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1. Introduction 
Depth prediction is a process whereby the distance of 

an object from a reference point is determined. Usually, the 
reference point is the camera plane because visual data is 
collected using video cameras. Once video footage is col-
lected from sensors, it is stored as a sequence of static RGB 
images. Thus, depth prediction usually involves determin-
ing the distance of each pixel in an RGB image from the 
camera plane.  

Depth prediction is an essential task in many applica-
tion domains. In self driving cars, depth prediction can de-
termine the distance of pedestrians to the car in order to 
avoid collisions. Additionally, robots need to predict depth 
in order to operate in a 3-dimensional world. Furthermore, 
depth prediction is a required component of many video 
games, particularly virtual and augmented reality. If tech-
nology is to replace the need for humans in certain fields, it 
needs to have similar sensory capabilities. Depth prediction 
is one such task that is performed by humans and needs to 
be emulated by machines. Computer vision techniques are 
well suited to solving the task of depth prediction because it 
is a form of image processing in which numerical labels are 
assigned to each pixel. Deep Learning based methods have 
been recently used due to it being close to real time speeds 
in processing RGB images to produce depth maps. Convo-
lutional neural networks in specific are a common deep 
learning tool that can learn shared features across images, 
and are thus useful for generating depth map images. 

We looked at two papers [1], which we will be referring 
to as the Alhashim-Wonka paper in this report. We mainly 
tried to implement the Alhashim-Wonka paper, which used 
the encoder-decoder structure to perform depth prediction. 

In this report, we use an encoder-decoder machine 
learning model to perform depth prediction. We use the 
Densenet-169 model pretrained on the ImageNet dataset in 
conjunction with an upscaling decoder trained on the 
NYUv2 dataset to generate depth heatmaps. The depth 
maps are evaluated using both qualitative and quantitative 
test metrics to determine model performance.  

2. Approach 
In this section, we describe the architecture of the en-

coder-decoder model and specify the training and testing 

details. We split our approach into three sections: Model 
Architecture, Training and Loss and Data Augmentation. 

2.1. Model Architecture 
We used the encoder-decoder architecture, as shown in 

Figure 1 below, from the Alhashim-Wonka paper [1]. It 
uses transfer learning for the encoder in which features are 
learned from a larger dataset and then transferred to the 
depth prediction task. An RGB image is inputted to the 
encoder, which encodes a feature vector that is upscaled by 
the decoder. The encoder is a DenseNet-169 model as 
shown in Figure 2 below from PyTorch pretrained on the 
ImageNet dataset. The last fully connected layer of the en-
coder is removed to allow the learned features to be trans-
ferred to the decoder. We use the first four blocks of the 
Densenet-169 model, from which we also extract some 
layers for the decoder. The decoder is a series of layers 
which involve upsampling, concatenating with some of the 
layer outputs from the encoder and convolution layers. The 
specific implementation details for both encoder and de-
coder are reported in Tab. 1. 

A change that we made from the Alhashim-Wonka pa-
per is that we decreased the input sizes by 4, which we 
adapted by downsampling the input before entering the 
encoder and adding some  since due to our limited hard-
ware resources, it got harder to train. Also we had to 
change our loss function to reduce the size of the ground 
truth maps. 

Table 1. Model Architecture, reused and modified Ta-
ble 5 from [1] 

Layer Output (c,h,w) Function 

Input 3, 480, 640 
 

Downsampling * 3, 120, 160 MaxPool2D 4x4 to 
decrease size of 
input 

CONV1 64, 60, 80 DenseNet CONV1 

POOL1 64, 30, 40 DenseNet POOL1 

POOL2  128, 15, 20 DenseNet POOL2 



POOL3 256, 7, 10 DenseNet POOL3 

... ... ... 

CONV2 1664, 3, 5 Convolution 1 × 1of 
DenseNet BLOCK4 

UP1 1664, 6, 10 Upsample 2 x 2 

PAD1 * 1664, 7, 10 Padding the top by 
1 with 0s to match 
original dimensions 

CONCAT1 1920, 7, 10 Concatenate 
POOL3 

UP1-CONVA 832, 7, 10 Convolution 3x3 

UP1-CONVB 832, 7, 10 Convolution 3x3 

UP2 832, 14, 20 Upsample 2 x 2 

PAD2 * 832, 15, 20 Padding the top by 
1 with 0s to match 
original dimensions 

CONCAT2 960, 15, 20 Concatenate 
POOL3 

UP2-CONVA 416, 15, 20 Convolution 3x3 

UP2-CONVB 416, 15, 20 Convolution 3x3 

UP3 416, 30, 40 Upsample 2 x 2 

CONCAT3 480, 30, 40 Concatenate 
POOL3 

UP3-CONVA 208, 30, 40 Convolution 3x3 

UP3-CONVB 208, 30, 40 Convolution 3x3 

UP4 208, 60, 80 Upsample 2 x 2 

CONCAT4 272, 60, 80 Concatenate 
POOL3 

UP4-CONVA 104, 60, 80 Convolution 3x3 

UP4-CONVB 104, 60, 80 Convolution 3x3 

CONV3 1, 60, 80 Convolution 3x3 

* Not used in the non-downsampled model. 
 
 
 

 
Figure 1. Model Architecture, reused Figure 2 from [1] 

 
 

Figure 2. DenseNet 169 Architecture [2] 

2.2. Training and Loss 
For training, we used the AdamW optimizer with a 

learning rate of 0.0001 and a batch size of 8 images of size 
480 x 320 pixels. We tried to understand whether our mod-
el was learning properly based on a running loss over 1159 
training examples and after more than 30 hours of training 
we ended up at a loss of 39.931 after 236 epochs as de-
scribed by the loss function above. We looked at the paper 
implementation which reached a good set of results after a 
million iterations but that was infeasible for us. 

The loss function we used is identical to the one in the 
Alhashim-Wonka paper, which has three parts - a Depth 
loss, a Gradient loss, and SSIM Loss. The Depth Loss is an 
L1 Loss based on the predicted and labelled depth map 
values. The Gradient Loss is an L1 Loss based on the x and 
y gradients of the predicted and the labelled depth map 
values. The SSIM Loss uses the structural similarity metric 
between the predicted and the labelled depth map values. 

2.3. Data Augmentation 
We also followed Alhashim-Wonka's practice in data 

augmentation [1]. According to the paper, it could reduce 
overfitting and lead to better generalization performance 
[1]. We horizontally flipped 50% of the images in our da-
taset. We also switched the RGB channels for 25% of the 
images. 
 



3. Experiments 
3.1. Data 

We used the NYU Depth v2 labeled dataset - particular-
ly due to the ease of reproducing the results in the 
Alhashim-Wonka paper.  

The NYU Depth v2 labeled dataset consisted of 1449 
indoor images and depth maps. Each image is a 3-channel 
matrix of size 3 x 480 x 640 pixels. The value for each pix-
el is an integer between 0 and 255 as a RGB representation 
of the color. Each depth map is a 1-channel matrix of size 
480 x 640 pixels. The value for each pixel is a float be-
tween 0.0 and 10.0, representing the depth in meters. Since 
each picture is taken indoors in a regular sized room, the 
depth between 0.0 and 10.0 meters makes sense.  

We split the entire dataset into the training, validation, and 
testing set. They consist of 80%, 10%, and 10% of the orig-
inal dataset. 

3.2. Qualitative Metrics 
The qualitative metric we chose were mean SSIM of the 

depth maps and the mean F1 score of the edge maps. We 
chose these two metrics used by the paper to better com-
pare our result to theirs.  

The first qualitative metric, SSIM, is a commonly used 
metric for measuring the similarity between 2 images. Its 
ability to detect changes in image degradation makes it a 
good metric, as it wouldn’t easily classify our blurry pre-
diction as highly similar to the ground truth label.  

The second qualitative metric, edge maps F1 scores, 
checks whether the edge map between our prediction and 
the ground truth label matches up. For depth maps, edges 
mark sharp changes in depth. It is justified for us to com-
pare these edge maps to ensure the prediction and ground 
truth label share the same outline. Since the majority of 
each depth map consists of non-edge pixels, the proportion 
between edge pixels and non-edge pixels is unbalanced. F1 
score helps us overcome this imbalance between the pro-
portion of these two classes. 

Below is an example of a ground truth depth-map and 
its corresponding edge map. The blurriness of the depth 
map is due to resizing. 
 

Figure 3. A ground truth depth-map and its corre-
sponding edge map 

 

3.3 Loss 
Both training and validation loss are calculated using 

the same method described in the approach section. The 
figure below shows the training and validation loss 
throughout all 236 iterations. Training loss begins at a high 
value of 909.332, drops to below 200 for the majority of 
the epochs, and ends at the value of 39.931. Validation loss 
begins at 3.76, drops below 1.5 for the majority of the 
epochs and ends at 1.066.  
 

 
Figure 4. Training Loss (Left) and Validation Loss 

(Right) 
3.4. Qualitative Results 

 Table 2. mSSIM and F1 Results 

Method mSSIM ↑ F1 ↑ 

Alhashim-Wonka 0.968 0.519 

Ours 0.974 0.316 

Random Guesses 0.745 0.206 

 
Our qualitative results for both mSSIM and F1 are bet-

ter than Random Guesses, and our model achieved a higher 
mSSIM than even the Alhashim-Wonka paper.  

Random guesses are obtained by generating depth maps 
filled with random values between 0.0 and 10.0, the range 
of the ground truth labels. 

3.5. Quantitative Metrics 
 The qualitative metric we chose were average rela-

tive error (rel), root mean squared error (rms), average 
(log10) error, and threshold accuracy (𝛿i) for thresholds 
1.25, 1.252, 1.253. Not only were these metrics used by 
Alhashim-Wonka, they were also used in previous works 
mentioned in their comparison table [1]. It shows that these 
metrics do hold significance in quantitative evaluation. We 
also chose these metrics to compare our model’s perfor-
mance quantitatively that of Alhashim-Wonka’s.  

 
 
 
 
 
 
 
 
 



3.6. Quantitative Results 
Table 3. Quantitative Results 1 

Method 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑ 

Alhashim- Wonka 0.846 0.980 0.996 

Ours 0.326 0.598 0.790 

Random Guesses 0.126 0.255 0.389 

 
Table 4. Quantitative Results 2 

Method rel ↓ rms ↓ log10 ↓ 

Alhashim- Wonka 0.103 0.390 0.043 

Ours 0.435 1.591 0.185 

Random Guesses 1.527 3.897 0.412 

 
As listed in the quantitative results, our model per-

formed better than Random Guess on all of the metrics 
(average relative error, root mean squared error, average, 
threshold accuracy). However, we were not able to repro-
duce the performance achieved by the Alhashim-Wonka 
paper due to lack of computational resources. Nevertheless, 
the approach described in this report is a promising avenue 
for additional research.  

3.7. Single Image Training Results 
Since we couldn’t fully train our model, we decided to 

attach some sample results from two models that was 
trained on a single image, the same image in both but one 
was downsampled by a factor of 4 and the other one wasn’t 
downsampled at all.  

Figure 4. The Actual Image 

 
Figure 5. The Labelled Depth Map 

Figure 6. Result after training on the downsampled im-
age for 8000 epochs 

 

 
Figure 7. Result after training on the original image for 

4500 epochs 
 



4. Implementation 
For our implementation of the paper, we used the PyTorch 
library. The data augmentation operations were accom-
plished using functions from the Numpy library. Although 
the Alhashim-Wonka paper [1] was used as guidance for 
implementation, all code was written from scratch without 
any usage of reference code from the paper. 

We made a model class to train and test the model. For the 
encoder part of the model, we first downsampled the image 
by a factor of 4 using Max Pooling 2D and then we used a 
pretrained Densenet 169 from PyTorch, and we froze all of 
its parameters. We iterated through the Densenet model in 
our forward pass to collect the output of some layers for the 
decoder. Then we used various PyTorch objects such as 
Conv2D, Upsample and LeakyRELU to implement the 
decoder.  

We made a DepthLoss class for implementing the loss. For 
the loss, we used functional objects from PyTorch for our 
forward passes and also a library called pytorch_msssim to 
implement SSIM loss.  

We mainly followed section 4.3 of the Alhashim-Wonka 
paper to implement our quantitative and qualitative metrics 
[1]. Most could be implemented with simple Pytorch opera-
tions. The edge maps were obtained using the sobel opera-
tion found in kornia.filters.sobel.  

One key change that we made the metrics was changing the 
threshold of the edge maps from 0.5 to 0.2. We discovered 
that if we set 0.5 as our threshold, almost none of the edges 
from a ground truth depth map would remain. By setting 
0.2 as our threshold, the resulting edge map was more rep-
resentative of the visible edges in a depth map.  
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