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Abstract

In this paper, we use the state-of-the-art VGG19 pre-
trained on the ImageNet dataset to classify common skin
diseases and cancers. We train on the ISIC 2019 challenge
dataset consisting of 25,331 images across 8 classes. Due
to the large class imbalances in the dataset, by using careful
preprocessing and weighted cross-entropy loss, we acheive
a average weighted recall score of 0.72.

1. Introduction

Skin cancers are the most common human malignancy
and are usually diagnosed in multiple steps. The very first
step is a visual examination by a dermatologist who then
determines the appropriate course of action and prescribes
further testing. This initial step of visual examination is
labor-intensive and has potential to be automated with re-
cent advances in computer vision. Like most doctors, der-
matologists face fatigue and overwork due to the rapidly in-
creasing demand for their services. As training new derma-
tologists is an expensive endeavor, we hope an automated
tool such as SkinDeep will reduce workload and enhance
dermatologist performance.

1.1. Patient Outcomes

There are 5.4 million new cases of skin cancer in the
United States every year. One in five Americans will be di-
agnosed with a cutaneous malignancy in their lifetime. Al-
though melanomas represent fewer than 5% of all skin can-
cers in the United States, they account for approximately
75% of all skin-cancer-related deaths, and are responsible
for over 10,000 deaths annually in the United States alone.
Early detection is critical, as the estimated 5-year survival
rate for melanoma drops from over 99% if detected in its
earliest stages to about 14% if detected in its latest stages.

1.2. Role of Computer Vision

With recent advances in computer vision, deep convolu-
tional networks have surpassed the golden standard in many
domains - even beating out humans in many tasks such as
classification on the ImageNet dataset. In many applica-
tions, these algorithms have proven to be much more effi-
cient than humans with acceptable levels of accuracy - in
segmentation tasks for example.

In the medical field however, an algorithm that works
is not sufficient. Healthcare is a sensitive domain where
people’s lives are often at stake. An algorithm that per-
forms well needs to be thoroughly analysed, gaining accep-
tance from various stakeholders including regulatory bod-
ies, physicians, and hospitals. In order to do so, not only
does it have to meet diagnostic standards, but also need to
be explainable and predictable to a great extent. As such,
stakeholders need to be informed about the strengths and
weaknesses of the model - for example performance met-
rics on a per-class granularity.

1.3. Intended Use

Due to the sensitive nature of the medical field,
SkinDeep is not intended to replace the diagnostic exper-
tise of a trained dermatologist. It is intended to be used as
a tool integrated into their workflow and serve as an addi-
tional piece of evidence in the overall diagnosis. This will
require the dermatologist to be familiar with the specifica-
tions, strengths, and weaknesses of the model, but we be-
lieve this effort will lead to a smoother more informed der-
matologist workflow.

1.4. SkinDeep

SkinDeep uses the VGG19 w/ Batch Normalization ar-
chitecture pretrained on the ImageNet dataset as a feature
extractor. The features extracted by its convolutional lay-
ers are fed into a 2-layer dense classifier. This classifier
was trained using the 2019 International Skin Imaging Col-
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Figure 1. Flow Chart of the Training Process

laboration (ISIC) dataset which consists of 25,331 images
across 8 classes.

2. Approach

Our approach to the classification problem is to apply
the idea of transfer learning from pretrained CNN models.
There are many classification tasks that adopt this technique
and it has proven to perform well for many medical tasks [3]
[1].

2.1. Data Preprocessing

To process the input data, we resize each image to
224 × 224 × 3 and normalize the images to have mean
of [0.485, 0.456, 0.406] and standard deviation of [0.229,
0.224, 0.225]. The train-validation-test split ratio is 8:1:1,
where we carefully divide the dataset to make sure the split
within each class also reflects this ratio.

2.2. Model and Hyperparameters

We use the VGG-19[4] model with pretrained weights
from ImageNet and freeze all layers except the custom clas-
sifier we build. This custom classifier includes 3 fully con-
nected layers that go from original input dimension of the
classifier of VGG19 to 1024 and then from 1024 to 128 and
finally from 128 to 8 which is the number of classes we
have. The first two fully connected layers are activated with
ReLU and have a dropout of 0.2. The loss function is cross-
entropy loss and the optimizer is Adam with initial learning
rate of 7e-4 and weight decay of 5e-6. We experiment with
different learning rate and weight decay to arrive at these
values which give the best test accuracy. All of the train,
validation and test data are loaded with batch size of 128.
For each session, we train the model for 20 epochs and save
the state dict after each epoch. The model seems to even-
tually overfit for various learning rate and weight decays.

Figure 2. Distribution of diagnoses within 2019 ISIC dataset

3. Experiments

We used the 2019 ISIC challenge dataset for fine-tuning
and evaluation. ISIC, the International Skin Imaging Col-
laboration, holds an annual competition for the diagnosis of
various skin conditions using machine learning. The 2019
dataset contains approximately 23,000 dermoscopic JPEG
images, each with an associated ground-truth diagnosis, as
well as a spreadsheet of metadata containing patient age,
sex, and where on the body the image came from. The
dataset contains 8 categories of diagnoses, with each image
only belonging to a single category. Unfortunately, the sizes
of the categories are not evenly distributed as seen in Figure
2, so this discrepancy was accounted for in our training loop
and evaluation. We used this dataset for testing because it
is our goal to automate the diagnostic process by classify-
ing skin cancer into their respective diagnoses using a sin-
gle dermoscopic image. Dermoscopic images increase the
model performance, as they show skin lesions unobstructed
by skin surface reflection.

3.1. Metrics

Success was measured quantitatively with F1 scores, re-
call, precision, and accuracy. We strived to achieve the
highest metrics we possibly could. Our model achieved an
F1 score of 0.7291, recall of 0.7288, precision of 0.7326,
and accuracy of 0.7288. This was reasonable because of the
size of the dataset. From these scores, we know the pro-
portion of skin lesions that are correctly classified, positive
cases that are actually correct, as well as the proportion of
true positive cases that are detected out of each category. A
potential downside to this would be not analyzing the re-
sults for trends in how the model incorrectly labels images.
For example, if there are two categories that are very similar
to each other and those two categories make up a majority
of the incorrect labels, then the metric scores of the other 6
categories are higher than our results and the metric scores
for the two similar categories should be lower.
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Figure 3. Sample from test set with predicted labels and true labels

3.2. Results

We can compare our accuracy to random chance and
our initial proposition of 60% of the accuracy achieved in
the Stanford paper [2]. Since we classified images into 8
categories, random chance would have a 12.5% chance of
correctly classifying the images. Our model’s accuracy of
0.7288 exceeded this baseline. In the Stanford paper, they
achieved a 9-way accuracy of about 50% [2], so 60% of this
would give us a goal of 30% accuracy. Our model’s accu-
racy also exceeded this goal. See Figure 3 for examples of
how our model labeled images against the true labels.

4. Implementation

The implementation that we used was based initially on
the results of a 2017 paper [2] which was also attempting
to diagnose dermatological conditions using machine learn-
ing. The model uses an Inception V3 CNN pretrained using
the ImageNet dataset. However, our model architecture de-
viated significantly after initial experimentation.

Our model also makes use of transfer learning via the
pretrained VGG19bn model imported from PyTorch, the re-
sults of which are then fed through a customized classifier.
However, as seen in Figure 2, the distribution of the sam-
ples used was heavily skewed, and required correction in
the training loop. Therefore, we took advantage of weighted
loss functions to account for these discrepancies, with mod-
erate success. All of our code was run on Google Colab
notebooks, with notebook formatting heavily influenced by
that of homework 5. Each iteration took approximately 3

hours to train, validate, and test. Then, for the testing parti-
tion of the dataset, random images were selected for visual-
ization, and each of the selected images are plotted, with la-
bels indicating the predicted diagnosis as well as the ground
truth diagnosis.
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