
Back to the Future: Building Upon Image Colorization via Classification

Annika Dahlmann
dahlmana@umich.edu

Cameron Davis
camdav@umich.edu

Cole Hudson
colehud@umich.edu

Kyle O’Laughlin
kolaug@umich.edu

Nathan Tseng
tsnathan@umich.edu

1. Introduction

The task of image colorization involves producing col-
ored images from grayscale images. When implement-
ing colorization, the plethora of plausible colors from a
grayscale image poses a challenge to figure out how to
properly train the network to produce colorful images. Our
group attempts to address these difficulties to allow the net-
work to perform colorization, which would allow for legacy
images taken in black and white to be visualized in color.
This is especially useful in the film industry, where col-
orization was recently used to restore World War II footage
and other vintage footage. Not only that, colorization can
be extended to provide realistic image results from sketches
and semantic segmentation maps [1]. Given the variety of
use cases, our group focuses on implementing a coloriza-
tion model that is able to produce plausible colors for black
and white images, by treating the problem through the lens
of a classification problem.

When attempting colorization in deep learning, the
model receives the L channel and attempts to reconstruct
the AB channels. Previous work with a regression approach
encounters difficulties with the task definition [2]. Treating
the colorization as a regression problem involves directly
taking the L2-distance between the ground truth and output
colorization. While this intuitively makes sense, the range
of plausible colors make the task ill-suited for regression.
The results tend to end up with desaturated colors because
the minimization tasks ends up colorizing using the most
common colors that appear in an image dataset [3].

Our approach is instead inspired by Zhang et al.’s work,
which converts the task of colorization into a classification
one [4]. This is done through quantizing the AB color space
into bins through a palette, where each bin is treated as a
separate class. Working in a discrete space subsequently
allows for weights to be introduced for each class. By us-
ing classification, the model is able to estimate the proba-
bilities of different plausible colors, and rare colors can be
weighted to encourage the network to keep the images vi-
brant and saturated in color.

We therefore attempt to make a lightweight model that
performs classification on a quantized LAB color space.
For the model training, we implement a similar weight-
ing scheme and weighted per-pixel cross-entropy loss to the
Zhang et al.’s method. This is done mostly from scratch,
with credit for borrowed code in the Implementation sec-
tion. However, we also introduce our own new contribution,
which is a loss term that measures the difference in output
and dataset color distributions to keep plausible colors con-
sistent with the original dataset colors. As a result, we are
able to produce colorful results on a lightweight model that
trains within a few hours on Google Colab.

2. Approach
2.1. Data Processing and Weighting

We begin by quantizing the image based on the 313 pos-
sible AB pairs that are in-gamut from the color space of
the dataset. This means that we quantize the original RGB
image pixels into distinct bins where each pixel value cor-
responds to one of the 313 bins. For each pixel, we perform
quantization by converting the image to the LAB space, and
then placing it in the bin that minimizes the L2 distance
between the AB values at the pixel and the palette. Once
we have quantized the dataset, we compute the weighting
scheme from Zhang et al.’s approach [4]. This weighting
scheme gives a weight to each bin based on the rarity of
the bin in the dataset. More specifically, we compute the
weightsw from their prior probability p̃ of the bin appearing
in the training dataset from Q non-zero bins. The following
equation from their paper is as follows:

w ∝ ((1− λ)p̃+ λ

Q
)−1, E[w] =

∑
q

pwq = 1 (1)

We additionally use a value λ = 0.5 as suggested from
their paper, which produces the best results. The weight-
ing scheme is important since it assigns a higher weight
as a particular bin becomes more infrequent in the dataset.
This avoids the desaturated output of regression methods

1

Figure 1. Model architecture visualization. Each convolution block consists of a series of 2d-convolutions followed by ReLU and Batch-
norms for the respective input/output depths. The output is converted back to the AB color space and concatenated with the L-channel for
the final output.

and non-weighted methods and results in a wider range of
bins used in the model outputs.

2.2. Architecture

We adapt Zhang et al.’s model architecture [4] for use on
64x64 images, with the full model specification given above
in Figure 1. Downsampling of the width and height dimen-
sions in the network occur through the final 2d-convolution
with stride=2 of the block. While this largely follows the
original paper’s specifications, there are a few important
changes. In particular, we reduce the depth of the network
outputs at each layer and remove one of the atrous convo-
lution blocks to reduce the amount of trainable parameters
in the model. Atrous convolutions are used to increase the
receptive field of the network without modifying the spa-
tial dimensions [5]; however, we removed one of the atrous
convolutions since we were working with low resolution in-
puts. The final difference between Zhang et al.’s model and
ours’ is an additional two transpose convolution blocks at
the end to upsample the output back to the original height
and width.

The model takes in the L (lightness) channel, from an
image in the LAB color space. The output of the model is
a 313 channel output, with each channel corresponding to a
discrete bin as described in the previous section. The out-
put therefore contains probability logits for the likelihood
of each AB bin. We use these output logits during train-
ing for the loss computation. At inference time however,
we need to recover the AB channels from the model out-
put to produce the full LAB image. At this stage, the top-k
values are chosen channel-wise. This represents the indices
of the k most likely bins that the model predicts for each
given pixel. We then convert each of the top-k bins into
their corresponding AB values and take the mean of the k
AB values. While the Zhang et al. used an annealed-mean,
we found the top-k bin conversion to be capable of produc-
ing colorful results. Our recommended value for the final

model is a value of k = 2, which is further explored in the
experimentation section.

2.3. Loss

As mentioned in our methodology, we compute weights
based on the prior of the bin distributions in the dataset. We
denote per-pixel weight as v, which is computed from the
weight of the highest predicted bin, shown in Eq 2. We then
utilize those weights in a weighted cross-entropy loss where
the per-pixel contribution to the loss is weighted by the cor-
rect class, as shown below in Eq. 3. Both equations are from
Zhang et Al.’s loss formulation where Z is the ground-truth
bins for each pixel and Ẑ are the model predictions. [4].

v(Zh,w) = wq∗ where q∗ = argmax
q

Zh,w,q (2)

Lcl(Ẑ, Z) = −
∑
h,w

v(Zh,w)
∑
q

Zh,w,qlog(Ẑh,w,q) (3)

This follows the idea behind Zhang et al.’s classifica-
tion loss as it allows for a weighting term to rebalance the
cross-entropy classification loss. We find similar results in
our datasets with respect to the color distribution. Desatu-
rated colors are far more common than saturated ones, so
using a higher loss weighting term for uncommon classes,
or bins, encourages the model to choose saturated colors for
the probability outputs. On the other hand, the model out-
puts should remain realistic in the amount of rarer colors
it uses. The model begins to heavily favor the rare colors
if only the weighted cross-entropy loss is used. This in turn
leads to oversaturated images that have strange colorization,
which we describe in-depth in the following experiments
section. As a result, we remedy this by introducing our own
loss component.

We formulate our additional loss component, which we
call the distribution loss, to penalize deviations in the dis-
tribution of color between the dataset and the produced im-
ages. This helps constrain the model into not overusing the

2

Figure 2. Visualized RGB results from the model output for each experiment. It can be observed most prominently with the flowers that
the saturation increases when we add class rebalancing weights. The experiment with the additional distribution loss term helps avoid
unnecessary rare colors in the output.

rare, saturated colors. To do so, we compute the sum of the
predicted bin values for each bin into B ∈ RQ, where Bi is
the ith bin. This is used to form a probability distribution of
output predictions for each bin over the entire batch of size
N outputs, given below in Eq.4.

B =
Bi

||Bi||
where Bi =

∑
N,w,h

Ẑh,w,q (4)

Since the distributions are discrete, we measure the dif-
ference in distribution with the L2 difference between our
computed output distribution B and the dataset priors p̃,
which is shown below in Eq.5.

Ldt = ||B − p̃||2 (5)

Finally, our group combines the two losses into the overall
objective loss function that the network uses to train, given
by Eq. 6. We fixed the value of α to 0.4 in training. Our
distribution loss acts as an adaptive training penalty that pe-
nalizes based on the model output per batch. The further
the output distribution strays from the dataset during train-
ing, the higher the distribution loss will be. Intuitively, the
discrete distribution of the output prediction logits across
the batch should be similar to the set of prior probabilities
for each bin in the training dataset. This helps enforce the
model to continue to produce representative distributions of
colors while encouraging the model to correctly predict col-
ors with high rarity.

Lobj = αLdt ∗ (1− α)Lcl (6)

3. Experiments
3.1. Loss Comparisons

In order to get an accurate depiction of how our model
performs, we decided to perform a series of comparison
studies to measure how the network performs without the
model weights and loss additions. For all the experiments,
we use an ADAM optimizer, fix the learning rate to 2e−4,

Experiment Weighting Loss Dataset PSNR SSIM
1 None Lcl only Celeb-A 23.26848 0.873627
2 None Lcl only Flowers 19.94664 0.7724886
3 Eq. 1 Lcl only Celeb-A 21.08575 0.809523
4 Eq. 1 Lcl only Flowers 19.509997 0.7613506
5 Eq. 1 Lobj Celeb-A 26.6429 0.9072
6 Eq. 1 Lobj Flowers 19.8056 0.7702

Table 1. Details of each experiment run with the specific weight-
ing, loss, and performance metrics.

train for 100 epochs, and reconstruct the AB image chan-
nels from the maximum bin prediction (reconstruct with the
top-1 bin). We chose to fix the hyperparameters and model
design throughout the experimentation so we could observe
the effects of changing the loss formulations. The specifics
of each experiment ID can be seen in Table 1. The two
datasets we chose to analyze were a dataset of celebrity
faces [6] and on a dataset of colorful flowers [7]. These
two datasets were chosen since there was a salient object to
colorize (either a person or a flower) in the foreground, that
we could compare colorization results on. Finally, experi-
ments 1 and 2 serve as the baseline since it is the simplest
approach with no weighting scheme or distribution loss.

To assess our performance with quantifiable metrics,
we used two metrics: structural similarity index measure
(SSIM) and peak signal-to-noise ratio (PSNR). Both of
these measures are used to assess the similarity between two
images, with higher scores representing a closer similarity.
These scores across our six experiments are also shown in
Table 1. While Zhang et al. achieved high-quality results
with the weighting scheme used in Experiment 3 and 4, we
found the introduction of weighted loss to result in poorer
performance relative to the baseline. This could be due to a
variety of reasons, since we use a modified simpler model
architecture, train for far less (1-2 hours instead of days),
and don’t employ their annealed mean reconstruction that
can be found in their paper [4]. With the experiments using
our revised objective loss function however, we were able
to get better scores for Celeb-A dataset and similar scores
for the flowers dataset compared to the baseline.

3

We look at the qualitative results, as displayed in Figure
2, to further compare the model performance. We suspect
the drop in quantitative performance was due to the nature
of the scheme, since the rarity of the color is inversely pro-
portional to its weight. The rare colors end up with the high-
est weights; thus, the model largely penalizes incorrect clas-
sification of these rare colors. Rather than risk incorrectly
classifying a rare color when it appears in the ground truth,
the model could learn to use rare colors liberally. Conse-
quently, this also means that incorrectly predicting a false
positive for a rare color on a ground truth pixel of a com-
mon color will contribute minimally to the loss since the
common color carries a low weight. As seen in Figure 2,
this causes splotches of incorrect rare colors throughout the
images in experiments 3 and 4. These experiments with
only weighted cross entropy loss tended to produce satu-
rated, but often incorrect results.

We chose the use of Lobj (experiments 5 and 6) as the
best after considering both its quantitative and qualitative
performance. The introduction of the distribution loss helps
alleviate this issue because it incurs a penalty for overpre-
dicting rare colors, since this would cause the overall out-
put distribution of prediction logits to skew away from the
training distribution. As noted in Figure 2, this allows the
colors to remain fairly saturated, but also appear more con-
sistent with the ground truth. Overall, the model choice is
able to achieve the highest PSNR/SSIM scores on Celeb-A
and while it has a slight drop in performance for the flow-
ers dataset with respect to the baseline, the results tend to
choose more vibrant colors, verifying our choice.

3.2. Top-k Bin Selection

Once we had found the objective loss function we
wanted to use, we decided to further experiment with the
image reconstruction methodology. More specifically, we
varied the value of k when selecting the top-k bins using the
model trained from experiment 5. Since this reconstructs
the original AB channels from the model output, there was
no further training needed and we fixed the model 5 weights
throughout this experiment. The images shown in Figure 3
show how the images vary across sampling different top-k
bin sizes. In both examples, it can be observed that as the
amount of bins averaged increase, the images become more
saturated. Other predictions that are not the top prediction
might favor more saturated colors, thus causing the mean of
the top-k predictions to result in a saturated image.

To determine the best selection of k, we measured the
SSIM and PSNR scores on the test set for each setting of k
from k = 1, ..., 5. Additionally, we conducted a qualitative
study. We presented 20 ground truth images and their corre-
sponding 5 images for a total of 100 output images to team
members and outside individuals. The task given was to or-
der the images from best to worst, where the score for the

Figure 3. The effect of the top-k bins reconstruction for the AB
channels can be seen as the value of k increases. The output image
color becomes more saturated but increasingly deviates from the
original.

#Bins 1 #Bins 2 #Bins 3 #Bins 4 #Bins 5
Avg Rating: 2.45 2.25 2.05 3.8 4.45
SSIM 0.9072 0.8973 0.8806 0.8618 0.8432
PSNR 26.6429 25.8000 24.6880 23.6487 22.7339

Table 2. The qualitative user ratings and the quantitiative metrics
for each setting of k for the top-k bins.

image was their index in this sorted order (1=best, 5=worst).
The final result reported is the average score for each setting
of k, with lower being better, displayed in Table 2.

The SSIM and PSNR scores decrease as we increase the
amount of bins sampled, which implies that the image be-
gins to further deviate from the original image as we sam-
ple more bins. While quantitatively the best result occurs at
k = 1, we note that the colors visually appear more satu-
rated as k increases which is reflected by the best qualitative
score occuring at occurring at k = 3. We therefore chose
k = 2 as a compromise between the quantitative and quali-
tative metrics. This minimizes the drop in SSIM and PSNR
score and is also rated well in our qualitative study.

4. Implementation
The model architecture is inspired by Zhang et Al.’s

model [4] where we adapted it to a 64x64 resolution. We
implemented the paper mostly from scratch, with the quan-
tization, loss calculations, and training infrastructure. We
also made the following few key changes: we use naive
quantization at each pixel value instead of a Gaussian
weighting, we add our own loss component, and we use
a top-k mean instead of the annealed mean to recover the
AB channels from the model output. For borrowed code,
we took the .npy files containing the 313 AB bin and pri-
ors matrices from the author’s Github 1. To ensure that our
weighting values were correct, we also borrowed the pri-
ors to weight conversion from a pytorch implementation of
the paper 2. Finally, to load the data as a grayscale and
quantized image at each training step, we built on top of an
existing image folder implementation 3.

1https://github.com/richzhang/colorization
2https://github.com/Time0o/colorful-colorization
3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

4

References
[1] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.

Image-to-image translation with conditional adversarial net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1125–1134, 2017.

[2] Domonkos Varga and Tamás Szirányi. Fully automatic im-
age colorization based on convolutional neural network. In
2016 23rd International Conference on Pattern Recognition
(ICPR), pages 3691–3696. IEEE, 2016.

[3] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization. in: Pro-
ceedings of the ieee international conference on computer vi-
sion. pages 415–423, 2015.

[4] R. Zhang, J. Zhu, I. Phillip, X. Geng, A. Lin, T. Yu, and
A. Efros. Real-time user-guided image colorization with
learned deep priors. ACM Transactions on Graphics (TOG),
9(4), 2017.

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[6] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Large-scale celebfaces attributes (celeba) dataset. December
2015.

[7] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics & Im-
age Processing, pages 722–729. IEEE, 2008.

5

