
EECS 442 Project Report: Monocular Image Depth Prediction via
Encoder-Decoder-based Deep Learning

Huijie Zhang, Yiting Zhang, Xiaoyang Qian
University of Michigan

{huijiezh,yitzhang,braxq}@umich.edu

1. Introduction

Computer vision is a popular subject nowadays. One of
the crucial subdivision tasks it is trying to solve is Depth
prediction, which is what we are doing in this project. For
depth prediction, essentially what we are doing is: input a 2-
D RGB image and output an estimation of depth prediction
for every pixel on that image with respect to the position
of the camera plane. In the ideal situation, having multiple
images of the same scene from different perspectives help
constrain the problem; the problem becomes more defined
through finding local correspondences. When this problem
is not constrained: in other words, having only single im-
age from a specific view point, it can be very ambiguous to
solve this problem due to the global and local uncertainties.
However, solving depth prediction helps understanding the
3D geometry relationships in a scene. Additionally, the re-
sults from depth prediction could be used to help other ap-
plications in CS, robotics, etc. For example: 3D-rendering
and self-driving cars.

The major task we were trying to accomplish was solv-
ing monocular depth prediction via deep learning in two
different ways: DenseNet and MiniNet based Deep Neu-
ral networks. The problem is solvable because we itera-
tively run the models and try to minimize the loss between
the predicted depth map and ground-truth depth map by im-
proving the gigantic set of model weights. As mentioned
above, our work is basically inspired by papers which intro-
duce DenseNet[5] and Mininet[6].

2. Approach

2.1. DenseNet based Deep Neural Network

Regarding the model architecture: our DenseNet-based
deep neural network is composed of a DenseNet encoder
and bilinear upsampling decoder. Fig. 2 explains the
skeletons of the encoder we use. This structure may
not seem too novel, because the essence of this model
is in each Dense block where the output map from each
layer (1x1 Conv and 3x3 Conv in the table) is for-

Figure 1. Architecture of DenseNet for imagenet. Note that the
”conv” in the table is equivalent to a set of BN-RELU-Conv.[5]

warded and concatenated, so that more features could be
learned. A more illustrative way could be a plot on
the same paper of Densely Connected Convolutional Net-
works: what this graph means mathematically is given

Figure 2. Detailed illustration of modules in the Dense Block.[5]

an input x and series of functions(”Conv” or Dense lay-
ers). Suppose the functions are f1, f2, f3..., then pass-
ing these three functions would yield a result in the form:
[x, f1(x), f2(x, f1(x)), f3(x, f1(x), f2(x, f1(x))]. This
mathematical form is intuitive in showing how the feature

1

outputs from the previous functions helps training in the
structure of DenseNet. After downsampling the input RGB
image using the encoder, features after each dense block is
passed onto the decoder matching the correct shape, which
is very similar to the feature concatenation in U-net[9].
Then this becomes a chain of: concatenation, up convolu-
tion, and bilinear upsampling with leaky ReLU inserted as
the activation function in the decoder part. In the end, ad-
ditional bilinear upsampling and convolutions are deployed
to match the input RGB shape (Height and width).

2.2. MiniNet based Deep Neural Network

Figure 3. Architecture of MiniNet, that is composed of a Depth-
Net and two shared-weight PoseNets. The DepthNet only takes a
single still image as input, while the two shared-weight PoseNets
take the frame pair as input. The value below each feature map
rectangle denotes the channel number, and the smaller height rect-
angle is the half size of the preceding one[6].

The MiniNet is based on the work of J. Liu et al. that is
composed of a DepthNet and two shared-weight PoseNets
as illustrated in Fig 3. The DepthNet takes the target im-
age to predict the depth map, while the PoseNets take the
adjacent two frames for camera ego-motion estimation. In
the training stage, three consecutive video frames It−1, It
and It+1 are fed into the MiniNet, where the middle frame
It is marked as the target image and the rest are source im-
ages. While in the inference stage, only the DepthNet is
remained for single image depth prediction. In this project,
we first implement a DepthNet and test the prediction per-
formance when using the DepthNet alone. Then, we add up
the PoseNet to the DepthNet and compare the result with
the one without using the PoseNet.

2.2.1 Structure of the DepthNet

The structure of the DepthNet is illustrated in Fig. 4 that
consists of a recurrent module-based encoder and an up-
sample blockbased decoder.

The encoder part consists of a standard convolutional
layer and a recurrent module. The first layer is a standard

Figure 4. Schematic diagram of the DepthNet in the MiniNet.
The output feature maps from the first convolutional layer and the
recurrent module will be skip-connected to the corresponding up-
sample blocks in the manner of concatenation. The DepthNet it-
eratively uses the recurrent module to generate multi-scale feature
maps. i and T indicate the iteration time and total iteration num-
ber, respectively. s denotes the stride number of convolutional
layer. The multi-scale disparity predictions will be bilinearly up-
sampled to the same spatial resolution of the input RGB image[6].

3 × 3 convolution with a stride of 2 followed by ReLU ac-
tivation. The output channel number c of the first layer is
empirically set to 64. The recurrent module is built upon
the inverted residual block of MobileNetV3[3], which is
composed of five inverted residual blocks, where the mid-
dle block has the stride of 2 and the rest have that of 1.
Thus, the size of features will be halved via each iteration
of the recurrent module. Each inverted residual block is
composed of a pointwise convolution with ReLU6, a depth-
wise (Dwise) convolution with ReLU6 and the stride of 1 or
2, a Squeeze-and-Excitation (SE) block[4] and a pointwise
linear convolution.

The decoder part is based on several up-sample blocks.
The up-sample block is composed of three residual DSconv
blocks[7], Nearest-upsample, concatenation, and sigmoid
operations. These residual DSconv blocks are plug-in re-
placement of the standard convolutions, which consist of
depth-wise and point-wise convolutions with the shortcut
connection between the input and output[7].

2.2.2 Structure of the PoseNet

The architecture of PoseNet is shown in Figure 3. We use
ResNet as the backbone, following by a 1 × 1 convolution

2

with 6 output channels, corresponding to 3 Euler angles
and 3-D translation to represent the transformation matrix
Tt−1,t. Finally, a global average polling is applied to ag-
gregate predictions among pixels. Based on the camera in-
trinsic matrix I , we could project the target image’s depth
D into a 3D point cloud. After applying the transformation
matrix Tt−1,t and projecting them back to the pixel space,
we could get a color prediction about the source image.

2.3. Optimizer

The training of this network utilizes Adam optimizer
with weight decay equal to 1×10−5 and learning rate set to
5×10−4. This is due to the fact that Adam converges faster
and usually works well with default parameters. However,
while Adam plays a major role in this part of training, SGD
optimizer is tested on its training performance as a minor
character too.

2.4. Loss Function

The idea of training is using the loss between the depth
map output and the ground-truth to optimize, with the ideal
situation to find the global minimum in the loss contours.
In this project, three different loss functions: mean-square-
error(MSE) loss, L1 loss and self-defined scale-invariant
loss function based on paper[1] are applied for training
the model. Particularly, scale invariant loss is illustrated
as following: L(y, y∗) = 1

n

∑
i d

2
i − λ

n2 (
∑
i di)

2 where
di = log(yi) − log(y∗i), yi and y∗i are pixel values in two
images and λ ∈ [0, 1][1], this loss balances between the L2
loss and the exact scale-invariant loss, which is ideal for this
scenario.

3. Experiments
3.1. Computational resources

In this depth prediction project, we all used google co-
lab and pytorch framework to do the works. With the aid of
colab Pro, we obtained the access of more powerful GPU,
more workers and larger memory to store bigger data sets;
colab Pro helped us boost our training speed and find prob-
lems faster.

3.2. Metrics

In this project, we consider to evaluate the performance
of the model from two aspect, error and accuracy respec-
tively.

For the error part, we would follow the standard eval-
uation tools like relative absolute error (Abs Rel), relative
squared error (Sq Rel), root mean squared error (RMSE)
and root mean squared log error (RMSLE)[10]. The fol-
lowing is the list of all metrics we would deploy to evaluate
the performance:

Abs Rel: 1
N

∑N
i=1

|d̂i−di|
di

Sq Rel: 1
N

∑N
i=1

||d̂i−di||2
di

RMSE:
√

1
N

∑N
i=1(d̂i − di)2

RMSLE:
√

1
N

∑N
i=1 ||log10(d̂i)− log10(di)||2

where d̂i and di are predicted depth and ground-truth
depth at pixel i ∈ Test image j respectively; N is the total
number of pixels in Test image j.

For the accuracy part, we evaluate it within a threshold:
the percentage of d̂i s.t. δj = max

(
di
d̂i
, d̂idi

)
< 1.25j , where

j = 1, 2, 3.

3.3. Qualitative results

Shown as Fig. 5, our model can catch details from the
ground truth maps and generate similar results. The contour
of objects is also clear in the prediction results.

Figure 5. Example of a depth map prediction result.

3.4. Quantitative results

The quantitative results are shown in Table. 1, in which
we compare the performance of different models and pa-
rameters. Here adaptive learning rate means that there exists
a 1% - 4% decay on the learning rate after each epoch. Two
scales of the dataset are used for experiment, the standard
size dataset includes 3500 pairwise images and the large
size dataset includes 50000 pairwise images.

From the results, it can be found that the DenseNet
trained by MSE loss and adaptive learning rate for 100
epochs on the standard size of dataset has the best perfor-
mance in both error and accuracy metrics.

3.5. Data

We use the NYU dataset [8] for our training and evalu-
ation. It is a dataset containing some daily scene like bath-
room, bedroom, living room and so on. The raw dataset
contains the raw RGB and Depth images and accelerometer
dumps from kinect.

4. Implementation
4.1. Data Preparation

We use around 50000 pairwise images as our data. Be-
cause the data from kinect is not synchronized, we should
first align them following the timestamps. 50000 images
would take a large amount of memory to store. Rather than

3

Table 1. Comparison of monocular depth prediction results on NYUv2 dataset, where adaptive learning rate means that there exists a 99%
- 96% decay on the learning rate after each epoch. Two scales of the dataset are used for experiment, the standard size dataset includes
3500 pairwise images and the large size dataset includes 50000 pairwise images.

Structure Loss Epoch Learning Rate Dataset Size Error (lower is better) Accuracy (higher is better)
Abs Rel Sq Rel RMSE RMSLE δ < 1.25 δ < 1.252 δ < 1.253

DepthNet MSE 100 constant standard 0.039 0.012 0.125 0.040 0.968 0.985 0.996
DepthNet MSE 100 adaptive standard 0.039 0.012 0.125 0.039 0.969 0.986 0.996
DepthNet Scale-Invariant 100 adaptive standard 1.471 2.219 1.518 0.393 0.005 0.013 0.022
DepthNet MSE 50 adaptive standard 0.071 0.019 0.169 0.055 0.946 0.977 0.992
DepthNet MSE 15 adaptive large 0.091 0.038 0.240 0.078 0.906 0.943 0.959
DenseNet MSE 15 constant standard 0.050 0.017 0.147 0.049 0.947 0.981 0.995
DenseNet MSE 22 constant standard 0.050 0.015 0.141 0.047 0.949 0.981 0.996
DenseNet MSE 45 adaptive standard 0.032 0.011 0.120 0.038 0.966 0.988 0.997
DenseNet MSE 100 adaptive standard 0.025 0.008 0.101 0.032 0.974 0.992 0.998

load them together into RAM, we use pytorch dataset mod-
ule to design a high performance, multi-process dataloader.
The data is stored in the disk, and the dataloader would cre-
ate multi-subprocess to accelerate data loading.

4.2. DenseNet based Deep Neural Network

The implementation of this part was built from scratch
and was guided by the Densely Connected Convolutional
Networks paper[5]. Since the structure of DenseNet[5] is
so complex that it seems wise to make things module-wise.
Here are the logistics of my net structure: firstly, there
should be Dense Blocks[5] and Transition Blocks[5] that
constitutes the bones of the net. Dense Blocks are consisted
of many Dense layers of user’s configuration. Since we are
doing depth-prediction and for the sake of same output size,
we removed the Classification layer that flattens the output,
on the basis of this, we add upsampling encoder to work
with this DenseNet based decoder. A scale-invariant loss
was also implemented[1].

4.3. MiniNet based Deep Neural Network

The implementation of the MiniNet as well as the
DenseNet is based on the work of J. Liu et al.[6]. The out-
put depth map of their network is 1/4 of the original image
size. In our work, we add two more upsample blocks in the
decoder to let the output size match the ground truth depth
map. This modification is benefit for generating more ac-
curate depth map. Besides, it is also more convenient to
compute error between the prediction and the ground truth.

5. Pitfalls
The first pitfall in the training process is the usage of

scale-invariant loss. Despite this loss is nice in the way of
combining the nice properties of two losses, we ignore a
huge issue during training: the pixel values. During the start
of training process, many of the pixel values in the predicted
depth map may not be well defined yet, even missing val-
ues could present. Especially near object boundaries, win-
dows and specular surfaces[1], this leads to our models not

converging well, stuck at some point during training while
using scale-invariant loss.

The quality of dataset could be another troublesome is-
sue in training. When plotting out the ground truth depth
maps for many images, there are many evident sections
colored in yellow caused by reflection or edge problems.
Learning these unwanted noises could be potentially harm-
ful to our final network predictions.

Additionally, we naively contributed the reasons of our
networks not performing good enough to the reason of
smaller dataset (of around 3500 labelled images). Since
larger sample size usually means lower variance among the
distribution of sample, we suppose that better models could
be learned. We then try to train with dozens of thousands of
labelled data. But the performance, surprisingly, degrades
so fast that everything seems to be much worse than pre-
vious results, in the perspective of either training time and
accuracy. Based on the work of J. Hestness et al.[2], in or-
der to reach frontier targets defined by ml experts, datasets
will need to grow 33-971 times, while models will need to
grow 6.6-456 times to achieve target accuracy. This gives us
a hint that a more complex network is required for a larger
size of dataset.

While implementing the PoseNet, we find it is hard to
vectorize the total process, especially about the process of
differentiable image wrapping from PyTorch, and a for-loop
version would be a disaster for training. Finally, we only
successfully implement a Numpy version . We think the re-
sult turns into CUDA programming, however there is not
much time to do this.

4

References
[1] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-
work. CoRR, abs/1406.2283, 2014. 3, 4

[2] Joel Hestness, Newsha Ardalani, and Greg Diamos. Beyond
human-level accuracy: Computational challenges in deep
learning. CoRR, abs/1909.01736, 2019. 4

[3] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3, 2019. 2

[4] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.
Squeeze-and-excitation networks, 2019. 2

[5] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works, 2018. 1, 4

[6] Jun Liu, Qing Li, Rui Cao, Wenming Tang, and Guoping
Qiu. Mininet: An extremely lightweight convolutional neu-
ral network for real-time unsupervised monocular depth es-
timation. ISPRS Journal of Photogrammetry and Remote
Sensing, 166:255–267, 2020. 1, 2, 4

[7] Marcelo Gennari do Nascimento, Roger Fawcett, and Vic-
tor Adrian Prisacariu. Dsconv: efficient convolution opera-
tor. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5148–5157, 2019. 2

[8] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012. 3

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015. 2

[10] Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe, and
Elisa Ricci. Transformers solve the limited receptive field
for monocular depth prediction, 2021. 3

5

