
Life2Anime: Unpaired Image-to-Image Translation with ShenaniGAN

Anh Tuan Tran
Dept. of Comp. Sci.

University of Michigan
alantran@umich.edu

Justin Chang
Dept. of Comp. Sci.

University of Michigan
changjus@umich.edu

Raymond Ku
Dept. of Comp. Sci.

University of Michigan
rayku@umich.edu

Zhizhuo Zhou
Dept. of Comp. Sci.

University of Michigan
zhizhuo@umich.edu

Abstract

This paper compares three different approaches for un-
paired image-to-image translation from real-life domain
to anime domain: style transfer [2], CycleGAN [13],
and our ShenaniGAN. While ShenaniGAN improved upon
style transfer, CycleGAN is still superior in image-to-image
translation.

1. Introduction
For decades, anime lovers around the word have pre-

ferred the dynamic anime world over the dull reality. They
would do anything to be one step closer to an alternate
anime reality where they can be the protagonist and defeat
the demon lord. Unfortunately, time traveling and world
line hopping technology are still a few millenniums away.
Therefore, we do the next best thing, convert real life im-
ages to anime.

At the simplest instance, image-to-image translation is
similar to style transfer [2] where we use intermediate layers
from SqueezeNet [5] to transfer styles from a source image
to a target image. However, style transfer introduces a lot
of artifacts and degrades the content of the original image,
resulting in suboptimal results.

In contrast to style transfer, paired image-to-image trans-
lation deep neural networks such as pix2pix [7] offers amaz-
ing visual results while preserving the content of the orig-
inal image. However, pix2pix requires a paired dataset
where image A is paired to image B. Such paired dataset
is impractical to obtain for real life and anime images.

CycleGAN [13] enables image-to-image translation with
unpaired training images using cycle consistency loss.
More recently, the authors of CycleGAN released a new
contrastive architecture for unspaired image-to-image trans-

Content Loss

Generator

Discriminator

Real Life Image Fake Anime Image

Real Anime Image

Real / 
Fake

Adversarial Loss

Figure 1. Overview of ShenaniGAN.

lation, CUT [9]. The downside of CycleGAN is that it re-
quires a lot of data and compute to achieve good results.

We create ShenaniGAN, a custom GAN [3] designed
to offer good image-to-image translation performance with
limited data and compute. ShenaniGAN follows the adver-
sarial learning setup of a normal GAN but with an additional
content loss to enforce consistency between input and out-
put images. The generator of ShenaniGAN follows a U-Net
[10] encoder-decoder architecture while the discriminator
is simply a U-Net encoder with an additional pooling and
fully connected layer.

We find that CycleGAN [13] achieves the best qualitative
and quantitative performance for the Life2Anime image-to-
image translation task; however, ShenaniGAN offers com-
petitive performance.

2. Approach

We modify a GAN for the task of unpaired image-to-
image translation by adding a content loss.

1



Original CycleGANStyle Transfer ShenaniGAN

Figure 2. Comparison of Life2Anime using style transfer, CycleGAN [13], and ShenaniGAN.

2.1. Model architecture

Our Generator model closely follows U-Net [10] and is
organized into blocks with similar layers but different input
and output sizes. Each block contains a convolutional layer
with kernel size 3 and padding 1; a 2D batch norm [6] layer;
a ReLU layer; a dropout [12] layer with probability 0.2;
another convolutional layer with the same parameters; a 2D
batch norm layer; and a ReLU layer. The first convolutional
layer of each block increases the number of channels of the
input tensor. We use 5 of these blocks to gradually change
the number of channels from 3 to 32, 64, 128, 256, and
finally 512 channels, while the image size decreases from
64 to 32, 16, 8, and finally 4. Between each block is a 2D
max pooling layer with kernel size 2. We follow this with
an additional 4 blocks. Each of these 4 blocks take as input
the concatenation of the output of the previous layer and the
corresponding block in the first 5 blocks. For example, the
6th block takes as input the concatenation of the output of
the 5th block and the 4th block, while the 7th block takes
the 6th block and 3rd block outputs. These 4 blocks take
the number of channels from 512 to 256, 128, 64, 32, and
3 again, while the image size increases from 4 to 8, 16, 32,
and then 64, as in the original image.

Our Discriminator model uses the same block design as
our Generator model. It has 4 blocks which takes the num-
ber of channels from 3 to 64, 128, 256, and finally 512,

while the image size decreases from 64 to 32, 16, and fi-
nally 8. We then use a fully connected layer to produce
a single scalar output, which is passed through a sigmoid
function.

2.2. Loss Function

We used the GAN losses (on the Discriminator and Gen-
erator) and Content loss [1] as the training objective.

LD = BCE(D(G(Real images)),0)
+ BCE(D(Anime images)),1)

LG = BCE(D(G(Real images)),1)
+ ‖VGG(Real images)− VGG(G(Real images))‖1

The Discriminator GAN loss LD is measured by calcu-
lating the binary cross entropy loss between the discrimina-
tor outputs when given real or generated anime images and
the actual labels (real or generated). This loss is smaller
when the discriminator successfully distinguishes between
real and generated images. The Generator GAN loss LG is
measured by calculating the binary cross entropy loss be-
tween the discriminator outputs on generated images and
the real label. This loss is smaller when the generator suc-
cessfully causes the discriminator to mistake generated im-
ages as real ones. In addition, a content loss is added to the

2



Method FID 2nd pool FID 3rd pool
Style Transfer 76.5 2.55
CycleGAN 19.8 2.17
ShenaniGAN 23.0 2.15

Table 1. We evaluate FID [4] on the 2nd and 3rd pooling layers of
VGG [11] between output images and a set of real anime images.
A smaller FID indicates that the set of images are more similar to
real anime images.

loss of the generator. This content loss is calculated by tak-
ing the L1 difference between the output of the 25th layer
of the VGG16 [11] network on the generated anime images
and the original real life images. This content loss aims to
penalize differences in the subject of the generated images
versus the original images, thus training our network to gen-
erate images which depicts the same subjects or scenes in
the original.

2.3. Training procedure

We train ShenaniGAN for 20 epochs, which takes about
an hour on a single NVidia V100 GPU. In each epoch, we
generate anime images from minibatches of 32 real life im-
ages. We then run the discriminator on the these generator
images, as well as 32 real anime images. The discrimina-
tor outputs are used to calculate the discriminator loss and
update the discriminator parameters. We then run the dis-
criminator on the generated images again. These outputs are
used to calculate the GAN loss for the generator. We calcu-
late the content loss and add it to the generator loss before
taking the gradient and updating the generator parameters.
We use the Adam optimizer with learning rate 0.0002 and
betas of (0.5, 0.999).

3. Experiments

We compare the image-to-image translation quality of
stlye transfer, CycleGAN [13], and ShenaniGAN both qual-
itatively and quantitatively. For all experiments, we use the
same set of real life images at resolution of 384 by 512 pix-
els.

Style Transfer: We perform a simple style transfer ap-
proach based on techniques from [8] by extracting image
features with a SqueezeNet [5] and updating the target im-
age with a content loss, style loss, and a total variation loss.
We use the 3rd layer as content layer, 1st, 4th, 6th, and 7th
layer as style layers. We use content weight of 5e− 2, style
weights of 3e4, 1e3, 15, 2, and a total variation weight of
5e − 2. We update the target image for 300 epochs with a
landscape image from an anime.

CycleGAN: We use the default CycleGAN from [13] and
train it on our unpaired dataset for 10 epochs. The training

took several hours on a NVidia V100 GPU. We use default
hyperparameters and only modify the dataset.

3.1. Qualitative Assessment

Figure 2 shows sample image outputs from style transfer,
CycleGAN [13] and ShenaniGAN. Style transfer produces
significant artifacts. ShenaniGAN is better at preserving
original image details but CycleGAN appears the best at
preserving original image details. Evaluation on the style
is subjective: CycleGAN results are more true to life with
some minor color shifts while ShenaniGAN performs more
aggressive smoothing.

3.2. Quantitative Assessment

We use Frechet Inception Distance (FID) [4] to measure
the similarities between the distribution of generated images
and real anime images. Lower FID corresponds to more
similar image distributions. We take the FID at the 2nd and
3rd intermediate pooling layers of VGG [11]. The 2nd lay-
ers focuses on more local details while the 3rd layer focuses
on larger details. Both CycleGAN [13] and ShenaniGAN
outperforms style transfer. ShenaniGAN achieves a lower
FID at the 3rd pooling layer while CycleGAN achieves a
lower FID at the 2nd pooling layer. This suggests that the
CycleGAN is better at preserving low level details, which
is reflected qualitatively, while ShenaniGAN sacrifices low
level details for a smoother image similar to anime.

4. Implementation

We used the Pytorch library as well as other standard
Python libraries to implement our code. We used an un-
paired image dataloader from https://github.com/
wonbeomjang/cyclegan-pytorch/ to read images
from two different folders and put them together in a con-
venient way. We designed and implemented our own Gen-
erator and Discriminator models using Pytorch. We im-
plemented our objective function and training loop. We
used code from this PyTorch tutorial which prints training
log messages and visualizes our images. For experimenta-
tion, we used the CycleGAN GitHub repository to generate
anime images trained on our dataset and compare with the
results of our model.

4.1. Data

We downloaded anime real real life movies and extracted
individual frames from them to generate our dataset. We
used 10 Ghibli movies, 7 Shinkai movies, and 10 other
anime movies to extract 9781 anime frames. We extracted
6540 frames from Youtube videos and 10 real life movies.
We used FFmpeg for frame extraction. These movies and
videos were chosen arbitrarily, and thus are not paired.

3

https://github.com/wonbeomjang/cyclegan-pytorch/
https://github.com/wonbeomjang/cyclegan-pytorch/
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html


References
[1] Yang Chen, Yu-Kun Lai, and Yong-Jin Liu. Cartoongan:

Generative adversarial networks for photo cartoonization. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 9465–9474, 2018. 2

[2] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015. 1

[3] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014. 1

[4] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. arXiv preprint arXiv:1706.08500, 2017. 3

[5] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016. 1, 3

[6] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 2

[7] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 1

[8] Andrej Karpathy et al. Cs231n convolutional neural net-
works for visual recognition. Neural networks, 1(1), 2016.
3

[9] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-
Yan Zhu. Contrastive learning for unpaired image-to-image
translation. In European Conference on Computer Vision,
pages 319–345. Springer, 2020. 1

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 1, 2

[11] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3

[12] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 2

[13] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017. 1, 2, 3

4


