
Automatic Image Colorization with Convolutional Neural Networks and
Generative Adversarial Networks

Changyuan Qiu* Hangrui Cao* Qihan Ren* Ruiyu Li* Yuqing Qiu*

University of Michigan
{peterqiu,hangrui,qihanren,ruiyuli,qyuqing}@umich.edu

Figure 1: Colorization results on CIFAR10

1. Introduction

Image colorization, the task of adding colors to grayscale
images, has been the focus of significant research efforts
in computer vision in recent years for its various applica-
tion areas such as color restoration and automatic animation
colorization [15, 1]. The colorization problem is challeng-
ing as it is highly ill-posed with two out of three image di-
mensions lost, resulting in large degrees of freedom. How-
ever, semantics of the scene as well as the surface texture
could provide important cues for colors: the sky is typically
blue, the clouds are typically white and the grass is typically
green, and there are huge amounts of training data available

*equal contribution, ranked in alphabetic order

for learning such priors since any colored image could serve
as a training data point [20].

Colorization is initially formulated as a regression task
[5], which ignores the multi-modal nature of color predic-
tion. In this project, we explore automatic image coloriza-
tion via classification and adversarial learning. We will
build our models on prior works, apply modifications for
our specific scenario and make comparisons.

2. Related Works
Recently, deep learning techniques progressed notably

for image colorization, and the fully-automatic colorization
task (which does not take interactive input compared with
the Scribble-based user-guided one) is commonly tackled

1

with 3 approaches: regression, classification and adversarial
learning [1, 5, 20, 10, 15].

[5] takes the lead in investigating fully-automatic col-
orization with deep neural networks (DNNs) and formulates
image colorization as a regression problem: the DNN takes
the extracted feature descriptors at each pixel as input and
outputs the continuous values of the colored channels at the
corresponding pixel, with the loss function to be the Mean
Square Error (MSE) between the predicted colored channel
values and the ground truth. [20] first formulates the task
as a classification problem by quantizing the ab channels of
the CIE Lab color space into 313 discrete ab pairs and us-
ing the multinomial cross entropy loss to train the model.
[10, 15] uses conditional Generative Adversarial Networks
(cGANs) for automatic colorization of grayscale images.

3. Approach
We summarize the overall objective of colorization as

follows: given a single lightness channel of an image X ∈
RH×W×1, predict the two corresponding color channels
Ŷ = F(X) ∈ RH×W×2, where F is the mapping func-
tion to be learned.

3.1. Classification-based Colorization

In this approach, we treat the colorization task as a clas-
sification problem instead of a regression problem due to
the ambiguity of colorization. We employ an architecture
similar to U-Net [18] without skip-connection and with di-
lated convolutions following [20, 4, 19]. Details of our
architecture are shown in Figure 2 with two variants.

To formalize, the ab color space is quantized to bins of
size 10, and yields a total of 313 possible ab pairs. Our
network maps the input X to a probability distribution Ẑ ∈
[0, 1]H×W×Q, where Q = 313 is the number of quantized
ab pairs. Our loss function is formulated as follows.

Lcl(Ẑ, Z) = −
∑
h,w

∑
q

Zh,w,q log(Ẑh,w,q)

where Ẑ is the predicted probability distribution and Z is
the quantized ground truth, using the soft-encoding scheme
in [20]. Therefore, the network is not strictly end-to-end
learned. To obtain the final colorized image, we first map
the predicted probability distribution Ẑ to color channels Ŷ
by function Ŷ = H(Ẑ), and then concatenate Ŷ to the input
lightness channel X . For function H, we use the annealed-
mean operation in [20] with temperature T = 0.38.

Unlike [20], we did not apply class rebalancing. The
technique is originally used to correct the bias towards
lower ab values, but we empirically observed that it dis-
rupted the training process in our case.

3.2. GAN-based Colorization

Generative Adversarial Networks (GAN) [7] are com-
posed of two competing neural network models. For this

colorization problem setting, the generator takes grayscale
images and generates colorized versions; the discriminator
gets colored images either from the generator or the labels,
concatenated with the grayscale images, and tries to identify
which pair contains the real colored image [17]. Similar to
the approach in [17], we utilize deep convolutional neural
networks as generative models for our adversarial frame-
work. Since for the colorization problem setting, the input
is grayscale images instead of random noises, we employ
a conditional GAN instead of the traditional one. The cost
functions are formulated as follows.
min
θG

J(G) (θD, θG) = min
θG
−Ez [log (D (G (0z |x)))] + λ ‖G (0z |x)− y‖1

max
θD

J(D) (θD, θG) = max
θD

(Ey [log(D(y|x))] + Ez log (1−D (G (0z |x) |x))])

whereG (0z|x) is the colorized image produced by the gen-
erator, with input as zero noise 0z with the grayscale image
x as a prior and y is the ground truth.

We build up and train a Conditional Deep Convolu-
tional Generative Adversarial Network (C-DCGAN) fol-
lowing [15]. We employ a modified U-Net [18] for our ba-
sic architecture. For the generator G, it is constructed as the
modified U-Net model as shown in Figure 3. For the dis-
criminator D, it only utilizes the contracting part (encoder)
in the U-Net model, with the number of channels being dou-
bled after each down-sampling. The output layer is a 4× 4
convolutional layer with stride 1, which generates a 1 di-
mensional output. Finally, the sigmoid activation function
is used to map the output to a probability of the input image
being real.

To better control the color space, we separate the bright-
ness channel and color channels using the CIE Lab color
space, where we only need to predict two color channels ab
in the generator.

4. Experiment
Dataset We evaluate our models on the canonical dataset
CIFAR-10 [13]. CIFAR-10 consists of 60000 images of res-
olution 32 × 32 uniformly partitioned in 10 classes, with
each class having 6000 images. Specifically, for each class,
5000 images are randomly selected for training and the re-
maining 1000 images are left for testing.

Training We train both models using Adam [11], with
learning rate of 1e-3 for the classfication-based model, and
learning rate of 1e-4 for both generator and discriminator
of the GAN-based model. The regularization term λ is set
as 100 for the generator of the GAN-based model. Our
classfication-based model is trained for 100 epochs, and
takes 4.5 hours to train on one Tesla V100 hosted on Google
Colab Pro; our GAN-based model is trained for 200 epochs,
and takes 4 hours on one Nvidia GTX 2070 hosted on a re-
mote server.

2

Figure 2: Network architecture for classification-based colorization. Each Conv block is composed of 2 or 3 repeated Conv and ReLU
layers. All spatial downsamplings in the network are achieved by Conv layer with stride greater than 1. We have two variants for this
architecture w.r.t the output layer. Variant 1: we upsample the ab probability distribution to the original size, and calculate loss w.r.t the
quantized ground truth. The upsampling methods include bilinear interpolation and ConvTranspose. Variant 2: we keep the ab probability
distribution unchanged (Id in the figure) , but downsample the quantized ground truth to make the size match.

Figure 3: Network architecture for generator (U-Net) of GAN. The symmetric architecture consists of left contracting path and right
expansive path. For the green contracting path (encoder), each block is a 4 × 4 convolutional layer with stride 2 for down-sampling,
followed by batch normalization and Leaky-ReLU activation function with slope 0.2. For the right expansive path (decoder), each block
consists of a 4 × 4 transposed convolutional layer with stride 2 for up-sampling and concatenation with the mirroring layer from the
contracting path. Then, the concatenated block goes through a 3 × 3 convolution layer with stride 1 for halving channels, followed by
batch normalization and ReLU activation function. The output layer is a 1× 1 convolution layer followed by a Tanh activation function.

4.1. Evaluation Metrics

Pixel-wise Accuracy To measure the difference between
the learned images from our models and the true images,
we first measure the mean absolute error between pixels.
For one test image, the accuracy is measured by the ratio of
the number of pixels whose errors are smaller than the error
threshold ε. Formally, denote pred(i, j) as one image pixel
in image generated by the model and real(i, j) as the origi-
nal image pixel values. Both pixel values are normalized to
[0, 1]. If the absolute difference is smaller than ε, namely

|pred(i, j)− real(i, j)| < ε,

then pred(i, j) will be classified as true in terms of color
information compared with the pixel in original ones. As
each pixel has R, G, B values, we mark one pixel as true

when all of its three channel values satisfy the above equa-
tion.

PSNR and SSIM Besides, we use peak-signal-to-noise
ratio (PSNR) and structrural similarity index (SSIM index)
to measure image qualities [9]. PSNR is defined in log form
of the mean sqaure error and we calculate PSNR for each
generated images(after transformation from Lab to rgb).
SSIM is a method to measure the similarity between im-
ages. We calculate average PSNR and SSIM values on the
test dataset and the results are shown below.

4.2. CIFAR-10 Results

We carried out experiments on the CIFAR-10 dataset.
Both the classification method and the GAN method are
able to automatically colorize grayscale images to an ac-

3

Model Pixel-Acc ε = 2% Pixel-Acc ε = 5% PSNR (dB) SSIM
Classification (Upsample - Bilinear Interpolation) 0.888% 5.272% 21.491 0.913
Classification (Upsample - Deconv) 0.919% 5.189% 21.220 0.908
Classification (Downsample) 0.923% 5.828% 21.848 0.913
GAN (ours) 33.255% 57.510% 24.608 0.910
GAN [15] 24.100% 65.500% — —

Table 1: Model Performance Comparison on CIFAR-10

Figure 4: Comparison of Colarization Results on CIFAR-10.
(a) Grayscale. (b) Classification. (c) GAN. (d) Ground Truth.

ceptable visual degree. Qualititative results are shown in
Figure 1, 4. Quantatitive results are shown in Table 1.
Compared with classficiation methods, images generated
by GAN has much higher pixel-wise accuracy and higher
PSNR(dB) values, indicating that in general the GAN
method performs better than classification. The SSIM val-
ues observed by two methods are approximately the same.
As we calculate the metrics based on the three channels (R,
G, B), we compare the pixel-wise accuracy of three chan-
nels and find that for both two methods, the accuracy in R
channel is lower than the other two channels, which implies
our models are weak to generate colors in R channels.

4.3. User Study

We carried out a fool study process by randomly pick-
ing 200 generated sets, where each set has three images,
the ground truth and colorized images learned by classifica-
tion and by GAN respectively. We asked 16 students who
did not know the image labels in advance to identify which
image is the ground truth in each set. The identified class
ratios are listed in table 2. We also asked users to rate im-
ages ranging from 1 - 5, with higher score indicating better
image reality and quality.

Identified class ratio Ground Truth Classification GAN
identified / total 54.91% 4.80% 40.69 %

Avg Score 4.0 2.3 3.7
Table 2: User Study Table

The above results show that images generated by GAN
and CNN can fool users to some extent.

5. Implementation
For classification-based approach, we adopt the architec-

ture in [20] but reduce the number of channels by a factor of
1
4 to align with the smaller image size (32× 32) in CIFAR-
10. In addition, we implement two variants of the archi-
tecture, with different downsampling or upsampling meth-
ods for the output layer (see Figure 2). We implement the
training and evaluation code from scratch in PyTorch, and
tune the hyperparameters by ourselves. We utilize the ten-
sorboard function in PyTorch to display synchronous col-
orization results. The code snippets for color conversion
and quantization of ab color space are borrowed from [21]
and [3] respectively.

For GAN-based approach, we adopt the architecture of
C-DCGAN and hyperparameters given in [15] but reduce
the number of layers in the U-Net basic architecture as we
are dealing with smaller images (see Figure 3). We im-
plement the models of generator and discriminator in Py-
Torch from scratch and simplify the code to make it more
straightforward. We utilize the tensorboard function in Py-
Torch to display synchronous colorization results. We refer
to dataloader code, training code and color conversion and
quantization code from rgb to Lab in [2] but we implement
our own evaluation code, color conversion and quantization
code from Lab to rgb.

6. Conclusion
In this project, we compare and evaluate the perfor-

mance of convolutional neural networks and generative ad-
versarial networks on automatic image colorization tasks.
Both of them are able to automatically colorize grayscale
images to an acceptable visual degree. Compared with
the classification-based CNN method, C-DCGAN perform
much better while is also more computationally expensive
at the same time.

7. Future Work
We plan to experiment with images of higher resolu-

tions from dataset like ImageNet [6] (224 × 224) or MS
COCO [14] (640× 480). Besides, modifying the backbone
of the classifier (like change to ResNet [8]) can potentially
improve the performance. We also plan to further explore
other generative models like VAE [12] and VQ-VAE [16].

4

References
[1] Saeed Anwar, Muhammad Tahir, Chongyi Li, Ajmal Mian,

Fahad Shahbaz Khan, and Abdul Wahab Muzaffar. Im-
age colorization: A survey and dataset. arXiv preprint
arXiv:2008.10774, 2020. 1, 2

[2] Harshit Bansal. Image colorization. https://github.
com/harshitbansal05/Image- Colorization,
2018. 4

[3] BingWin789. colorization-traininglayers-tf. https:
/ / github . com / BingWin789 / colorization -
traininglayers-tf, 2020. 4

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs, 2017. 2

[5] Zezhou Cheng, Qingxiong Yang, and Bin Sheng. Deep col-
orization. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 415–423, 2015. 1, 2

[6] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 4

[7] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014. 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[9] A. Horé and D. Ziou. Image quality metrics: Psnr vs. ssim. In
2010 20th International Conference on Pattern Recognition,
pages 2366–2369, 2010. 3

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 2

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 2

[12] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 4

[13] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 2

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 4

[15] Kamyar Nazeri, Eric Ng, and Mehran Ebrahimi. Image col-
orization using generative adversarial networks. In Interna-
tional conference on articulated motion and deformable ob-
jects, pages 85–94. Springer, 2018. 1, 2, 4

[16] Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
arXiv preprint arXiv:1711.00937, 2017. 4

[17] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks, 2016. 2

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015. 2

[19] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-
tion by dilated convolutions. In ICLR, 2016. 2

[20] Richard Zhang, Phillip Isola, and Alexei A. Efros. Color-
ful image colorization. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Computer Vision – ECCV
2016, pages 649–666, Cham, 2016. Springer International
Publishing. 1, 2, 4

[21] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,
Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time
user-guided image colorization with learned deep priors.
ACM Transactions on Graphics (TOG), 9(4), 2017. 4

5

https://github.com/harshitbansal05/Image-Colorization
https://github.com/harshitbansal05/Image-Colorization
https://github.com/BingWin789/colorization-traininglayers-tf
https://github.com/BingWin789/colorization-traininglayers-tf
https://github.com/BingWin789/colorization-traininglayers-tf

