EECS 442: Computer Vision
Simultaneous Localization and Mapping
Final Report

Thomas Cohn
University of Michigan

cohnt@umich.edu

Nicholas Konovalenko
University of Michigan

nkono@umich.edu

Neil Gurnani
University of Michigan

ngur@umich.edu

James Doredla
University of Michigan

doredlaj@umich.edu

1. Introduction

Simultaneous localization and mapping (SLAM) is a fa-
mous problem in robotics, where a computer system at-
tempts to construct a map of its environment, while simul-
taneously maintaining knowledge of its position within that
map. In order to construct this map, the agent needs some
way of observing its surroundings — most modern solutions
to SLAM rely on obtaining 3D data from laser rangefind-
ing (LIDAR) sensors or depth cameras. But these sorts of
sensors are expensive and somewhat uncommon.

SLAM has a vast number of real world practical appli-
cations across a growing variety of fields and disciplines.
To really understand why SLAM is important and can be
used in real world applications to aid humans, lets take a
look at a simple example. According to [1], “Consider a
home robot vacuum. Without SLAM, it will just move ran-
domly within a room and may not be able to clean the en-
tire floor surface. In addition, this approach uses excessive
power, so the battery will run out more quickly. On the
other hand, robots with SLAM can use information such as
the number of wheel revolutions and data from cameras and
other imaging sensors to determine the amount of move-
ment needed. This is called localization. The robot can also
simultaneously use the camera and other sensors to create a
map of the obstacles in its surroundings and avoid cleaning
the same area twice. This is called mapping.” As we can see
from this example, SLAM can prove useful in mapping un-
known environments, which can be applied to various dif-
ferent fields.

In terms of related works we are building on, our ap-
proach is similar to approaches like ORBSLAM [2] and
Monocular Visual Odometry [3[], which doesn’t attempt
to model uncertainty in the map. Older approaches, such
as [4], took a more probabilistic approach, and did model

uncertainty, but at the cost of tracking fewer features. Mod-
ern, more advanced techniques, such as that described in [5]]
are able to strike a balance. Our approach which was based
more on a deterministic model relying on features extracted,
allowed us to handle more points on the map we were work-
ing with. Our main trade off stemmed from the fact that al-
though we could handle more features, we weren’t able to
most effectively handle uncertainty within our results.

In the scope of our project, our goal is to produce an
effective SLAM system using only a single, ordinary (2D)
camera for sensory input. This type of camera is ubiquitous
in our modern, digital world, so our SLAM algorithm could
easily be applied to almost any mobile device.

We were able to obtain the data we needed for this
project from the ETH3D dataset [6]. With the video se-
quences and ground truth camera poses taken from ETH3D,
we were able to both qualitatively and quantitatively ana-
lyze the quality of our results.

2. Approach

The main principle of our approach to simultaneous lo-
calization and mapping is parallax. When viewing a scene
from different perspectives, the apparent position of objects
in the scene will change. Objects nearer to the camera will
appear to move much more than objects further away. We
illustrate a simple example in Figure [I| By measuring the
relative motion of multiple keypoints in the image, we are
able to estimate the motion of the camera. Once we have
the relative transformation between two different images,
we can triangulate the location of these keypoints in three
dimensional space, to build a sparse map of our surround-
ings. We then iteratively update our map with new camera
images by solving the Perspective-n-Point problem, where
we match observed keypoints in the image space to their

corresponding map points in three dimensional space.

A ©

® A

Figure 1. A demonstration of the parallax effects, where two ob-
jects appear to move relative to each other when examined from
different perspectives.

2.1. Keypoint Detection and Matching

The first step in the approach for our project was to ex-
tract and match features from the input images. We use
ORB features, with the implementation from OpenCV [7].
An example of these features from an input image is shown
in Figure [2] This brute force feature matcher took the de-
scriptor of one feature in first set and is matched with all
other features in second set using the distance calculated.
We used a distance threshold to isolate the closest matches
that lied within the threshold. Then, we had to get rid of du-
plicate matches to ensure that each keypoint we had found
matched up with at most one other keypoint.

Figure 2. ORB features extracted from an image input to our algo-
rithm.

2.2. Map Initialization

In order to begin building a map of the camera’s sur-
roundings, and localizing the camera within it, we have to
start with some ground truth information. As we initialize
the map, it is important that we have a sufficient parallax to
accurately estimate the camera motion and triangulate the
points. Thus, we allow map initialization to “fail” if there’s
insufficient parallax; in this case, we simply get another im-
age from the camera, and repeat until we’ve observed suffi-
cient parallax.

The map initialization process is as follows. We set the
first image to be the reference frame; all successive images
will be determined in terms of this frame. We then attempt
to initialize the map with frame two, three, and so on until
the map is successfully initialized. Given some frame ¢ > 1,
we extract image keypoints from the frame, and match them
with the descriptors from frame one. We then estimate the
essential matrix, which gives the linear transformation from
the camera pose in frame ¢ to the camera pose in frame 1.

This process gives us a result up to some unknown scal-
ing factor. Normally, this scaling factor would be estimated
with other sensors, such as an inertial measurement unit
chip, or a wheel encoder on a camera-equipped robot. In
our case, for ease of comparing with the provided ground
truth camera poses, we define the initial scaling factor to be
the ground truth distance between the two poses. (Alterna-
tively, we could fix an arbitrary scale, and then transform
the ground truth camera trajectory into our global coordi-
nate system via scaling. But this simply amounts to much
more complex code for an identical result.)

We compute the essential matrix using a RANSAC
scheme, with the OpenCV library. This gives us a list of
inlier and outlier matches, so we are able to discard false
matches. Once we find the relative transformation between
the two camera frames, we are able to triangulate the in-
lier matched keypoints in three dimensions. We use the
DLT algorithm [8]], as implemented by the OpenCV library.
This is the point where we determine whether or not there
is sufficient parallax to finish the map initialization process.
We compute the vector from each triangulated keypoint to
the two camera poses (in the global coordinate frame), and
measure the angle. We then check for two criteria, as sug-
gested by Feiyu Chen in [3]]: there must be at least 40 points
where the angle is at least 3°, and the average angle must be
greater than 5°. If these criteria are satisfied, we add these
frames and triangulated points to the map (with their de-
scriptors), thus completing the initialization phase. If one
of these criteria isn’t satisfied we scrap the current frame,
and attempt to finish the map initialization again with frame
1+ 1.

Plant 1 Simulated Featrues: Ground Truth vs Real Path

True Path
—— Real Path
e camera
o feature

3.00
275
2.50
2.25
2.00

Is

Z ax

175
150
125
1.00
3.0

View 1

Plant 1 Simulated Featrues: Ground Truth vs Real Path

True Path

—— Real Path
e Ccamera
e feature

_20 -2.5 —3.0 ~35 740

= =15 j
-0.5 -1.0 X axis

View 2

Figure 3. Two views of the plant 1 dataset, with simulated features.

2.3. Camera Tracking

In the main, tracking phase of our SLAM project, we
begin by trying to determine which map points should be
visible from the camera’s current pose. If we knew the cam-
era’s pose, we could project them directly using the pinhole
camera model. We assume that the camera has not moved
a large amount since the previous frame, which allows us
to use the previous camera pose as an estimate for the cur-
rent camera pose. We ignore any points which would ap-

Table 3 Simulated Featrues: Ground Truth vs Real Path

True Path
—— Real Path
e camera
o feature

Z axis

View 1

Table 3 Simulated Featrues: Ground Truth vs Real Path

True Path
—— Real Path
@ Ccamera
o feature

sixe Z
I
e
v

0.0
05
Yaxjs 1.0

15 2.0
View 2

Figure 4. Two views of the table 3 dataset, with simulated features.

pear behind the camera or outside of its field-of-view. We
then match these map points with extracted points from the
current frame, and then estimate the current frame’s camera
pose by solving the Perspective-n-Point problem. We once
again use a RANSAC scheme, as implemented by OpenCV.

We maintain a list of key frames in the constructed map;
if the translation or rotation between the current frame and
previous key frame is above a certain threshold, we consider

1.5

1.0 A

0.5 A1

0.0 A

_05 .

-1.01

—1.5 1

_20 .

Ground Truth
—— Estimated

-0.25 0.00 0.25 0.50

0.75 1.00 1.25 1.50 1.75

Figure 5. Caption

the current frame to be a new key frame. We then follow a
similar process to the map initialization, where we match
keypoints between the current frame and the last key frame,
and then triangulate them to find their positions in three di-
mensions.

We maintain a global version of the map, with all
recorded points throughout the SLAM process. But for fu-
ture point matching, we only consider a subset of the most
recently observed map points. This ensures that the compu-
tational cost doesn’t grow with time, as we’re never match-
ing to more than a certain number of features.

2.4. Visualization

Once we have the feature points and camera pose stored
in a map object, we have all the necessary information in
order to visualize the path the camera moves along. Using
Matplotlib [9]], we are able to plot the feature points and
camera’s coordinate axes in 3D-space. To visualize the ro-
tations the camera makes through each frame, we take the
Hamilton product of the camera’s coordinate axes with a
rotation quaternion that is stored in every frame’s camera
pose. With the downloaded datasets we are also given the
camera’s ground truth positions for each frame, which we
plotted against our camera’s simulated SLAM path.

3. Results

When running our SLAM implementation with datasets
downloaded from eth3d, we needed to analyze how cor-
rectly our implementation was behaving. Fortunately, the

datasets downloaded from eth3d come with the ground truth
camera trajectory for each image, thus allowing us to plot
that against the trajectory of our SLAM implementation.
Initially, we ran our implementation with artificially gen-
erated features in 3D, utilizing the ground truth poses. This
allowed us to verify that our implementation was effective.
We ran our implementation against several datasets, includ-
ing Plant 1 in Figure[3] which has 70 images. We wanted to
test datasets with both few and many pictures, as such we
also ran our implementation on Table 3 mono in Figure]
which contains 1180 images.

We then tested our algorithm using the ORB features ex-
tracted from the input images. In this case, we experienced a
lot more sensor drift than in the simulated case. This meant
that our results were very off on a global scale, but we lo-
cally produced good estimates.

4. Conclusion

Simulatanous Localization and Mapping (SLAM) can be
used for a computer system to construct a map of an un-
known environment while simultaneously keeping track of
the computer system’s location within it.

We learned that SLAM is a powerful way for au-
tonomous systems to know their relative location within an
environment while formulating a map of the region as a
whole. SLAM can be used in a variety of real world ap-
plications, some of which include autonomous vehicles and
crop field robots.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

“What is slam (simultaneous localization and mapping)
— matlab simulink.” [Online]. Available: ttps://www.
mathworks.com/discovery/slam.html

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam:
a versatile and accurate monocular slam system,” IEEE trans-
actions on robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

F. Chen, “Monocular visual odometry,” 2019.
[Online]. Available: https://github.com/felixchenty/
Monocular- Visual-Odometry

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
“Monoslam: Real-time single camera slam,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 29,
no. 6, pp. 1052-1067, 2007.

R. Munguia and A. Grau, “Monocular slam for visual odom-
etry,” in 2007 IEEE International Symposium on Intelligent
Signal Processing, 2007, pp. 1-6.

T. Schops, T. Sattler, and M. Pollefeys, “BAD SLAM: Bundle
adjusted direct RGB-D SLAM,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of
Software Tools, 2000.

A. Zisserman and R. Hartley, “Multiple view geometry in
computer vision, 2003.”

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Com-
puting in Science & Engineering, vol. 9, no. 3, pp. 90-95,
2007.

https://www.mathworks.com/discovery/slam.html
https://www.mathworks.com/discovery/slam.html
https://github.com/felixchenfy/Monocular-Visual-Odometry
https://github.com/felixchenfy/Monocular-Visual-Odometry

