
Fast-Converging Depth Estimation using Transfer Learning

Rajiv Bharadwaj Reuben Gutmann Isaac Moothart
Charles Reinertson

Univeristy of Michigan, Ann Arbor, Michigan
{rajivbh, rcgutman, imoot, crein}@umich.edu

1. Introduction
Depth perception is a critical faculty for operating in

the physical world. Navigating three-dimensional space re-
quires an understanding of the surroundings, including the
distance to those surroundings. Consequently, developing
a system for determining the depth of the scene is essen-
tial for applications such as self-driving vehicles, image re-
focusing, robot-assisted surgery, and more. Many depth es-
timation systems utilize special sensors that emit light at
some electromagnetic wavelength to build an understand-
ing of the objects around them. However, these sensors are
prohibitively costly to include in consumer grade products.
Moreover, this additional hardware requirement prevents
existing systems which lack such hardware from develop-
ing an understanding of the scene. Consequently, many re-
searchers have explored the problem of depth estimation us-
ing only the simple visible light sensors with which so many
consumer devices are deployed.

Traditionally, depth perception by humans and animals
alike is achieved using stereo visual input, motion parallax,
and/or object shading [10, 13]. This complex visual infor-
mation is used to construct a three-dimensional understand-
ing of the surrounding world. Such a reconstruction can
also be performed computationally given similar input [8],
however, the space requirements for stereo imagery and/or
motion data are inherently larger than those for a single im-
age. Moreover, the geometric calculations required to com-
pute such depth maps are costly. Thus, a singular image
view, known as monocular vision, presents advantages in
both space and time for the problem of depth estimation.

Although a more efficient prospect, monocular depth es-
timation presents its own challenges. Specifically, despite
retaining object shading, the lack of stereo or motion ref-
erences renders the depth of a single view ambiguous by
its geometric definition. Nevertheless, monocular depth es-
timation remains an attractive area of research due to the
prevalence of singular view cameras in existing systems
and data. Using deep learning approaches, researchers have
found systems which are able to estimate these depth maps
from a single view, likely using patterns found in regular vi-

sual scenes which would not hold in geometrically irregular
ones [2, 4].

The work of Fu et al. [4] and Alhashim and Wonka [2]
provide key insights for the task of monocular depth estima-
tion using deep learning which we apply in our approach.
One problem that Fu et al. [4] identify in naive approaches
is that the definition of the task as a regression problem de-
fines a weight space with many local minima, making such
approaches difficult to optimize. They address this problem
by discritizing distance values, converting to an ordinal re-
gression problem which converges faster and outperforms
previous state-of-the-art solutions. Nevertheless, this per-
formance comes at a cost in terms of processing complex-
ity and thus does not fit into the objective of a consumer-
grade distribution. Alhashim and Wonka [2] address this
complexity problem in their approach by leveraging exist-
ing image classification models in an encoder-decoder ar-
chitecture that performs competitively with state-of-the art
systems such as [4].

Inspired by the work of Alhashim and Wonka, we sought
to develop a simple depth estimation architecture which
uses transfer learning from image classification models for
extracting image features but that achieves faster conver-
gence. Like Alhashim and Wonka, the model we present
uses a simple encoder-decoder architecture. However, we
employ DenseNet-201 [7] pre-trained on ImageNet [3] as
the encoder. The decoder we developed contains 5 dense
convolutional blocks connected by upsampling to construct
the estimated depth map. This model achieves competi-
tive quantitative performance to previous work on the NYU
Depth Dataset V2 [11], yet converges in less than 170 iter-
ations.

2. Related Work
The prevalence of single-view camera systems contin-

ues to inspire much research interest in the area of monoc-
ular depth estimation. Due to the ambiguities of the task,
traditional approaches must trade off between model per-
formance and complexity [12]. Generally, state-of-the-art
methods are still built on models with a large computational
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(a) Encoder-decoder Architecture. Image template from [1].

(b) Decoder Architecture (Figure is an approximation and not to scale)

Figure 1: Model Architecture

footprint [4, 5]. Recent advances have begun to challenge
this notion, however, developing small yet performant mod-
els [2].

One state-of-the-art method, [4], derives significant per-
formance from converting the task to an ordinal regression
one. In [4], they identify in their experiments that treating
monocular depth estimation as a pure regression problem,
i.e., calculating mean-squared error per pixel in the depth
map, often creates models that are difficult to optimize due
to the presence of many local minima and shoulders in the
weight space. Instead, they convert the depth values into
discrete intervals which are then optimized using ordinal re-
gression [6]. They posit that this conversion transforms the
weight space into one easier to optimize, leading to better
minima in a shorter amount of time. Their state-of-the-art
results on multiple benchmarks demonstrate the effective-
ness of this approach, yet this system still suffers from a
large computational footprint as [2] argues.

Applying recent advances in image classification re-
search, [2] challenges the notion that deep, large net-
works are needed to achieve state-of-the-art performance
on monocular depth estimation tasks. They implement a
simple encoder-decoder architecture which uses DenseNet-
169 [7] pre-trained on ImageNet [3] as their image encoder.
This use of transfer learning, they argue, allows the frame-
work they introduce to progress alongside advancements in

other image learning domains such as image classification.
They also employ a number of data augmentation policies,
including color channel swapping, which they find to help
significantly in improving and accelerating the training of
their model. By reducing the task to a pre-trained encoder
and simple decoder and focusing more on the data augmen-
tation and loss functions used to train the model, [2] achieve
results competitive with state-of-the-art methods while us-
ing more than 60% fewer parameters when compared to [4].

3. Approach

Our overall method of depth prediction involves training
a deep neural network to accept RGB images as input and
subsequently output predicted depths per pixel in the range
of 0-10 meters.

Following a similar approach to that used in [2], we ap-
ply an encoder-decoder framework as the network architec-
ture. A visualization of the overall architecture can be seen
in figure 1a.

The encoder was a DenseNet-201 [7] pre-trained on Im-
ageNet for image classification with the classification layer
truncated from the encoder to obtain a high-level feature
mapping of each image. While DenseNet-201 was trained
to optimize its feature mapping to perform image classifi-
cation, it is reasonable to expect that the feature mapping
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for image classification would still provide an informative
feature representation even for the new task of depth esti-
mation. By utilizing transfer learning in the encoder, the
model is able to achieve faster convergence. Specifically,
transfer learning allows the training to start learning from a
much higher baseline level since the model is able to imme-
diately produce a meaningful encoding rather than needing
to initially learn a meaningful encoding. Secondly, trans-
fer learning allows the model to converge faster since the
weights of the encoder portion of the network are frozen
during training and do not require back propagation.

After images have been encoded via the encoder, the re-
sulting feature map is then passed as input to the decoder
portion of the network as seen in figure 1b. Our decoder is
implemented via four stacked sublayers of 2x Nearest Up-
sampling - Convolution 3x3 - BatchNorm2d - ReLU - Con-
volution 3x3 - BatchNorm2d - ReLU followed lastly by one
additional sequence of 2x Nearest Upsampling - Convolu-
tion 3x3 - BatchNorm2d - ReLU - Convolution 3x3. The
number of convolutions used in the decoder is described by
the following progression: 1920 → 1024 → 1024 → 512
→ 512 → 256 → 256 → 128 → 128 → 64 → 1. All 2-
dimensional convolutional layer weights are initialized via
sampling from a Normal distribution with mean 0 and stan-
dard deviation of 1

5·5·num input channels . All 2-dimensional con-
volutional layer biases are initialized to zero.

The model was trained using the Adam optimizer [9]
with L1 loss and with an effective batch size of 64. The
learning rate was 0.0001 and the weight decay was 0.0001.

4. Experiments

4.1. Data

We trained our model on the NYU Depth v2 [11] red-
green-blue (RGB) images for different indoor scenes. The
NYU Depth v2 images are comprised of 464 unique scenes
from three different cities. This gives us a diversified sam-
ple of the variety of indoor scenes. These images are 640 by
480 pixels, and the depth measurements are gathered using
Microsoft Kinect, ranging from 0 to 10 meters. During de-
velopment, we used the labeled subset of the NYU dataset
which totals 1449 RGB images. We randomly allocate 1159
of these pairs into the train set and 159 pairs into both the
validate and test split. For training and evaluation purposes,
we store the RGB and depth portions of the images sepa-
rately which allows us to compare the depth map learned
by our model to the actual depth map. We can then vali-
date how well our model performs with the test and validate
split.

4.2. Metrics

4.2.1 Training Metrics

We experimented with L1 and L2 loss because they both
minimize the summed distance in color values between cor-
rect and predicted pixels. We expected L2 loss to produce
better results than L1 loss since we did not anticipate signif-
icant outliers in the ground-truth depth maps, however, L1
loss ended up performing better than L2. Additionally, L1
loss caused the model to reach close to the minimal loss in
a short number of training iterations, however, performance
fluctuated once training was very close to the optimum.

4.2.2 Evaluation Metrics

We used Mean Squared Error (MSE) to evaluate the perfor-
mance of our model including when to stop training.

4.3. Qualitative Results

In this section we refer to figure 2. The middle column
represents the predicted depth map and the right column is
the actual depth map. An example of our model perform-
ing well is the bottom depth map. The top depth map is a
poor representation of the target depth map. An area of im-
provement for our system is trying to achieve crisper, more
defined edges in our estimated depth maps.

Figure 2: Qualitative results of our estimated depth maps
(middle) and the ground truth (right)

4.4. Quantitative Results

Table 1 shows the quantitative results for the model.
Compared to the baseline model, the final model achieved a
better MSE value for the problem.
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Untrained Epoch 7
L1 Loss MSE L1 Loss MSE

Train 2.8063 1.2623 0.7426 0.1442
Validation 2.5040 1.0758 0.7426 0.1442

Test - - 0.7478 0.1446

Table 1: Quantitative Results

5. Implementation

Our project was implemented within a Google Colabora-
tory notebook. Our code was structured very similar to the
starter code for past homeworks in EECS 442. However,
all the code was written by the members of this team using
PyTorch and other scientific modules that are available in
Python.

Due to the computational limitations of Google Colab,
we figured out an intuitive solution to increase the batch size
for training and validation by having a counter that makes
sure that the optimizer takes a step after n cycles of a maxi-
mum batch size of 8, thereby allowing us to get a size of 8n.
This is how we achieved a batch size of 64 for our purposes.

Our architecture is highly inspired by the paper from Al-
hashim and Wonka [2, 4] where they use a deep convo-
lutional encoder-decoder neural network architecture. We
used a DenseNet-201 encoder pretrained on ImageNet from
the Torchvision module. The decoder architecture, along
with training and evaluation functions were written by us.

6. Conclusion

We attempted to recreate with a simpler architecture the
results from a paper outlining the use of a Convolutional
Neural Network to perform monocular depth prediction.
Our model converged within 170 iterations and produced
a reasonable result as seen in figure 2.

Based on this experiment, one future project might con-
sider using a similar model, but with additional computa-
tional resources to allow the model to train for a longer pe-
riod with a smaller learning rate.

Additionally, attempting at procuring more data, whether
that’s through using classical depth prediction models to
generate depths for unlabelled images in the NYU Dataset
v2, or data augmentation methods are likely to lead to
higher performance since we can potentially increase our
training size to more than 100,000 images.

Furthermore, using a transfer learning model that has
been trained on a more comparable task to depth estimation
may allow the encoded version of each image to possess
more descriptive features pertaining specifically to depth es-
timation.
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