
of operations is performed) determines the complexity
of generating the series.

In order to state this result formally, we need some
additional notation.

Def 2 For a kbs K, let 7x be the series of queries
of ground instances of consequents of the backward-
chaining rules in K.

? x is important because one can show (from lemmas
used in proving the Socratic Completeness of ALL
without negation [Crawford, 90]) that iterating ?x a
sufficient number of times is sufficient to derive any fact
which can be derived without making assumptions.

We also formalize the idea of limiting the depth of
assumption nesting. Consider a kbs K and series of
operations allowed in K, 7 = Oq,...,0,,. Let Ko =K
and K; = O;(K;_1). We use the shorthand:

maz_height(K,?) = (Mazi:1<1i<m: height(K;))

Def 3 For any kbs K, any fact f allowed in K, and
any n > 0:

K I_:ZLL f

iff K Farr f by some series of queries and assump-
tions 7 such that maz_height(K,?) < n.

Finally, we define parameters which measure the size
of a kbs. Consider a kbs K. Let len be the maxi-
mum length of any rule in K, mvars be the maximum
number of variables in any rule in X, and ma be the
maximum arity of any relation allowed in K. Further,
let » be the number of rules in K, f be the number
of frames (e.g., constants) in K, and s be the number
of slots (e.g., relations) in . One important measure
of the size of K is the bound on the number of facts
which could be added to K by any operation or series
of operations:!?

m=sxc"®

The other important measure is the bound on the time
complexity of any single ALL operation. Past work
has shown that the time complexity of any ALL op-
eration is bounded by a polynomial function of the
size of the accessible portion of the knowledge-base.
The size of the accessible portion of the knowledge-
base varies from one operation to the next, but it
clearly cannot exceed the bound on the possible size
of the knowledge-base. From the previously derived
bound on the time complexity of ALL operations
[Crawford & Kuipers, 89, Crawford, 90], one can show
that for a kbs of height n or less, the time complex-
ity of any ALL operation (performed on /C or on any

193uch a bound exists since ALL operations never create
new frames or new slots.

Function Prove(K, f, n)
Until £ unchanged do
=7 K(K:)
Unless n =0
For each fact a allowed in K do
K' := Prove(assume(a)(K), —a, n — 1)
if height(K') < height(K) then K := K’
od
od

Figure 3: Algorithm for determining whether
KVtars 1.

kbs produced by a series of ALL operations on) is
bounded by:

o=n x r x len® x m2tomvarstma

Thus we have:

Theorem 2 For any kbs K, any fact f allowed in K,
and any n > 0: there exists an algorithm with worst
case time complexity of order o x m®* for determining
whether K 41 f.

Proof: (Sketch) The algorithm is shown in figure 3.
It performs a search for a series of operations deriving
f. A more efficient algorithm could certainly be found,
but our focus here is on illustrating the dependence
of the time complexity of inference on the depth of
assumption nesting.

The analysis of the time complexity of Prove is
straightforward — one need simply notice that both
loops can be executed at most m times. The key cor-
rectness property for Prove is that:

Kt%rr < f € Prove(K, f,n).

The reverse implication (<=) can be seen by observ-
ing that Prove only performs ALL operations (and
the depth of assumption nesting never exceeds n).
The forward implication (=-) is more complex. As-
sume K 7%, . f. This implies that there exists some
? such that f € ?(K). One can show that every
query and proof by contradiction performed by 7 is
also performed by Prove (or is unnecessary), and so

f € Prove(K, f,n). |

Related Work

Work on wivid reasoning has similar goals to ALL. A
vivid knowledge-base “... trades accuracy for speed
... [Etherington et al., 89] by constructing a database
of ground facts, from statements in a more expressive
language. ALL represents all the knowledge that has
been asserted (though some of it may not be accessible
at a given time) while a vivid knowledge-base is an
approxzimation of the asserted knowledge (thus Socratic
Completeness does not hold for vivid reasoning).

A comparison between ALL and Prolog is illuminat-
ing. ALL implements ‘classical’ negation (i.e., nega-
tion as in predicate calculus), while Prolog implements
negation as failure (i.e., the negation of a goal succeeds
iff the goal fails). In ALL, the negation of a fact is im-
plied by a knowledge-base iff the fact is false in all
models of the knowledge-base. ALL’s implementation
of negation allows one to express disjunctions (e.g.,
“John is the banker or the lawyer”) which cannot be
expressed directly in Prolog. Negation as failure is pro-
vided in Algernon, the lisp implementation of ALL, by
a syntactically distinct form.

A complete natural deduction system (or resolution
based theorem prover) with a bound on proof length
is trivially Socratically Complete. Such systems differ
from ALL in several important respects. While nat-
ural deduction like inference rules do appear in the
meta-theory of ALL, single operations in ALL do not
correspond to a bounded number of applications of
these rules. In a single ALL operation, rules may for-
ward and backward chain to a depth bounded only
by the size of the accessible portion of the knowledge-
base. Thus, any deduction which follows simply by rule
chaining will succeed in a single ALL operation. This
gives a considerably simpler picture of the power of a
single operation than is possible in a system in which
tractability is guaranteed by a bound on proof length.
Further, when preliminary operations are required, the
difficulty of finding a series of preliminary operations
is related to the depth of assumption nesting, which is
a considerably more intuitive metric that proof length.

Recently there has been growing interest in dif-
ferent aspects of tractable inference. One interest-
ing result is that the tractability of inference rules
is dependent on the syntax of the language used
[McAllester et. al., 89, McAllester, 90, p. 1115].
[Shastri & Ajjanagadde, 90] show that, using a highly
parallel implementation, certain queries can be an-
swered in time proportional to the length of the
shortest derivation of the query. Term subsumption
languages (over-viewed in [Patel-Schneider et al., 90])
also support a particular kind of tractable inference
(the computation of subsumption relations between de-
scriptions). ALL provides a tractable inference method
which applies to a network structured knowledge-base,
and which is powerful enough to guarantee Socratic
Completeness.

Current and Future Work

ALL cannot currently represent mixed existential and
universal quantification. When mixed quantification is
allowed, inference can result in the creation of a poten-
tially unbounded number new frames. The key require-
ment for tractable inference with full quantification is
thus careful control over the creation of new frames.
We expect that common-sense reasoning requires the
creation of a relatively small numbers of new frames,
while the cleverness required for more complex reason-

ing often involves knowing which sets of new frames to
construct.

Algernon, our Lisp implementation of ALL, is an
effective knowledge-representation language which has
been used to implement several substantial knowledge-
based
systems, including QPC, a qualitative model builder
for QSIM [Crawford, Farquhar, & Kuipers, 90]. Alger-
non has been an integral part of our work on ALL
since our research methodology involves an interplay
between theory and experimentation (for example, the
importance of the depth of assumption nesting was first
observed in solving logic puzzles using Algernon). The
natural language group at MCC has recently begun us-
ing Algernon, and has developed functions which trans-
late from an abstract knowledge-base interface based
on Ontolingua [Gruber, 90] down to Algernon queries
and assertions [Barnett et al., 91]. Algernon is some-
what more powerful than the currently formalized ver-
sion of ALL and supports full quantification and cer-
tain types of default reasoning.

References
Barnett, J., Rich, E., and Wroblewski, D. (1991). A func-

tional interface to a knowledge base for use by a natu-
ral language processing system. Manuscript. Knowledge-
Based Natural Language Project, MCC, 3500 West Bal-
cones Center Dr., Austin, Texas.

Boolos, George S., and Jeffrey, Richard C. (1980). Com-
putability and Logic, Cambridge University Press, New
York.

Brachman, R.J. and Levesque, H.J. (1985). Readings in
Knowledge Representation, Morgan Kaufmann, Los Altos,

Cal.

Cook, S.A. (1971). The complexity of theorem-proving
procedures. Proc. 3rd Ann. ACM Symp. on Theory of
Computing Association for Computing Machinery, New
York, pp. 151-158.

Crawford, J., Farquhar, A., and Kuipers, B. (1990). QPC:
A compiler from physical models into Qualitative Differ-
ential Equations. AAAI-90.

Crawford, J. M., and Kuipers, B. (1989). Towards a the-
ory of access-limited logic for knowledge representation.
In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning,
Morgan Kaufmann, Los Altos, California.

Crawford, J. M., and Kuipers, B. (1991). Algernon —
A tractable system for knowledge representation. AAAI
Spring Symposium on Implemented Knowledge Represen-
tation and Reasoning Systems. Palo Alto, CA. Also to
appear in special issue of SIGA RT on implemented knowl-
edge representation systems.

Crawford, J. M., and Kuipers, B. (1990). Access-Limited
Logic — A language for knowledge-representation. Uni-
versity of Texas at Austin dissertation. Available as Tech-
nical Report number AI90-141, Artificial Intelligence Lab-
oratory, The University of Texas at Austin.

Etherington, David W., Borgida, Alex, Brachman,
Ronald J., and Kautz, Henry (1989). Vivid knowledge

and tractable reasoning: preliminary report. IJCAI-89pp.
1146-1152.

Fine, Kit (1985). Reasoning With Arbitrary Objects, Aris-
totelian Society Series, Volume 3, Basil Blackwell, Oxford.
Gruber, T., Pang, D., and Rice, J. Ontolingua: A Lan-
guage to Support Shared Ontologies. Technical Report,
Stanford Knowledge Systems Lab, Palo Alto, California.

Hayes, Patrick J. (1979). The logic of frames. In Frame
Conceptions and Text Understanding, ed. D. Metzing,
Walter de Gruyter and Co., Berlin, pp. 46-61. (Reprinted
in [Brachman & Levesque, 85], pp. 288-295.)

Hunter, G. (1971). Metalogic: An Introduction to the
Metatheory of Standard First Order Logic. University of
California Press, Berkeley, CA.

Levesque, H. J. (1986). Knowledge representation and rea-
soning. In Ann. Rev. Comput. Sci. 1:255-87. Annual Re-
views Inc, Palo Alto, California.

McAllester, D., Givan, R., and Fatima, T. (1989). Taxo-
nomic syntax for first order inference. In Proceedings of the
First International Conference on Principles of Knowl-
edge Representation and Reasoning, Morgan Kaufmann,
Los Altos, California, pp. 289-300.

Patel-Schneider, P.F., et at. (1990). Term subsumption
languages in knowledge representation. In Al Magazine
11(2):16-22.

An Optimally Efficient Limited Inference System. (1990).
In AAAI-90, pp. 563-570.

Stallman, R.M. and Sussman, G.J. (1977). Forward rea-
soning and dependency-directed backtracking in a system

for computer-aided circuit analysis, Artificial Intelligence
9:135-196.

Woods, W. (1975). What’s in a link: foundations for se-
mantic networks. In Representation and Understanding:

Studies in Cognitive Science, ed. Bobrow, D. and Collins,
A., Academic, New York, pp. 35-82.

