Initial SRAM state as a Fingerprint and Source of True Random Numbers for RFID Tags

Dan Holcomb¹, Wayne P. Burleson¹, Kevin Fu²

¹Electrical and Computer Engineering

²Computer Science

RFIDSec July 2007, Malaga, Spain

Motivation

 Passive RFID circuits give rise to a need for low cost ID and RNG

Many circuits have identifying characteristics

- Threshold voltages [Loftstrom00, Su07]
- Path Delays [Gassend02]

Many circuits have randomness

- Delay [Suh05]
- Jitter [Sunar07]
- Metastability [Kinnimet02, Tokunaga07]
- Set out to explore whether ID and RNG can be accomplished without dedicated circuitry

Fingerprint Extraction and Random Numbers from SRAM (FERNS)

- Initial SRAM state is a physical fingerprint
 - A function of process variation and noise
- Fingerprint provides identification
 - Process variation is time invariant
- Fingerprint provides randomness
 - Noise is time variant
- Exploratory work
 - Your results may vary...

Why FERNS for RFID?

- Could help meet extreme cost constraints
 - Simple Process
 - No NVM technology Simple CMOS
 - No programming
 - Existing hardware
 - RNG and ID circuit is "repurposed" as memory
- Matches passive tag usage model
 - ID an idle tag
 - ID is "reset" at end of session
 - Generate a single random number
 - Fixed computation model

Overview

- Principle of Operation
- Experimental Platforms
- Fingerprint Extraction
- Random Number Generation

(0) Initial Condition

(1) Chip is powered on

(2) PMOS Threshold Reached

(3) NMOS Threshold Reached

Impact of Variation

- Randomness imparted in manufacture
- Impacts fight between cross-coupled inverters
 - Only local mismatch
 - Primarily V_{th} random dopant concentrations [Tang97]
 - Also L_{eff} [Friedberg2005]

Impact of Noise

- Time varying sources of randomness influence cell outcomes
 - Thermal noise
 - Shot noise
- Other noise sources likely to be common mode
 - Supply noise
 - Temperature

Overview

- Principle of Operation
- Experimental Platforms
- Fingerprint Extraction
- Random Number Generation

160 Virtual Tags

- 256 byte blocks of memory
 - Located across 8 instances of a 512K SRAM
 - 20 virtual tags on each
 - Same addresses on each chip
 - Comparison of potentially correlated cases

Ultra-Low-Power Microcontrollers

- Wirelessly-Powered Platform for Sensing and Computation* [Smith06]
 - Passive UHF device using TI MSP430
 - EPC gen 1 64 bit packets
 - 15 qty of 64 bit IDs (across 3 chips)

- 10 TI MSP430 chips
 - 256 byte SRAM memory (.1uA)
 - read out via JTAG debugger

*Intel Research Seattle

Overview

- Principle of Operation
- Experimental Platforms
- Fingerprint Extraction
- Random Number Generation

Fingerprint Identification

- Latent print is a single print
 - Influenced by noise
- Known print is bitwise mean of latent prints
 - Removes noise

- Identification requires latent prints be similar to known print of same circuit, but different from other circuits
- Hamming distance used for comparison

Fingerprint Matching

- Measured over varied scenarios
- MSP430 shows more noise
 - Possible noise from local circuitry
 - High performance vs. low leakage
- JTAG debugger induces correlation
 - Passive power does not

Overview

- Principle of Operation
- Experimental Platforms
- Fingerprint Extraction
- Random Number Generation

Random Number Generation

- Randomness comes from SRAM cells that are well matched
 - Per bit of virtual tag:
 - .050 bits of min entropy
 - .093 bits of Shannon entropy
 - Distributed across memory array
 - Possible tolerance to attack
 - Locations vary from chip to chip

KEY									
	0.333 < P(x=1) < 0.666								
	0.166 < P(x=1) < 0.333	or	0.686 < P(x=1) < 0.833						
	0 < P(x=1) < 0.1666	or	0.833 < P(x=1) < 1						

Entropy Extraction

- Use universal hashing to extract 128 random bits from 2048 bits of fingerprint
 - NH Polynomial (PH) hashing algorithm [Yüksel04]
 - · Hashing performed in software

$$PH_K(M) = \sum_{i=1}^{8} (m_{2i-1} + k_{2i-1})(m_{2i} + k_{2i})$$

$$M = \left(m_1, ..., m_{16}\right) \hspace{1cm} K = \left(k_1, ..., k_{16}\right)$$

$$m_i, k_i \in P_{64}$$
 polynomials over GF(2)

Passes NIST approximate entropy test

dataset	C1	C2	C3	C4	C5	C6	C7	C8	C9			
RAW	790	8	1	0	1	0	0	0	0	0	0.0000	0.0962
HASHED	100	91	71	73	73	79	65	92	73	83	0.1188	0.9912

Future Work

- Further development of RNG
 - Improve and analyze extraction
- Explore vulnerability to side channel attacks
- Effects of aging on threshold voltages
- Make better use of RAM cells
 - More reliable ID

Conclusions

- SRAM power-up generates usable fingerprints
 - SRAM chips and microcontroller memory
 - Passive and active power
- Large differences across chips provide identification
- Smaller differences across trials can be used for Random Number Generation
- Potentially a good match for RFID
- Preliminary work
 - To be explored further

Backup - Fingerprint Matching Demonstration

Backup – Virtual Tags Model vs Experiment

P(x=1) =1.00	63.79%
P(x=1) =0.00	16.44%
0.01 <p(x=1) 0.99<="" <="" td=""><td>19.77%</td></p(x=1)>	19.77%
0.10 <p(x=1) 0.90<="" <="" td=""><td>10.28%</td></p(x=1)>	10.28%
0.20 <p(x=1) 0.80<="" <="" td=""><td>6.77%</td></p(x=1)>	6.77%
0.30 <p(x=1) 0.70<="" <="" td=""><td>4.25%</td></p(x=1)>	4.25%
0.40 <p(x=1) 0.60<="" <="" td=""><td>2.16%</td></p(x=1)>	2.16%

Backup – JTAG induced Correlation

- Using JTAG causes all devices to tend towards same initial state
 - Only on MSP430
 - Doesn't occur with passive power
 - Cause unknown
 - Negatively Impacts fingerprint matching

Backup – Passive vs Active power

- Same devices, same bits of memory
 - Powered through JTAG vs passively powered
 - Shows debugger induced correlation

Backup – Min Entropy

- Per bit of Virtual Tag SRAM:
 - 0.050 bits of min entropy

$$H_{\infty}(x) = -\log_2(\max_i p_i)$$

0.093 bits of Shannon entropy

$$H(x) = -\sum_{i} p_{i} \log_{2}(p_{i})$$

Random Number Generation

- Randomness comes from SRAM cells that are well matched
 - Per bit of virtual tag:
 - .050 bits of min entropy
 - .093 bits of Shannon entropy
 - Distributed across memory array
 - Possible tolerance to attack
 - Locations vary from chip to chip

KEY										
	0.333 < P(x=1) < 0.666									
	0.166 < P(x=1) < 0.333	or	0.666 < P(x=1) < 0.833							
	0 < P(x=1) < 0.1666	or	0.833 < P(x=1) < 1							