
Domain Adaptation for Object Detection

Janpreet Singh
University of Michigan
janpreet@umich.edu

Clark Arenberg
University of Michigan
carenber@umich.edu

Nihar Bhingaradia
University of Michigan
nbhingar@umich.edu

Abstract

In the modern age of Artificial Intelligence and neu-
ral networks, it is crucial for algorithms to adapt to new
datasets without deteriorating the accuracy of old/previous
datasets. In this paper, we will test the domain adaptation
capabilities of the object detection neural network model
YOLOv3 [5] on the Laboratory for Intelligent and Safe Au-
tomobiles(LISA) [1] Traffic Sign dataset and Russian Traffic
Sign Dataset (RTSD) [2]. We will perform cross-data ex-
periments to test how the network adapts to two related but
different distributions. In the end, we will modify the model
to reduce catastrophic forgetting to keep similar accuracy
on the initial dataset while improving accuracy on another
dataset.

1. Introduction
The recent advances in Computer Vision have enabled

better self-driving capabilities and pushed us toward build-
ing a fully autonomous car. Most of the autonomous system
in a car relies on neural network models to detect the traffic
signals. Our motivation in this paper is to see how good are
the object detection models(YOLOv3) for detecting traffic
signs on related but different distributions of a Dataset. To
simulate this, we used Traffic sign dataset from two differ-
ent countries, Russia & US and test the transferability of
models. Also, we propose a simplistic way to enforce bet-
ter transferability in the learning process. We observed that
using this technique we get a gain in class confidence score
as shown in figure 4.

Overall, we will train 2 YOLOv3 models using RTSD
and LISA datasets. Then, we will use these datasets to vi-
sualize activation maps via Gradient-Weighted Class Acti-
vation Mappings, aka. GradCAM mappings, for each. After
that, we will be fine-tuning pre-trained models against the
other dataset to transfer learning and visualizing the phe-
nomenon of catastrophic forgetting. Finally, we’ll attempt
to reduce catastrophic forgetting for the YOLOv3 model.

1

1Link to Github repo: repo link

2. Approach
Our work was divided into four main steps. First,

we processed the data labels in order to standardize the
LISA [1] and RTSD [2] datasets. The second step was to
train the YOLOv3 model [4] using this standardized data set
and generate the class activation maps using GradCAM [3].
After that, we used transfer learning to see how the network
trained on the first data set can adapt to the second data set.
Finally, we modified the loss function for YOLOv3 model
in a manner that if we are just given weights learned from
first dataset, then, we can learn a new model that works ef-
ficiently on both, the first dataset and the new dataset.

2.1. Task 1: Training on LISA and RTSD

For this task, our goal was to first train two object de-
tection models on the LISA and RTSD datasets and then
visualize the models to better understand how the model is
predicting these classes. We used YOLOv3 architecture as
our choice of model because of its speed at train and test
times. Another upside of YOLOv3 was that, given that it is
a single shot network, we could extract activation maps at
each layer with more ease when compared to two-stage de-
tectors like Faster R-CNN. Overall, it is a good baseline to
do quick experiments and get good metrics in a reasonable
time. Figure 1 shows YOLOv3 architecture. As shown,
YOLOv3 uses an approach similar to feature pyramids to
achieve better learning and results. The final loss function
consists of four parts: centroid (XY) loss, width and height
(WH) loss, objectness (object and no-object) loss and clas-
sification loss.

For investigating the domain adaptation capabilities of
YOLOv3 network we first trained the object detector on
LISA and RTSD datasets separately. We made a custom
configuration file with 15 classes for YOLOv3 and used a
batch size of 4. For LISA dataset, we had 4570 images for
training and 918 images for validation. For RTSD, we had
3986 number of images for training and 993 images for val-
idation. It took 24 hours of training for each dataset. We
started with a learning rate of 0.01 and a final learning rate
of 0.0005 with a cosine learning rate scheduler and SGD as
the optimizer. After training the network, we used Grad-

1

https://github.com/janismdhanbad/eecs442project


Figure 1. YOLOv3 architecture credits [6]

Dataset mAP F1 Score
LISA 0.94 0.82
RTSD 0.8435 0.7024

Table 1. Metrics for Task1

CAM to visualize the class activation maps for each class.
We used 105 layers for visualizing the activation maps for
YOLOv3.

2.2. Task 2: Investigating YOLOv3 for domain
adaptation

Following task1, we took these models and used them as
a pre-trained model to fine-tune it on the samples of other
dataset. Our aim was to perform transfer learning from the
LISA(D1) to the RTSD(D2) dataset and vice-versa. The
reason for doing this was to investigate how fine-tuning the
pre-trained model on a new dataset would impact the accu-
racy of the original dataset. The data here was divided into
three parts: training images from the new dataset, validation
images from the new dataset, and validation images from
the original dataset. By doing that, we could monitor how
the mAP (mean average precision) changed on the origi-
nal dataset and the new dataset. Firstly, we took the model
trained on the RTSD dataset in the first step and use this
as a pre-trained model to fine-tune it on samples of LISA
dataset. While fine-tuning, we trained the model on differ-
ent numbers of samples from the LISA dataset. Through
this, we look at the impact of catastrophic forgetting on
YOLOv3.

For fine-tuning, we used the last 15 layers as the learn-
able layers and froze the first 85 layers. For example, the
initial model was trained on RTSD dataset and this model
was used to fine-tune it on a sample of LISA dataset. Here,
we used incremental samples of 100, 200, 300, 500, 600,
800 and noticed that increasing the number of samples in-
creased the mAP score on that data but decreased the mAP
on the other data and hence validating the famous phe-
nomenon of Catastrophic forgetting in neural nets. Figure
5 shows the number of samples plotted against the high-
est mAP and F1 score achieved. We kept the same hyper-

parameters across all the experiments and trained them on
a batch size of 4. Here, again we started with a learning
rate of 0.01 and a final learning rate of 0.0005 with cosine
learning rate scheduler and SGD as the optimizer.

2.3. Task 3: Modify loss function for better learning
In this task, we made an attempt to overcome catas-

trophic forgetting for the YOLOv3 model. To explain what
we did, let’s take a scenario that we have a pre-trained
model on RTSD dataset and we are fine-tuning it on LISA
dataset. The goal is to produce a model that performs well
on both LISA and RTSD datasets after fine-tuning it on
LISA dataset. The loss function was then modified in the
following manner: we took weights from the last 15 lay-
ers from RTSD model, subtracted these weights from the
learned weights on the LISA dataset at each epoch and took
the mean of absolute value, and added this term as a regu-
larizer in the loss function for YOLOv3. The addition here
was a weighted sum between loss from YOLOv3 and the
difference of weights. This could also be seen as a regu-
larization of weights at a certain value. Usually, we take L1
norm from the origin but in our case, we took L1 norm from
an existing matrix.

3. Experiments
The experiment was performed in a PyTorch 1.4 envi-

ronment. The models were trained on an Nvidia GTX 1070
GPU. Broadly, the experiments were divided into three cat-
egories. The first category consists of training YOLOv3
model on RTSD and LISA datasets. The second category
consists of probing the domain adaptation capabilities of
YOLOv3 and the third category discusses the change in the
loss function we made to enhance the domain adaptation
capabilities of YOLOv3.

3.1. Data

There are 32 classes in LISA and RTSD datasets with
6736 images and 7198 images respectively. Figures 5 and
6 show the class distribution of LISA and RTSD datasets.
Some of the classes had very few images to train the model
so we had to reduce the classes to 15. On top of this, RTSD
dataset had numeric encoding for the class names so we had
to manually assign the name of classes so that it matches
with LISA dataset. We also merge images for some classes
since they were very similar traffic signals. After standard-
izing the datasets we divided images so that the size of the
image is 416 * 416. After that, we normalized the pixel
value so that it’s between 0 to 255.

3.2. Metrics

For task 1, when training the models, we evaluated their
mAP(mean Average Precision) and F1 scores on both train-
ing and validation datasets where mAP is computed using



Figure 2. On the left we have the detection result from RTSD model in task1 and on the right we have the GradCAM output

Figure 3. On the left we have the detection result from LISA model in task1 and on the right we have the GradCAM output

precision = True Positive/(True Positive + False Positive).
Also, F1 score here is the harmonic mean of precision and
recall where recall is defined as TP/(TP+FN). For comput-
ing TP, FP and FN, we use the intersection over union(IOU)
threshold as 0.5. When performing transfer learning on task
2 and task 3, we evaluated models based on their mean av-
erage precision or mAP scores.

3.3. Quantitative Results

For task 1, Table 1 shows the mAP and F1 scores for the
validation data when two models were trained on RTSD and
LISA datasets. We can see the due to better data distribution
in LISA, YOLOv3 has better performance.

For task 2 and task 3, Figure 7 shows the change in mAP
values on validation data between the model using the orig-
inal loss function vs the model using the adapted/modified
loss function. Here, on the X-axis we have the number of
samples taken from the LISA dataset for fine-tuning and the
mAP value on the validation data on the Y-axis. The valida-
tion data was kept the same across all the experiments. We
can see how the use of the modified loss function tries to do
a trade-off between the mAP values. Though we get a jump
in the mAP values for RTSD data, on the other hand, the
mAP values on LISA go down.

3.4. Qualitative Results

YOLOv3 model on RTSD and LISA were able to de-
tect traffic signs quite well. Additionally, we used Grad-
CAM for a better visual explanation of the trained model.
The example shown in figure 2 suggests YOLOv3 model
on RTSD detects traffic signs with high accuracy. Grad-
CAM result also showed the heat maps near traffic signal
as shown in the figure. Heatmaps were also present around
the signal on top of the bus station. This shows our model
is looking for features in the image that looks like a traffic
signal. YOLOv3 model trained on LISA dataset also gave
us better results detecting “STOP” signal as shown in Fig-
ure 3. While running GradCAM on the image, we noticed
odd heatmaps for stop signs: as often as not, the algorithm
would pick up on the base of the sign or the curb around
the sign as it would on the sign itself. We suspect that this
is because of the placement of stop signs: unlike the other
traffic signs, they would be placed more or less exclusively
at intersections, and so the shape of an intersection would
be a strong signal that the sign in question is a stop sign.

We noticed a significant reduction in accuracy during
transfer learning from RTSD to LISA. This is shown in Fig-
ure 4, where the confidence score of detection in the image
decreased significantly from the model in task 1. Through
modification of loss function and regularization, result was



Figure 4. On the left, we have the detection result on RTSD from task1, in the middle we have the detection results from task2(transfer
learning) and on the right we have detection results from task3(loss function modification)

Figure 5. LISA data distribution

Figure 6. RTSD data distribution

improved as shown in Figure 4. The confidence score on
traffic signs was increased as compared to the model from
task 2 but not as strong as task 1. This shows we were some-
what able to transfer learning by reducing catastrophic for-
getting for the RTSD model but not fully eliminating it.

4. Implementation

In this project, we used two codebases and developed on
top of them. The Yolov3 model comes from [4] and the
GradCAM comes from [3]. For YOLOv3 implementation,
we didn’t make many changes to the original codebase. We
made the custom configuration files along with configura-

Figure 7. The plot shows change in mAP for LISA and RTSD be-
fore and after using the modified loss function on YOLOv3 model.
For this, we used the model trained on RTSD data and fine-tuned it
only using LISA dataset images. The X-axis represents the num-
ber of samples taken for fine-tuning and Y-axis has the mAP value
on validation data.

tion for class names and pre-setted our dataset in the format
required by the repository. For GradCAM, the initial code
was breaking at multiple places and we changed the code-
base to get it working with Pytorch 1.4.

References
[1] Lisa dataset. http://cvrr.ucsd.edu/LISA/

lisa-traffic-sign-dataset.html.
[2] Rtsd dataset. https://graphics.cs.msu.ru/en/

research/projects/rtsd.
[3] Gradcam. https://github.com/pifalken/

YOLOv3-GradCAM, 2014.
[4] Yolov3 ultralytics. https://github.com/

ultralytics/yolov3/tree/archive, 2014.
[5] JRedmon. Yolov3 architecture. https://arxiv.org/

pdf/1804.02767.pdf.
[6] A. Kuthuria. yolov3 arch. https:

//towardsdatascience.com/
yolo-v3-object-detection-53fb7d3bfe6b.

http://cvrr.ucsd.edu/LISA/lisa-traffic-sign-dataset.html
http://cvrr.ucsd.edu/LISA/lisa-traffic-sign-dataset.html
https://graphics.cs.msu.ru/en/research/projects/rtsd
https://graphics.cs.msu.ru/en/research/projects/rtsd
https://github.com/pifalken/YOLOv3-GradCAM
https://github.com/pifalken/YOLOv3-GradCAM
https://github.com/ultralytics/yolov3/tree/archive
https://github.com/ultralytics/yolov3/tree/archive
https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/pdf/1804.02767.pdf
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

	. Introduction
	. Approach
	. Task 1: Training on LISA and RTSD
	. Task 2: Investigating YOLOv3 for domain adaptation
	. Task 3: Modify loss function for better learning

	. Experiments
	. Data
	. Metrics
	. Quantitative Results
	. Qualitative Results

	. Implementation

