
Monocular Pose Estimation for VR Motion Capture Applications

Nachiketa Gargi
ngargi@umich.edu

Eugene Kim
keugene@umich.edu

Selinah Liang
selinahl@umich.edu

Grace Ma
gwma@umich.edu

1. Introduction

Virtual reality is a rapidly advancing field. Making vir-
tual reality technology accessible to everyone would be ben-
eficial, as there are many applications. In some sectors, for
example, VR can be used to train employees who work in
dangerous environments. VR is also useful for entertain-
ment and educational purposes. To create a realistic expe-
rience, virtual reality technology requires accurate human
pose estimation, of which a main component is localizing
the body parts, or ”keypoints”, of the individual user. How-
ever, varying angles, inconsistent illumination, occlusion,
ambiguity of human poses, and other factors make pose es-
timation a difficult task.

In this paper, we focus on monocular pose estimation
for virtual reality motion capture. Based off of a singular
image of a person, we aim to accurately estimate their 2D
skeletal pose. With this, we can advance to monocular 3D
pose estimation. This would allow 3D pose detection us-
ing a single webcam, which can be used for more acces-
sible, commercially-viable virtual reality motion capture.
Currently, full-body presence in VR is achieved via expen-
sive trackers which must be worn on the body during usage;
while accurate, these trackers are more expensive and com-
plicated to use compared to a webcam. Many researches
have worked on solving this problem.

For single-person pose estimation, Su et al. proposed a
novel Cascade Feature Aggregation (CFA) method, which
cascades hourglass networks for more robust pose estima-
tion. Through their testing on MPII and LIP datasets,
this CFA achieves the best performance on state-of-the-art
benchmark MPII [1].

The next step after individual pose estimation would be
multiple-person pose estimation, which we do not cover.
This was considered by Cao et al., who presented an effec-
tive method to detect the 2D pose of multiple people in an
image using a nonparametric representation [2]. Their work
marks the release of OpenPose, which is the first real-time
system for multiple-person 2D pose detection [2]. Their
paper details a multi-stage CNN, in which they use convo-
lution blocks and concatenate the predictions of each stage.

Our method builds on these. We use convolutional net-
works to predict the human keypoints for 2D pose estima-

Figure 1. Cascading Convolutional Structure. Upsampled and
Downsampled data is added together to preserve features across
resolutions.

tion, and to predict the z-locations of the joints to create a
predicted 3D pose. Our output 3D pose predictions are rel-
ative to a root joint, which we chose as the neck; for virtual
reality body tracking applications, the exact 3D position of
the head is known through other tracking systems on a head-
mounted display.

2. Approach

For 2D pose estimation, we use a convolutional network
to create dense predictions for the keypoints that make up
a human skeleton. We use the first 10 layers of pre-trained
VGG-19 [2] as our encoder network. During training, we
freeze gradients for these 10 layers to speed up convergence.

1

Figure 2. Convolution Block. Three convolutions of kernel size 3
mimics one convolution of kernel size 7.

Figure 3. The heatmaps generated during our 2D pose estimation.

Our decoder architecture then uses a Cascade convolu-
tional structure [7] in order to preserve both high resolution
and low resolution features, as shown in Figure 1. This is
followed by a series of ConvBlocks [2], as shown in Figure
2. We use three layers of convolutions of kernel size 3, each
followed by a ReLU. At the end, the three outputs are added
together.

Our convolutional network outputs 19 2D heatmaps, one
for each keypoint. They represent how likely each joint is
at a specific pixel, as shown in Figure 3.

For 3D pose prediction, we use a convolutional network
to predict z-locations. We use the 2D heatmaps generated
by the 2D predictions, as well as the original image fea-
tures. We then make a new convolution network consisting
of a ConvBlock→ MaxPool→ ConvBlock→ Cascade→
ConvBlock→ Linear. This outputs 19 values that represent
the z values of all 19 keypoints.

Our loss function consists of two terms: first, the aver-
age distance (in pixels) between the predicted 2D points and
the ground truth 2D points; second, the average distance (in
pixels) between the ground truth z value with the predicted
z value for all 19 points. We get the predicted 2D points by
taking the spatial soft argmax2D of the heatmap generated
[6].

l =

T∑
i=0

N∑
i=0

(
J2D − Ĵ2D

)2
+

T∑
i=0

N∑
i=0

(
Jdepth − Ĵdepth

)2
The training procedure begins by training on the 2D im-

ages, and then moving onto the 3D predictions. We used
the AdamW optimizer [9], with a 10−5 learning rate and a

batch size of 16. Since our dataset is comprised of frames
from videos, sequential images are often very similar and
can lead to the optimizer getting stuck in a local minimum.
Therefore, during training, the images are randomly sam-
pled. In addition, we created a Discord Bot to give live up-
dates on the training progress, loss, and validation images
of our model. This allows all group members to monitor
training, even though the model was only training on one
member’s GPU.

3. Experiments

3.1. Data

We originally intended to use the Human3.6M dataset
[4], but were not able to obtain access, as the researchers
have limited their dataset to established academic research
groups only. As an alternative, we used images from the
CMU Panoptic Studio dataset by Joo et al. [5], which
includes images in which there are 19 3D joint locations
(keypoints). The ordering of the keypoints differs from
the OpenPose output order, although Joo et al.’s method is
based on it [5].

The CMU Panoptic dataset contains videos from mul-
tiple angles along with 3D pose information from mo-
tion capture systems. Since we do not plan to incorpo-
rate time sequences, we treat the videos as multiple series
of standalone images. We then resize these images from
1080x1920 to 180x320, as the original image size was far
too large to reasonably train on due to GPU memory con-
straints. When parsing the ground truth joint positions, we
normalize the joint positions to the neck, so that we can use
the neck as the root joint. Next, we project the 3D joints to
2D using the given camera parameters so we can have 2D
ground truth labels. In addition, the dataset included some
images in which not all 19 keypoints were present (e.g. a
photo in which the subject’s legs were not visible). We fil-
tered these images out before training so that they would
not skew our results.

For training, we used the 17102 pose1,
17102 pose2, 17102 pose3, and 17102 pose4
datasets using the HD cameras 1-19. For validation, we
used the 17102 pose5 dataset using HD camera 1.

3.2. Metrics

Pose estimation is often evaluated using the MPJPE met-
ric, which is the mean per joint position error [3]. Below is
the equation, where T is the number of samples and N is the
number of joints. Per joint position error is the Euclidean
distance between ground truth and prediction for a joint.
Mean per joint position error is the mean of per joint posi-
tion error for all N joints (typically, N = 16, but we use N =
19).

2

Figure 4. 2D Plot of the predicted keypoints (in red) versus the
correct keypoints (in green). The model works well on people in
neutral poses, which it had a lot of training images of.

MPJPE =
1

T

1

N

T∑
t=1

N∑
i=1

||J (t)
i − Ĵ

(t)
i ||2

The joints are normalized with respect to the root joint,
which is the neck. MPJPE is calculated using the formula
above after transforming output points back to the original
world coordinate space in order to return to using centime-
ters as the units.

We were also able to generate 2D and 3D images of our
skeletal pose based upon our joint estimations. We layered
the ground truth pose and predicted pose on top of the im-
ages to see how well it lines up, as shown in Figures 4 and
6. We also made 3D plots of our ground truth pose and pre-
dicted pose, as shown in Figures 5 and 7. This allows us
to visualize how well our model predicted the depth of the
joints.

3.3. Investigation

To make our model, we experimented with many dif-
ferent structures and hyperparameters to try to achieve the
best result. We experimented with a variety of encoder net-
works, including but not limited to ResNet, VGG-19, and
VGG-16, and found that VGG-19 provided the most accu-
rate results. Upon training our network with ResNet [6],
we found no significant improvements in our error. We
also attempted not using an encoder network and instead
starting with the raw image. However, this increased train-
ing time significantly, and led to greater overfitting due to
our limited dataset [4]. To prevent overfitting, we increased
the number of training images and randomized their order.
We also originally tried to one-hot encode the depth coordi-
nate estimation and use argmax to retrieve the actual coordi-
nate; however, since argmax is non-differentiable, the gra-
dients were not correctly backpropagated through the net-
work. Our final model outputs the z coordinates as just a
single float for each joint.

Figure 5. 3D Plot of the predicted keypoints (in red) versus the
correct keypoints (in green). The model works well on people in
neutral poses, which it had a lot of training images of.

Figure 6. 2D Plot of the predicted keypoints (in red) versus the
correct keypoints (in green). The model did a good estimation on
all joints, despite the occluded left arm.

Figure 7. 3D Plot of the predicted keypoints (in red) versus the
correct keypoints (in green). The model clearly did an accurate
estimation of depth.

3.4. Qualitative Results

We stitched many of these images together to create
videos of our pose estimation, which are available at
https://drive.google.com/drive/folders/

3

https://drive.google.com/drive/folders/1XGNP0Skc2gQCGJLupbvfixuDfQmYhgmB?usp=sharing

Figure 8. Our model does not work as well on a wild image [11].
While the legs are some what accurate, it does not identify the
arms well. We believe that this is due to the fact that most of our
training images were of people facing backwards, where the arms
are not visible often.

1XGNP0Skc2gQCGJLupbvfixuDfQmYhgmB?usp=
sharing. We then ran our model in real time against
a new video in the wild [11], to see if it could recognize
poses outside of the data set. While the video from inside
of our dataset gave satisfactory results, the new video was
lacking in accuracy, as shown in Figure 8. This is due to
the homogeneity of the CMU Panoptic dataset, in which
all images had the same background and similar camera
angles. As a result, we believe our model may have overfit
on the dataset images.

3.5. Quantitative Results

The MPJPE for state-of-the-art monocular 3D pose es-
timation is 49.6 millimeters [10]. We regard this mea-
surement as the baseline. We ended up with a MPJPE of
around 89.71 millimeters, which is around 40 milimeters
worse than our baseline. This is still better than our desired
MPJPE of 200 millimeters.

Inference of our model was able to run in real-time
(60fps) on a GeForce RTX 3080 GPU, which is important
for a VR application which requires low latency.

4. Implementation
We implemented our own function for loading the CMU

Panoptic Studio dataset into memory. This is where we
exclude camera angles where not all 19 keypoints were

present. For projecting our 2D points to 3D points using
camera intrinsics, extrinsics, and distortion parameters, we
use a function provided by the CMU Panoptic Studio [5]. To
project these 3D points back to 2D in order to train our net-
work on the data, we use the same projection function that
we used to project the 2D points to 3D, and then downsize
our output plots so they fit our GPU memory constraints.
We implemented a Cascade convolutional structure. We fol-
lowed the structure in [7], but we only use 3 MaxPool2Ds
instead of the 4 MaxPool2Ds used in [7], as our image sizes
are smaller. For our ConvBlock, we followed the structure
in [2]. However, the structure in [2] concatenates the out-
puts from each stage for the subsequent stage, while our
structure adds the outputs. We use a spatial soft argmax2D
to get the predicted 2D points of the heatmaps, as used in
[6]. As opposed to standard argmax, the soft argmax func-
tion is differentiable which enables us to use it in our loss
function and propagate gradients accurately back through
the rest of the network.

5. Challenges

In our proposal, we intended to create a differentiable
forward kinematics solver for predicting 3D poses. This
proved to be more of a challenge than previously antici-
pated, since we weren’t sure whether to have joint locations,
rotations, or both as outputs from our network. Addition-
ally, other kinematic models we looked into used the hip as
the root of the kinematic tree which minimizes the degrees
of freedom and error of limbs. Since we used the neck as
our root node due to our VR constraint, there would be a far
greater error by the time that the angles propagated all the
way from the neck to the feet.

It was difficult to manage a large dataset in memory with
only 32 gigabytes on our training machine. We solved this
issue by creating a streaming dataloader in PyTorch that
loads images on-the-fly and keeps memory usage low while
still enabling us to use the full dataset.

Additionally, due to the size of the dataset and our model,
tuning hyperparameters was a very tedious process. With
more time, we believe it would be possible to find better
values of hyperparameters for our model to train on, but
since each epoch took over an hour, it was not feasible in
this timeframe.

We believe our model has overfitting issues due to the
lack of varied angles, lighting conditions, and backgrounds
in the training data. We found that our model was unable
to differentiate between the left and right side of the body
due to joint ambiguity, which was especially apparent in
the heatmaps. This could be mitigated by increasing ker-
nel sizes or adding another level of cascading so that the
network could detect the overall orientation of the person.

4

https://drive.google.com/drive/folders/1XGNP0Skc2gQCGJLupbvfixuDfQmYhgmB?usp=sharing
https://drive.google.com/drive/folders/1XGNP0Skc2gQCGJLupbvfixuDfQmYhgmB?usp=sharing

References

[1] Z. Su, M. Ye, G. Zhang, L. Dai, J. Sheng, ”Cascade Feature
Aggregation for Human Pose Estimation”, 2019.

[2] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, ”Open-
Pose: Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields” in IEEE, 2019.

[3] S. Li, A. Chan, ”3D Human Pose Estimation from Monoc-
ular Images with Deep Convolutional Neural Network” in
ACCV, 2014.

[4] C. Ionescu, D. Papava, V. Olaru, C. Sminchisescu, ”Hu-
man3.6M”, 2011.

[5] Joo, Hanbyul and Liu, Hao and Tan, Lei and Gui, Lin and
Nabbe, Bart and Matthews, Iain and Kanade, Takeo and
Nobuhara, Shohei and Sheikh, Yaser, ”Panoptic Studio: A
Massively Multiview System for Social Motion Capture”, at
ICCV, 2015.

[6] Iskakov, Karim and Burkov, Egor and Lempitsky, Victor and
Malkov, Yury, ”Learnable Triangulation of Human Pose”, at
ICCV, 2019.

[7] A. Bulat, J. Kossaifi, G. Tzimiropoulos, M. Pantic, ”Toward
fast and accurate human pose estimation via soft-gated skip
connections”, 2020.

[8] S. Souravjha, ”Pose-estimators: Toward fast and accurate
human pose estimation via soft-gated skip connections”,
https://github.com/shivamsouravjha/Pose-estimators, 2020.

[9] S. Gugger, J. Howard, ”AdamW and Super-convergence is
now the fastest way to train neural nets”, 2018.

[10] X. Sun, B. Xiao, F. Wei, S. Liang, Y. Wei, ”Integral human
pose regression”, in ECCV, 2018.

[11] T. Kurnosova, ”Model posing | Natural simple modeling
poses | Fashion model test shoot | How to visual tutorial”,
https://www.youtube.com/watch?v=mIuQvMzFWV0, 2020.

5

