
American Sign Language Recognition Using Computer Vision

Nihar Joshi
niharj@umich.edu

Ryan Gudal
rgudal@umich.edu

Tianyu Jiang
prajnaty@umich.edu

Samantha Clark
clarksam@umich.edu

1. Introduction
American Sign Language (ASL) is the primary form of

communication for 1 million individuals in the Deaf com-
munity, hard-of-hearing community, as well as family or
friends of people in the Deaf community. However, for
the remaining U.S. population, very few people know ASL.
As a result, there is a significant communication barrier be-
tween many ASL signers and the rest of Americans. Com-
munication with signers usually requires Deaf Interpreters,
who are not always available and are in high demand – the
number of interpreters needed is expected to increase by
19% over 10 years [11].
To facilitate communication across these communities and

attempt to fulfill the need for this high demand, we aimed
to build a model that can translate ASL to written American
English using computer vision techniques. More specifi-
cally, given a video of individual words or phrases in sign
language, we hope to classify the sign.

Computer vision is especially apt to solve this problem
because ASL is an entirely visual language. With the assis-
tance of modern computer vision techniques it is possible
for models to be trained to interpret and understand tem-
poral and spatial signals. In recent years, researchers have
been experimenting with using deep learning to solve this
classification problem. Existing approaches build off the
work of LeCun [4] and Krizhevsky [3] to use convolutional
neural networks (CNN) that can classify images. Current
researchers build off of this work and use 3-D CNNs or
convolutional recurrent neural networks (CRNN) to train
classification and translation models for video sequences of
ASL. Additionally, there are companies that attempt to use
computer vision to translate ASL. SignAll, a company that
translates videos of people signing in real-time, has been
working on a video translation product since 2016 and have
just recently launched a pilot program [9].
To develop our translation system, we built off the work of

other researchers, such as Ko and Son [2], to make a CRNN.
We implemented two CRNN models both starting with a
ResNeXt-50 CNN [12]. In one model we added a Long
Short-Term Memory (LSTM) cell and the other model had
a standard recurrent neural network (RNN).

2. Approach
2.1. Data Preprocessing

In our investigation, we used the ChicagoFSWild ASL
Fingerspelling Data Set [1] [7] [6]. The data contains a col-
lection of over 10,000 words that are signed by a diverse
group of signers, and split into a series of image frames. The
number of frames per video sequence varies from 2 to 296
frames and the resolution of each image varied. To stream-
line the input data, we resized all the input images to 224
× 224 pixels and we eliminated any words that had videos
with over 45 frames or less than 5 frames. We found that the
words with larger frame counts were usually pronouns and
appeared very infrequently, so we did not expect our model
to train accurately on these. We then sub-sampled this new
set of words to create a smaller data set. Our final data set
consisted of a total of 1,129 words, with 42 unique ones.
Among the total word count, the training set included 872
words, the validation set included 123 words, and the test
set included 134 words.

Figure 1: The original distribution of frames

1



Figure 2: Frames after discarding long and short videos

2.2. Architecture

To translate the sign language videos, we used two
separate architectures and compared them to a baseline
weighted-random guessing algorithm. First, we passed ev-
ery video sequence through a CNN to extract features from
the images. We used a pre-trained version of ResNeXt-50
because of its high accuracy and the large size of the feature
tensors it produced.

Next, we padded all of these feature tensor sequences
to ensure that they had equal length. Video sequences that
were shorter than the maximum length in a batch were
padded with 0 tensors. This enabled our model to train with
different batch sizes. The resulting tensors were cached and
fed into our two separate architectures.

We built two separate models: an LSTM and a multi-
layer RNN from PyTorch. Both of these RNNs used
dropout layers and had fully-connected layers. Addition-
ally, we fed the padded feature tensors to our models in
batches of size 32. We ran each model for 20 epochs due to
our computational restrictions.

Figure 3: Neural Network Model Pipeline

To evaluate the model and perform the training step, we
used a Cross Entropy Loss calculation and used PyTorch’s
Adam optimizer. We also used a grid searching technique
to find a suitable range of values for weight decay, learning
rate, dropout, and number of hidden layers. At each step,
we chose the hyperparameters that maximized the accuracy
of the validation data set.

This was the best hyperparameter configuration we
found for the LSTM:

• Weight Decay = 0.0001

• Learning Rate = 0.005

• Dropout = 0.375

• Hidden Layers = 128

This was the best hyperparameter configuration we found
for the RNN:

• Weight Decay = 0.0001

• Learning Rate = 0.001

• Dropout = 0.25

• Hidden Layers = 128

Overall, we evaluated each model based on the accuracy
it achieved on the validation data set and picked the best
epochs from this data to run on the final test data set.

3. Experiments
3.1. Data

We used data from the ChicagoFSWild ASL Finger-
spelling Data Set, which was collected from online videos
featuring several signers. These videos are captured in non-
studio environments, with a variety of backgrounds and
lighting conditions. This non-uniformity in the data makes
it more realistic when compared to more controlled data sets
such as the RWTH-BOSTON-50 data set or Purdue RVL-
SLLL ASL Database.

3.2. Metrics

We primarily used Cross Entropy Loss and accuracy to
evaluate our models. We decided to use Cross Entropy Loss
since it combines the negative log-likelihood loss and soft-
max loss. The Cross Entropy Loss can be used in a multi-
class classification setting, since it compares the predicted
class probabilities with the true classes, and averages the
loss across all examples in the test set.

We also decided to look at accuracy because we wanted
to maximize the number of correct predictions in our test
set. One drawback of using accuracy is that it can be diffi-
cult to get a high accuracy, since each prediction is either 0
or 1 — there is no probability in between. Additionally, the
accuracy metric does not provided any weight to the cor-
rectness of each individual class.

3.3. Results

We ran a grid search on the hyperparameters of both
models, and ran the training loop on the LSTM and RNN
models to produce Figures 4 - 7.

As mentioned above, we found hyperparameters using a
grid search over possible value ranges. Portions of Figure



5 and Figure 7 appear to have extreme oscillations in accu-
racy. These oscillations are expected, because updating the
model slightly can cause the misclassification of a group
of items at a time and can therefore reduce or increase the
accuracy greatly. Slight increases in the loss can also be
explained by the relatively high learning rate that we em-
ployed.

Figure 4: LSTM Loss

Figure 5: LSTM Accuracy

Figure 6: RNN Loss

Figure 7: RNN Accuracy

Table 1. Accuracies of the 2 models

Model Train (%) Val (%) Test (%)
LSTM 23.27 22.95 33.58
RNN 24.08 21.95 26.11

In general, we evaluated every single model based on
the accuracies. We selected the epochs within each model
that maximized the validation accuracy and reran the mod-
els with the test data set to produce a final accuracy result.
Table 1 shows the complete result for accuracy scores and
suggests that the LSTM had a superior performance com-
pared to the RNN.

To evaluate the results of our different deep networks, we
created two baseline algorithms: a weighted-random guess-
ing algorithm and a modal guessing algorithm. These algo-
rithms were evaluated on their accuracy and the results were
directly compared to the performance of our deep networks.

The weighted random guessing algorithm used the pro-
portion of word occurrences in the training set to generate
random guesses for every label in the test data set. We ran
this algorithm 1,000 times to create a distribution of ac-
curacies that this model achieved. On average, the model
achieved an accuracy of 11.95% on the test set.

Figure 8: Accuracies based on weighted guess

Our modal guessing algorithm simply guessed the most
common word that appeared in the training data set. This
algorithm achieved a high accuracy of 26.86% on the test
data set. The data set, however, had a very prevalent word
- “asl”, which does not reflect the true occurrence of words
in ASL. Therefore, this high accuracy may be misleading
and we should consider other metrics when evaluating our
model holistically.



3.4. Discussion

We analyzed our results by comparing the baseline
metrics to the values that we found in Table 2. Overall, we
noted that the random guessing algorithm performed very
poorly compared to all other models. On the other hand,
the modal guessing baseline metric produced a relatively
high accuracy score.

Table 2. Accuracies of the models vs. baselines

LSTM RNN Modal Random
Test Accuracy 33.58 26.11 26.86 11.59

We believe that the strong performance of the modal
guessing algorithm was due to the imbalance in the training
and test data. When we examined the word distributions
within each partition, we found that the training set con-
tained 42 unique words, while the test set only contained
a subset that included 13 of those words. In addition, the
frequency of different words was not balanced.

Figure 9: Word counts in training set

Figure 10: Word counts in test set

We believe that with a more balanced data set, the modal
guessing algorithm’s accuracy would drastically decrease
and our two deep networks would perform better. It is
important to note that the ChicagoFSWild data comes pre-
partitioned by the creators. Therefore, the splits and distri-
bution of words in our training and test set was predeter-
mined and not altered by our own data preprocessing.

In general, an LSTM is differentiated from an RNN by
the forget gates and output gates that keep track of long term
memory for the model. LSTM models are thought to per-
form better on temporal sequences that are contingent on
early data points in the sequence [8]. Although Table 2 sug-
gests that the LSTM model vastly outperformed the RNN
and our baseline models, we believe this is highly depen-
dent on the test set that is chosen. When we ran our mod-
els on different sub-samples of the main data set, we found
drastic changes in performance. Additionally, during our
grid search for hyperparameters, we noticed large changes
in the model’s performance with small changes to the set of
chosen parameters. In general, we don’t believe that Table
2 is a completely accurate reflection of the LSTM model’s
performance. While we generally believe that the LSTM
model performed better than the RNN, we believe that the
margin of improvement from the RNN to the LSTM is much
smaller than the Table suggests.

Overall, Table 2 indicates the the deep networks pro-
duced little to no improvement over the simple modal base-
line. However, we believe it would be interesting to apply
these same models and architecture to a different ASL Fin-
gerspelling data set. Although ChicagoFSWild contains a
robust variety of words, a more controlled dataset such as
RWTH-BOSTON-50 [13] may give more insight into the
performance difference between an RNN and LSTM in this
classification task. In addition, we believe that our evalu-
ation with the accuracy metric did not properly reflect the
performance of each model. Using more complex metrics
such as AUROC or Precision-Recall, may have allowed for
more in-depth and nuanced analysis.

4. Implementation
We used PyTorch [5], an open source deep learning

framework maintained by Facebook. In addition, we ref-
erenced the DataLoader functions from the EECS 445 (Ma-
chine Learning) course code. Finally, we referenced code
from suzyahyah [10] to assist with padding variable se-
quences in the dataloader. The rest of the code, including
the plotting, processing, and model functions, is our own
work.

References
[1] J. K. J. M. D. B. G. S. B. Shi, A. Martinez Del Rio and

K. Livescu. American sign language fingerspelling recog-
nition in the wild. SLT, December 2018. 1



[2] S.-K. Ko, J. G. Son, and H. Jung. Sign language recog-
nition with recurrent neural network using human keypoint
detection. In Proceedings of the 2018 Conference on Re-
search in Adaptive and Convergent Systems, RACS ’18, page
326–328, New York, NY, USA, 2018. Association for Com-
puting Machinery. 1

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. Com-
mun. ACM, 60(6):84–90, May 2017. 1

[4] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
Applied to Handwritten Zip Code Recognition. Neural Com-
putation, 1(4):541–551, 12 1989. 1

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 4

[6] B. Shi, A. M. D. Rio, J. Keane, D. Brentari,
G. Shakhnarovich, and K. Livescu. Fingerspelling
recognition in the wild with iterative visual attention. CoRR,
abs/1908.10546, 2019. 1

[7] B. Shi, A. M. D. Rio, J. Keane, J. Michaux, D. Brentari,
G. Shakhnarovich, and K. Livescu. American sign lan-
guage fingerspelling recognition in the wild. CoRR,
abs/1810.11438, 2018. 1

[8] S. Siami-Namini, N. Tavakoli, and A. S. Namin. The perfor-
mance of lstm and bilstm in forecasting time series. In 2019
IEEE International Conference on Big Data (Big Data),
pages 3285–3292, 2019. 4

[9] SignAll, 2021. 1
[10] Suzyahyah. Pad pack sequences for pytorch batch processing

with dataloader, 2021. 4
[11] G. Vasquez. Demand for deaf interpreters poses opportuni-

ties to learn asl. 2021. 1
[12] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Ag-

gregated residual transformations for deep neural networks.
CoRR, abs/1611.05431, 2016. 1

[13] M. Zahedi, D. Keysers, T. Deselaers, and H. Ney. Com-
bination of tangent distance and an image distortion model
for appearance-based sign language recognition. In W. G.
Kropatsch, R. Sablatnig, and A. Hanbury, editors, Pat-
tern Recognition, pages 401–408, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. 4


