
Facial Information Protection by Mosaicking Faces in Video Dissemination

Zhaoyuan Zhang
University of Michigan

Electrical Engineering and Computer Science
zhaoyuan@umich.edu

Yijie Yang
University of Michigan

Electrical Engineering and Computer Science
yyjyang@umich.edu

Ke Liu
University of Michigan

Electrical Engineering and Computer Science
kliubiyk@umich.edu

Mingxuan Qu
University of Michigan

Electrical Engineering and Computer Science
miqu@umich.edu

1. Introduction

In the past ten years, the popularization of photography
equipment and wireless internet significantly reduces the
cost of filming and disseminating videos. However, the fre-
quent video dissemination brings various information secu-
rity issues. Especially during the COVID-19 pandemic, the
sudden growth of videotelephony inevitably increases the
risk of information leakage. Nowadays, as more and more
people consider information security their priority, it is nec-
essary and meaningful to improve information protection
technology in video dissemination.

Among various information security issues, the leakage
of human facial information is one of the most urgent issues.
As a unique human biological characteristic, facial informa-
tion widely applies in identity authentication, mobile pay-
ment and business analysis. Meanwhile, video is the funda-
mental information carrier of human interactions and thus
contains considerable human facial information. Therefore,
protecting human facial information in video dissemination
is a crucial component of information protection.

Currently, mosaicking human face in the video is a
straightforward and effective approach to protect facial in-
formation as Figure 1 [7]. However, the available meth-
ods of mosaicking human faces are still far from satisfying
level. On the search engine, the most common approach
for mosaicking human face is provided by a paid applica-
tion Filomra[3]. However, Filomra only provides a basic
mosaicking function for a fixed rectangle area in video and
performs poorly even with small facial movements.

In our project, we apply object tracking, Gaussian fil-
tering and mosaicking effect to bring users better quality
of facial information protection. Object tracking is a use-
ful technique helping to identify and locate objects, and can
be commonly used on human, vehicles, to name a few, and

Figure 1. Example for mosaicking faces during an interview

here we mainly need to track human face for locating accu-
rately. Applying Gaussian filtering and mosaicking effect
to the object being tracked can reduce the details, thus hide
the information efficiently.

Most of the functions can be achieved by using the
OpenCV library. The object tracking tutorials provided by
pyimagesearch [10] provide with some useful trackers from
this library, where most of our work were built on. It is also
available for tracking with webcam or well-recorded video
simply by breaking the video frame by frame, then analyse
the image sequences. In order to deal with emergency sit-
uation in streaming or live TV shows, we were inspired by
another automatic face tracking algorithm[11]. Addition-
ally, for evaluation and analysis purpose, we keep tracking
the memory usage by using tracemalloc method[6], and ap-
ply intersection over union method to compare the output
accuracy with ground truth table[9].

With all approaches explored above, we developed a
multifuncional program to achieve the goal. This includes
taking different trackers efficiency into consideration and
pick the most suitable one. In case of the limit of auto
detection, manual operation is allowed for people to make
modification in time. Still, there should be more attempts to
further perfect the model in a user-friendly way.

1



Figure 2. Classifier cascade in the CascadeClassifier class

Figure 3. Mosaicing effect on a man’s face

2. Approach

2.1. Haar feature-based CascadeClassifier

For live TV shows or streaming services, it is neces-
sary to ensure facial information protection to take place
real time. Thereby, the program needs efficient classifiers
to quickly track down faces and protect them. To imple-
ment the quick tracking, we adopted the CascadeClassi-
fier class offered by OpenCV[5]. The CascadeClassifier
class adopts the Haar Feature-based Cascade Classifier pro-
posed by Paul Viola and Michael Jones. It is specialized for
quick image processing and high detection rates[12]. The
Haar Cascade Classifier adopts an intermediate representa-
tion of image to support efficient learning and applies the
AdaBoost algorithm to quickly achieve high generalization
performance[12]. It then forms a detection classifier cas-
cade as Figure 2 [12].

While positive results require passing every classifier,
the first few simple classifiers remove large number of neg-
ative examples and thereby effectively reduce computation
time. With the rapid face detection offered by the Cascade-
Classifier class, we implement the feature that users can
quickly mosaic all detected faces by simply pressing ‘e’.

Figure 4. Localization step in the CSRT algorithm

2.2. Mosaicking effect

After quickly tracking down faces with the CascadeClas-
sifier class, we implement the feature that users can quickly
blur and add mosaic to all detected faces by simply press-
ing ‘e’. To blur each of the faces encircled by a rectangle,
we first applied a Gaussian blurring on the faces to reduce
the facial details but remain edge information. After edges
preservation, we divide the larger rectangle tracking box
into smaller rectangle blocks, take the mean BRG values
over each smaller block, and then draw a new rectangle on
the same block with its mean BRG values. This process en-
ables us to further remove the details in each of the smaller
rectangle block and add mosaic to faces after combing all
smaller rectangles as Figure 3[2]. In a word, the mosaicking
effect after Gaussian blur removes details of facial informa-
tion but still preserves the detectable edges of human face.

2.3. CSRT tracker

To continuously track and mosaic faces, we apply the
OpenCV Tracking APIs to follow the face movements.
While both Pillow and Opencv have image processing cred-
ibility and large community support, we pick Opencv sim-
ply due to personal interests as we have already applied
Pillow in previous EECS 442 projects. After running test
trials on our own camera and the Video Object Tracking
dataset[8], we pick the CSRT(Discriminative Correlation
Filter Tracker with Channel and Spatial Reliability) due to
its high tracking accuracy and acceptable efficiency com-
pared with other seven trackers[10]. Compared with Cas-
cadeClassifier, CSRT supports manual operation for se-
lecting specific person’s face to track and performs more
steadily when face area is temporally incomplete.

According to Lukezic et al. [1], the CSRT algorithm

2



Figure 5. Update step in the CSRT algorithm

keeps a variable called Channel reliability w, which mea-
sures each channel’s importance to locate an object. We rep-
resent the first phase of CSRT, called the ‘localization step’
in Figure 4[1]. It takes the image patch feature f from the
object’s previous position, calculate the correlation between
filter h and f weighted by w, and take the place with maxi-
mum correlation as the next position. The second phrase of
CSRT is called the “update step”, which is represented by
Figure 5[1]. It extracts and updates the object’s foreground
and background color model to build up a spatial reliability
map m that identifies likely pixles in the training regions
that belong to the object. It then takes m as input and up-
dates the filter h by an efficient O(NLogN) algorithm. The
Channel reliability w is recalculated and updated according
to feature channel outputs.

2.4. Usability design

Apart from the basic tracking algorithm, we also added
several new features to enable blurring of multiple faces
and increase usability. Apart from pressing ’e’ to blur all
the faces detected by the Haar Feature-based CascadeClas-
sifier, users can also manually select a single or multiple
areas to add blurring effects to. Blurring effects can also be
removed by 1.clicking to select a blurred area and press ’d’
on the keyboard 2. pressing ’r’ to remove all current blur-
ring effects. To improve understandability, we added user
guides on the start screen and during the area selection pro-
cess. For evaluation purpose, we also added runtime and
memory usage tracking after blurring starts to take place.

2.5. Tracking failure handling

Although CascadeClassifier and CSRT perform satisfy-
ingly in tracking human faces, they also fail in tracking
faces when the facial information is incomplete in video
frame. Therefore, in response to two common tracking fail-
ure cases, we implement corresponding handling methods
for both CascadeClassifier and CSRT.

Case 1: Face covered by other objects
When users drink a cup of coffee, read messages on the
phone or just put some objects in front of their faces, faces
may be covered by other objects which can cause tracking
failure. This failure case occurs most for CascadeClassifier
due to the loss of Haar features. For avoiding facial infor-
mation leakage in this case, we record the location of the
last successful tracking box by CascadeClassifier and then
keep tracking on the same location when tracking failures
occur. As a result, when the objects in front of human faces
are removed, CascadeClassifier can quickly continue track
on faces and not cause information leakage.

Case 2: Face on the edge or out of frame
When users’ faces temporarily move on the edge or out of
frame, incomplete facial information can cause the track-
ing failure. This failure case occurs most for CSRT since it
cannot recognize human faces. For resolving this issue, we
detect the location of human faces through the movement of
tracking boxes and then remain the mosaicking effect when
faces are partially in frame or out of frame. The size of
mosaicking effect will remain the same as the last time that
human faces are fully in frame to avoid potential leakage of
facial information.

3. Experiments
3.1. Data

The dataset we employ to evaluate the performance of
tracking human faces is Video Object Tracking dataset in
Kaggle[8] since it provides images for every video frame
and corresponding ground truth values. For our experiment
purpose, we only select video frames that contain facial in-
formation in front of a fixed or moving camera in our eval-
uation. Furthermore, our evaluation includes the edge cases
for human face tracking, such as face covered by a book and
face under extremely low illumination situation.

3.2. Metrics

Taken reference from the application of intersection over
union(IoU) [9], we convert the accuracy of detection box to
the fraction of coverage. The data from the ground truth ta-
ble is showing well-designed bounding boxes for the object.
What we want to compare with the those figure is the output
from Cascade auto-tracking and several trackers in openCV,
namely, CSRT tracker, KCF tracker, MOSSE tracker.

3



Figure 6. Performance of the CSRT Tracker

3.3. Quantitative Result

After running our 3 trackers on all the 11 datasets, we
got 33 sets of result in total and conclude that a valid tracker
should have IOU mean of 70% above and std of about 10%.
All following figures are ploted by RawGraphic [4]

The CSTR tracker has the best result among the three
with its higher mean (Figure 8). The highest IOU mean,
82.3248%, and lowest std, 6.7233%, are also achieved by
CSTR running on “trellis” Figure 6).

All three trackers can successfully detect objects under
different light conditions, but they can hardly follow it when
the object is moving, for example, in the “jumping” and
“soccer” dataset, KCF and MOSSE only got about 20% and
10% as mean respectively. Meanwhile, CSTR succeeds on
“jumping” but still failed on “soccer”.

3.4. Qualitative Result

Those having 30% std (which is triple of the normal)
implies that the tracker did detect correctly at the very be-
ginning (high IOU), but got lost after a while (low IOU).
For example, when monitoring KCF running on “dinosaur”,
“jumping” and “torus”, we saw it starting to track other
objects after our main object did a fast-moving(Figure 7).
CSTR does a good job even the object is in rapid motion
(“jump”). And note that there’s one exception occured on
the “girl” dataset because CSTR detected the wrong “box”
when the gril in video turned her head(Figure 9). Although
CSTR did track the “wrong” object closely, our frame ended
up being far away from the ground truth one and resulted in
a low IOU score.

4. Implementation
During our project’s planning process, we refer to the

single-object tracking algorithm proposed by pyimage-
search[10]. We took inspiration from pyimagesearch’s
codes on pressing ’s’ to select a single tracking object. To
satisfy our needs for multiple object blurring, we modified

Figure 7. Performance of the KCF Tracker

Figure 8. Compare trackers by mean IOU

Figure 9. Miss tracking case of CSRT in video ”girl”

the code into multiple object tracking and implemented the
blurring algorithm. We also add the features including 1.
select multiple objects by pressing ’m’ 2. cancel a selection
by clicking the area and press ’d’ 3. remove all blurring by
pressing ’r’. Another previous work we refer to is the auto-
matic face tracking algorithm proposed by Shantnu Tiwari
[11]. It is where we learned about the existence of Haar
Feature-based CascadeClassifier. During testing we found
the CascadeClassifer may lose tracking after an object has
partially left the screen. We fixed the drawback and added
the feature where pressing ’e’ will add blurring to all faces
detected by the CascadeClassifer to start face protection in
the first place.

4



References
[1] L. C. Z. J. M. Alan Lukezic, Tom’as Voj’ir and M. Kris-

tan. Discriminative correlation filter tracker with channel and
spatial reliability. International Journal of Computer Vision,
2018. 2, 3

[2] C. Briggs. A man’s face. https://
en.wikipedia.org/wiki/Face#/media/File:
Sabaa Nissan Militiaman.jpg. 2

[3] L. Brown. How to blur face in video. https:
//filmora.wondershare.com/video-editing-
tips/blur-face.html. 1

[4] C. DensityDesign and Inmagik. Rawgraphs 2.0 beta.
https://app.rawgraphs.io. 4

[5] Doxygen. Cascade classifier. https:
//docs.opencv.org/3.4/db/d28/
tutorial cascade classifier.html. 2

[6] R. Keith-Magee. Monitoring memory usage of a running
python program. https://medium.com/survata-
engineering-blog/monitoring-memory-
usage-of-a-running-python-program-
49f027e3d1ba. 1

[7] KidsInterviewBands. Kids interview bands - courtney bar-
nett. https://www.youtube.com/watch?v=4XI-
UgXCsUc. 1

[8] K. S. Mader. Video object tracking.
https://www.kaggle.com/kmader/
videoobjecttracking. 2, 3

[9] A. Rosebrock. Intersection over union(iou) for object de-
tection. https://www.pyimagesearch.com/2016/
11/07/intersection-over-union-iou-for-
object-detection/. 1, 3

[10] A. Rosebrock. Opencv object tracking. https:
//www.pyimagesearch.com/2018/07/30/
opencv-object-tracking. 1, 2, 4

[11] S. Tiwari. Face recognition with python, in under 25
lines of code. https://realpython.com/face-
recognition-with-python. 1, 4

[12] P. Viola and M. J. Jones. Robust real-time face detection.
International Journal of Computer Vision, 57(2):137–154,
2004. 2

5

https://en.wikipedia.org/wiki/Face##/media/File:Sabaa_Nissan_Militiaman.jpg
https://en.wikipedia.org/wiki/Face##/media/File:Sabaa_Nissan_Militiaman.jpg
https://en.wikipedia.org/wiki/Face##/media/File:Sabaa_Nissan_Militiaman.jpg
https://filmora.wondershare.com/video-editing-tips/blur-face.html
https://filmora.wondershare.com/video-editing-tips/blur-face.html
https://filmora.wondershare.com/video-editing-tips/blur-face.html
https://app.rawgraphs.io
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://medium.com/survata-engineering-blog/monitoring-memory-usage-of-a-running-python-program-49f027e3d1ba
https://medium.com/survata-engineering-blog/monitoring-memory-usage-of-a-running-python-program-49f027e3d1ba
https://medium.com/survata-engineering-blog/monitoring-memory-usage-of-a-running-python-program-49f027e3d1ba
https://medium.com/survata-engineering-blog/monitoring-memory-usage-of-a-running-python-program-49f027e3d1ba
https://www.youtube.com/watch?v=4XI-UgXCsUc
https://www.youtube.com/watch?v=4XI-UgXCsUc
https://www.kaggle.com/kmader/videoobjecttracking
https://www.kaggle.com/kmader/videoobjecttracking
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking
https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking
https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking
https://realpython.com/face-recognition-with-python
https://realpython.com/face-recognition-with-python

