
Adaptive Instance Normalization Style Transfer

Isaac Fung
ifung@umich.edu

Hersh Vakharia
hershv@umich.edu

Ali Baker
aliibrah@umich.edu

Anthony Ke
keanthon@umich.edu

1 Introduction

Do you want Van Gogh to paint your selfie? Us-
ing a technique called style transfer, you may be
able to. Style transfer is a group of software al-
gorithms that change the aesthetic and style of an
image to match that of a target image. We decided
to tackle the problem of style transfer since we are
very interested in topics which synthesize the arts
with computer technology. We were also inspired
by the neural-style repository on GitHub created by
Dr. Justin Johnson [1] and thought that changing
the styles of images to an aesthetic which resembled
some of the most famous paintings to be a very in-
triguing concept.

This problem is fascinating since it opens up an
opportunity to create digital art through the use of
machine learning. This problem can be extended to
programs that make their own art and visualize their
own worlds.

We are building off of many already-existing
methods for style transfer. For instance, the paper
“A Neural Algorithm of Artistic Style” [2] is one of
the most well known style transfers that uses an op-
timization based style transfer. Other examples in-
clude the paper “Unpaired Image-to-Image Transla-
tion using Cycle-Consistent Adversarial Networks”
[3] which uses a CycleGAN to transfer the style be-
tween unpaired sets of images.

For this project, we decided to implement the
adaptive instance normalization (AdaIN) style trans-
fer method proposed by Huang et al. [4]. We also
implemented the well-known optimization tech-
nique proposed by Gatys et al. [2] to compare and
contrast the results.

The AdaIN style transfer method is an arbitrary
style transfer method, meaning it trains on a set of
images to “remember” styles so that it can apply an
arbitrary style to an image after it is trained. The
method involves using a pre-trained encoder to ex-
tract style and content features, and then the AdaIN
formula to shift the statistics of the content image
to match the statistics of the style image. It is then
passed through a decoder, which is trained to pro-
duce the content image with the style image’s style
transferred to it.

2 Approach

We will be describing our approach to AdaIN
style transfer in detail. Since the optimization based
style transfer by Gatys et al. [2] is so well known,
we will not go into great depth about its architecture
or implementation.

2.1 Architecture

Our AdaIN based encoder-decoder architecture
is heavily inspired by the architecture described by
Huang et al. [4]. Figure 1 shows a diagram of
the architecture. Style and content images are both
passed through an encoder to extract feature maps
from both. Our encoder is a pre-trained VGG-19
network, but only uses the layers up to and includ-
ing relu4 1.

Both content and style feature maps were then
passed through adaptive instance normalization
(AdaIN):

AdaIN(c, s) = σ(s)
c− µ(c)

µ(c)
+ µ(s) (1)



Figure 1: This is an overview of our AdaIN architecture. Im-

ages are passed through a pre-trained VGG-19 encoder to ex-

tract feature maps, and AdaIN matches the statistics between

the two. The second encoder is used to compute content and

style loss.

In equation 1, c is the content feature map, s is the
style feature map, and σ and µ are the standard de-
viation and mean respectively. The result is a com-
bined feature map that shifts the statistics of the con-
tent image to the statistics of the style image.

The output of AdaIN is then passed through a de-
coder. The decoder is a mirror of our encoder ar-
chitecture, but replaces all max-pooling layers with
nearest-neighbor up-sampling by a scale factor of 2.
The decoder is the only piece of this network that is
being trained. After training, the output of the de-
coder will produce the style-transferred image.

2.2 Loss

We calculated our loss using two components: a
style loss Ls and a content loss Lc. These losses
were combined into a single loss, L, using the for-
mula:

L = Lc + λLs (2)

The λ constant is a hyperparameter that denotes
our style weight. To calculate style and content loss
during training, we pass our original style image and
our decoded image through the encoder. The feature
maps produced by the encoder will be used to calcu-
late content loss. For style loss, four activation lay-
ers from the encoder are stored. These layers were
relu1 1, relu2 1, relu3 1, and relu4 1.

The content loss Lc is a metric to measure how
well the generated output image is able to keep
the content image’s features. It is calculated using
the mean squared error between the feature map of

the decoded image and the feature map output of
AdaIN.

Lc = MSE(d,AdaIN(c, s)) (3)

In the equation above, d is the decoded image, c
is the content image feature map, and s is the style
image feature map.

The style loss is a metric which measured the dif-
ference in aesthetic, color, and style between the de-
coded image and the style image. The formula for
the style loss is as follows:

Ls =
n∑

i=1

MSE(µ(φi(d)− µ(φi(s))) +

n∑
i=1

MSE(σ(φi(d)− σ(φi(s))) (3)

Where φi denotes the ith activation layer that we
saved from our encoder. This is essentially compar-
ing the statistics of style image and the decoded im-
age to determine how well the style is incorporated
in the decoded image.

2.3 Training

Figure 2: AdaIN transfer was trained over 54 epochs and the

losses were averaged over the epoch. This is a plot of the aver-

age loss at each epoch.

We trained the AdaIN network over 54 epochs
on a set of 1200 style and 1200 content images,
with a batch size of 8 and a style weight of λ =
20. Training images were resized to 512 on their



Figure 3: A comparison of our style transfer techniques.

smallest axis, and a random crop of 256x256 was
done on that image. All images were normalized to
have mean=[0.485, 0.456, 0.406] and stdev=[0.229,
0.224, 0.225] to match the pre-processing that our
pre-trained VGG-19 network used. Test images
were also normalized, but were de-normalized be-
fore the result was saved. We use the Adam opti-
mization algorithm for gradient descent along with
a learning rate of 1e−4. The combined loss, L,
was averaged every epoch, and the results have been
plotted in Figure 2.

2.4 Gatys et al. Optimization Based Technique

The Gatys’ technique involves defining a loss
function that consists of a content loss (defined as
the MSE loss between the feature map of one con-
volutional layer of the content image and that of a
white noise) and a style loss (defined as the MSE
loss of the gram matrices between the style image
and the white noise).

Gradient descent is performed to minimize the
loss by updating the noise image after each iteration

until the desired number of iterations is reached. The
optimized noise image should now contain the style
features of the style image while keeping the content
of the content image.

The model was run with conv4 2 as the con-
tent layer and (conv1 1, conv2 1, conv3 1,
conv4 1, conv5 1) as the style layers. It was
optimized over 50 epochs using the LBFGS opti-
mizer with an learning rate of 1. The LBFGS op-
timizer was used after exploring Adam, SGD and
Adadelta, since it produced the most visually pleas-
ing images.

3 Experiments

3.1 Datasets

Publicly available datasets were used for training.
For content images, we used the COCO dataset [5].
Style images were pulled from Wikiart, but provided
by Kaggle [6].



Figure 4: An example question from our A/B testing evaluation

method. In this case, the correct answer would be Option 2, as

that was the painting that was used for the style of the original

image.

3.2 Metric for Success

Art is subjective, and style transfer is an artistic
effect. Therefore, it is hard to get a quantitative anal-
ysis of the success of our model. Therefore, we mea-
sure our metric for success qualitatively. We used an
A/B testing approach to determine if a style transfer
was successful. A Google Form was creating con-
taining 5 tests. Figure 3 shows an example question
from the form. The false style image was randomly
selected from our training set.

Out of 65 responses, there were 250 correct an-
swers and 75 incorrect answers. This gives our
model a success rate of approximately 76.9%. This
is fairly high, considering that we trained our model
with limited computation power. From these results,
we can say that our model is fairly successful in
transferring style.

3.3 Comparison

A visual comparison of the Gatys et al. method
[2] and AdaIN in Figure 3 shows that Gatys’ op-
timization based technique produces a more pro-
nounced style transfer. It was able to capture the
texture of the style image better, and the colors were

more well defined. This is because the optimization
based technique explicitly relearns the style transfer
for each set of content and style images while the
AdaIN approach remembers arbitrary styles in the
trained decoder over a large dataset of content and
style images.

Additionally, we compared the run time of the two
architectures. As we can see below, AdaIN has a
much faster run time.

Technique Time/sec (5 images)
AdaIN 26.46

Optimization 3921.12

4 Implementation

Our network architectures are based on existing
papers [2, 4]. We utilize the PyTorch library to
implement both the AdaIN style transfer and the
optimization based style transfer. The AdaIN net-
work was trained and run locally with CUDA op-
timizations on a Nvidia RTX 2080. The optimiza-
tion based network was run on Google Colabora-
tory with CUDA optimizations on their GPUs. Both
networks utilized a pre-trained VGG-19 provided by
the torchvision library.

To evaluate our results, we used Google Forms
to create a survey to send to students in EECS 442.
Students in the class were asked on both the group-
chat and Piazza to fill out the form.

5 Conclusion

According to our results, it shows that our style
transfer program worked fairly well in transferring
styles of paintings to other pictures. We are con-
tent with our results, however there is much more
room for improvement. If we had more time and
processing power, we would train the model on a
much larger dataset and many more epochs to get
more accurate results. We would also continue ex-
perimenting with other hyperparameters such as tun-
ing the weight of the style loss and the learning rate.

References
[1] Justin Johnson. neural-style, 2015. URL https://

github.com/jcjohnson/neural-style.

[2] Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge. A neural algorithm of artistic style, 2015.

[3] Jun-Yan Zhu, Taesung Park, Phillip Isola, and
Alexei A. Efros. Unpaired image-toimage translation



using cycle-consistent adversarial networks, 2020.
Berkeley AI Research (BAIR) laboratory, UC Berke-
ley.

[4] Xun Huang and Serge Belongie. Arbitrary style
transfer in real-time with adaptive instance normal-
ization, 2017. Department of Computer Science Cor-
nell Tech, Cornell University.

[5] Coco dataset, 2017. URL http://images.
cocodataset.org/zips/val2017.zip.
2017 Val images.

[6] Painter by numbers, 2016. URL http:
//images.cocodataset.org/zips/
val2017.zip. Original images provided by
wikiart.org.


