
ZoomTM and Enhance: Super Resolution

Dylan L. Beck
University of Michigan

dlbeck@umich.edu

Ian A. Bertram
University of Michigan

ianbtr@umich.edu

Daniel L. Hoekwater
University of Michigan

dhoek@umich.edu

Katherine J. Knister
University of Michigan
kknister@umich.edu

Shriya S. Shah
University of Michigan
shriyash@umich.edu

1. Introduction

High-resolution images are aesthetically pleasing and
have a natural look and feel to them. Too often, though,
we are stuck with grainy low-resolution images that are in-
adequate for use in websites and presentations. This can be
catastrophic if the only surviving photo of your subject has
poor resolution.

Given the increasing importance of video communica-
tion, we also desire better video compression. A process
that allows users to send downsampled video, then upsam-
ple compressed video that is received from the network,
would save large amounts of network transactions. An ad-
vanced understanding of super resolution in still images
might help this effort.

While it is possible to improve the resolution of images
using interpolation techniques such as bicubic and nearest-
neighbor, these methods do not improve the resolution as
much as one may hope. This motivates the use of a convo-
lutional neural network to improve the resolution of images.

Previous work by Wang et al. [3] demonstrates that a va-
riety of neural network designs can solve the problem of
implementing super resolution. Work by Dong et al. [1] re-
ports that a fairly simple convolutional neural network can
perform super resolution and outperform bicubic interpola-
tion. This prior work shows us that we are not only able to
solve this problem, but also solve it using computer vision.

We experimented with a neural network similar to the
one presented by Dong et al. in [1] in order to demonstrate
that it could achieve better performance than bicubic in-
terpolation. Our final network, which we trained using a
subset of the flickr2k dataset provided by [2], involved pre-
upsampling, three convolution layers, and two ReLU non-
linearity layers. We ran trials with many different combi-
nations of values for hyperparameters and slight changes in
the architecture to decide that this network allowed us to
achieve the best results, which indeed were better than the
results achieved by bicubic interpolation.

2. Approach
2.1. Setup

Our first challenge was setting up our training pipeline
such that we could effectively collaborate synchronously
and asynchronously, regardless of group size. To overcome
this challenge, we opted to upload our dataset into a shared
Google Drive, which we mounted on Google Colab via a
Jupyter Notebook in a group GitHub repository.

We based our code structure on the convolutional net-
work used in Homework 5, and we broke the pipeline into
six phases: software dependencies, dataset definition, data
loader, neural network architecture, training logic, and fi-
nal quantitative and qualitative testing. This structure made
it possible to split into smaller teams to work on different
components in parallel, speeding up the development pro-
cess and reducing the coordination headache.

2.2. Architecture

As seen in Figure 1, which excludes ReLU layers for
readability, our network architecture is relatively simple, us-
ing only a few convolution layers. This is in line with other
super resolution architectures [1], as many practical appli-
cations such as video enhancement would require quick
computation.

Figure 1. Our Network Architecture

Our network uses pre-upsampling: it begins by scaling
the input low resolution image by a factor of 2 using bicu-

1

bic interpolation. Since our model’s goal is to outperform
bicubic interpolation, doing this first sets a baseline upon
which the rest of our network architecture can improve.

After upsampling, our network has three convolution
layers, with each of the first two convolution layers followed
by a ReLU non-linearity layer. All three convolution lay-
ers use a 5x5 window with padding of 2 and a stride of 1.
These values preserve the size of the images through each
layer. The dimensions of the hidden layers for the convo-
lutions are 3 to 64, 64 to 32, and 32 to 3. We made deci-
sions about our network architecture through experimenta-
tion, which we will explain further in section 3.4.

2.3. Loss Functions

We used the mean squared error as our loss function be-
cause this is the most popular loss function for super reso-
lution [3]. In particular, this is the loss function that Dong
et al. used, and our neural network had a similar structure to
theirs [1]. We can use the following calculation to use the
mean squared error as our loss function:

L(θ) =
1

n

n∑
i=1

||F (Yi; θ)−Xi||2

where θ is the estimation of network parameters (weights
and biases), n is the number of training samples, {Yi} is the
set of low resolution images, F (Yi; θ) is the reconstructed
image from Yi, and {Xi} is the set of high resolution im-
ages.

2.4. Training Procedure

The function we used to train our network relied on com-
paring low resolution images to corresponding high resolu-
tion images. It was based on the training function from the
Semantic Segmentation section of Homework 5. However,
instead of the data consisting of images and labels, our data
consisted of low-resolution and high-resolution images. We
randomly selected 800 image pairs from the flickr2k dataset
provided by [2] to use to train our convolutional neural net-
work (we used 100 for validation and 100 for testing). Our
training procedure kept track of the running loss, and it cal-
culated the loss using the mean squared error, which is de-
scribed in more detail above in section 2.3.

In addition to training with entire images, we experi-
mented with training with just patches of images. We hoped
that this would allow us to train with more image samples
without going over the maximum GPU usage. Additionally,
this allowed us to choose a consistent image size, which al-
lowed us to easily increase the batch size to more than 1.

However, we achieved worse results with image patches
compared to with entire images despite being able to train
on more samples when using image patches. Because of

this, the results we are reporting were generated by train-
ing with entire images, even though we tried training with
image patches for a number of trials.

3. Experiments
3.1. Data

We used 1000 images that were randomly selected from
the flickr2k dataset from [2]. We used 800 of these images
for training, 100 for validation, and 100 for testing.

This data made sense to use because flickr2k is a com-
monly used dataset for image super-resolution, so we be-
lieve that using a random subset of it allowed us to have a
reasonably representative sample of user images. Addition-
ally, since it’s commonly used for image super resolution, it
already had low- and high-resolution image pairs that we
could use for training, validation, and testing, instead of
needing to generate our own image pairs.

3.2. Metrics

We measured success by comparing the peak signal-
to-noise ratio (PSNR) that we achieved on the test set to
the PSNR that could be achieved by bicubic interpolation.
Since bicubic interpolation can generally achieve an aver-
age of around 30 PSNR, we knew that we wanted to achieve
higher than 30. We also found the PSNR result that bicubic
interpolation achieved on our test set specifically and made
sure to achieve a higher one.

In addition to these quantitative measures of success, we
also asked people to make qualitative comparisons between
our results and the low resolution images, as well as be-
tween our results and the results of bicubic interpolation.
To ensure our personal biases did not affect our assessment
of the model’s quality, we conducted an experiment.

We randomly selected five images patches from our test
set. For each of these image patches, we took the origi-
nal low resolution version, the version that resulted from
bicubic interpolation, and the version that resulted from our
super resolution method. Then, for each set of the three ver-
sions, we randomly shuffled the order of the three versions.

We showed these five image patch sets to six testers, ask-
ing them to rank the images in each set based on the resolu-
tion. We considered it a success if, for each set of images,
the participants generally believed that the image version
resulting from our super resolution method had a higher res-
olution than both the original low resolution image and the
bicubic result.

PSNR is a reasonable measure of success because it is
an industry standard for measuring similarity; it is currently
the most widely used evaluation criteria for super-resolution
methods [3]. However, a downside of PSNR is that it can re-
sult in poor performance when used to represent the recon-
struction quality in real scenes. In this case, we are usually

2

more concerned with human perceptions [3].
With this in mind, qualitatively comparing the images is

reasonable because quantitative measurements generally do
not fully capture how humans perceive the level of resolu-
tion of an image. Comparing our results to bicubic inter-
polation makes sense because bicubic interpolation is the
standard non-machine learning approach to performing su-
per resolution.

3.3. Tuning Hyperparameters

In order to achieve better results, we experimented with
the tuning of different hyperparameters (i.e. the learning
rate, weight decay, number of epochs, and the size of the
dataset). This, along with adjusting the network architec-
ture, accounted for a significant portion of the time that our
team spent on this project.

For the learning rate, we found that very small learning
rates, on the order of 1e-4 to 1e-5, worked the best. When
we used larger learning rates, our loss increased dramati-
cally, meaning our PSNR decreased. Using smaller learn-
ing rates made the training take significantly longer without
much benefit, since the loss didn’t decrease by a significant
amount. Our final model used a learning rate of 5e-4.

We tested multiple weight decays, and we didn’t see a
significant difference in the trials with the different decays.
This allowed us to use a weight decay of 0 for our final
model in order to try to improve our loss plot, which is dis-
cussed further in section 3.6.

Since training the data takes a long time, we decided to
use 10 epochs. This meant our model took between 2 and 5
hours (depending on other hyperparameters) which allowed
us to achieve desirable results while still being able to ex-
periment with about 20 different models

We originally tried to use a dataset of 500 images since
training the model takes a long time. However, we were get-
ting unexpected results with a dataset of that size. When we
increased the dataset to 1000 images, we got better results.

We also tried increasing the dataset size to 2000 and even
2650 (the size of the flickr2k dataset), but achieving results
with these larger datasets was much harder because we fre-
quently ran into issues when trying to train using Google
Colab for such a long time. In particular, when we tried to
use a dataset of 2650, we ran out of available GPU usage
before even finishing 10 epochs, despite using an entirely
new Google account. Training the model on 1000 images
ended up being the most reasonable solution since we could
achieve good results consistently with this size.

3.4. Finding the Optimal Architecture

As mentioned previously, our network architecture was
based on the architecture used by Dong et al. [1], which
used pre-upsampling with three convolution layers and two
ReLU layers that followed the first two convolution layers.

While we ultimately used this architecture to produce our
best model, our team experimented with numerous archi-
tecture models.

One aspect of the architecture that we experimented with
was the upsampling layer. We tried putting the upsampling
layer at various locations in our network, including between
convolution layers and at the end. None of these alter-
nate locations produced better results than pre-upsampling,
which led us to choose pre-upsamping. It also seemed in-
tuitive to start with bicubic interpolation in order to beat
bicubic interpolation.

Another aspect of the network we experimented with
was the number of convolution layers. We tried using four
and five convolution layers. However, adding convolution
layers did not allow us to achieve a better PSNR regardless
of other changes we made alongside this, so we decided to
keep our architecture simple with only three convolutions.

We also tried various different sizes for the hidden di-
mensions of the various layers. We decided on our final
sizes for the hidden dimensions using this experimentation.

3.5. Qualitative Results

One of the primary methods we used to evaluate our
model was a qualitative comparison between the resolu-
tion of the images that resulted from our super resolution
method, the original low resolution images, and the results
from bicubic interpolation. Since our goal is to upscale im-
ages for humans to use and appreciate, we believe this qual-
itative evaluation is important.

Figure 2 below shows patches of three images: an origi-
nal low resolution image that we used to test our model and
the results of upscaling it with bicubic interpolation and up-
scaling it with our model. Looking closely at the images
(particularly at edges such as the hands), one can see that
the image resulting from upscaling by our model is sharper
than the original low resolution image as well as the image
upscaled through bicubic interpolation.

Figure 2. Comparison of image patches from original low-res im-
age, results from bicubic interpolation, and results from our model

As described in section 3.2, we randomly selected five
images patches from our test set and asked six testers to
rank the original version, bicubic upscaled version, and our
model’s upscaled version (which were presented in random
order) in terms of the quality of resolution. We found that

3

all six testers identified the image upscaled by our model
to have the highest resolution for all five sets of images.
This gave us confidence that our model not only produces
results that clearly have a higher resolution than the original
low resolution image, but also that our model outperforms
bicubic interpolation.

We’ve included the complete results in Table 1 below.
Each cell represents the order in which a tester (PID) ranked
the perceived resolution quality of the images, in ascending
order. L represents the original low resolution image, B rep-
resents the image upscaled with bicubic interpolation, and
U represents the image upscaled by our model. For exam-
ple, the first cell indicates that PID 1 ranked the quality of
the low resolution image as the lowest, bicubic in the mid-
dle, and our model’s upscaled image as the best. We want
to emphasize that participants were unaware of the identity
of each image while assessing their quality.

PID Img1 Img2 Img3 Img4 Img5
1 L, B, U L, B, U B, L, U L, B, U L, B, U
2 L, B, U L, B, U L, B, U L, B, U L, B, U
3 L, B, U L, B, U L, B, U B, L, U L, B, U
4 L, B, U L, B, U L, B, U L, B, U L, B, U
5 L, B, U L, B, U L, B, U L, B, U B, L, U
6 L, B, U L, B, U L, B, U L, B, U L, B, U

Table 1. Summary of qualitative user testing results

3.6. Quantitative Results

The main metric we used to determine the success of
our model was the peak signal-to-noise ratio, or PSNR. Our
goal was to achieve a PSNR of at least 30, and we also
wanted to achieve a higher PSNR with our model than that
which could be achieved using only bicubic interpolation.
We were able to achieve both of these goals, since the bicu-
bic baseline achieved a PSNR of about 32.14, and our net-
work achieved a PSNR of about 32.91.

Figure 3. Training and validation loss plot for our model

As seen in Figure 3 above, the validation loss is lower
than the training loss at all times. In order to mitigate this

strange behavior, we tried using patches of the images in-
stead of the full images, so that we could use batching.
We also changed our loss function to compute a moving
weighted average loss. By doing this, we were able to
achieve a much better loss pattern, as shown in Figure 4.

Figure 4. Training and validation loss plot for our modified model

However, the PSNR for the trial with that loss plot was
much lower - the bicubic baseline had a PSNR of about 28.6
and our network had a PSNR value of about 28.7. We be-
lieve that this was due to the fact that the image patches
were too small. However, due to the constraints of Google
Colab, we weren’t able to fully test our theory. If we had
more computational resources, we would like to trying us-
ing a much larger dataset with larger image patches.

4. Implementation

The implementation of our project certainly built on the
work of others. Our decision to use pre-upsampling and an
architecture with three convolution layers came from [1].
Additionally, the specific code we used to train, test, and
visualize the network was largely based on the starter code
provided by the EECS 442 staff for Homework 5.

Despite building on the work of others, many aspects
were unique to our project. On the network side, vari-
ables including the hidden layer dimensions, kernel size,
and stride were chosen by us through a combination of ex-
perience from prior homework, research, and experimenta-
tion. Additionally, hyperparameters including learning rate,
weight decay, number of epochs, and batch size were cho-
sen by us through similar means. In addition, we exper-
imented with using image patches and adding additional
convolution layers.

Finally, the ”glue” code (which proved to be a major
challenge) was written entirely by our team. This includes
code to load the dataset from Google Drive to run in Google
Colab, normalize and crop the images to allow for variable
batch sizes, and visualize our resulting images.

4

References
[1] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(2):295–307, 2016.

[2] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for sin-
gle image super-resolution. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, July
2017.

[3] Zhihao Wang, Jian Chen, and Steven C.H. Hoi. Deep learning
for image super-resolution: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1–1, 2020.

5

