
BallerStats: Estimating Distance Traveled with Video Footage

Robert Buckley
robuckle@umich.edu

Richard Guan
guanr@umich.edu

Jensen Hwa
hwaj@umich.edu

Tony Pan
tonypan@umich.edu

Calvin Zheng
calzheng@umich.edu

1. Introduction

Obtaining advanced statistics beyond those simply ob-
servable to the naked eye can prove immensely useful in
basketball, helping teams and players glean key insights
into their performance and how their movement on the court
may translate to points on the board. This type of data
is currently available to professional teams in the National
Basketball Association (NBA). Still, it remains largely out
of reach for everyday pickup basketball players who want
to improve their game.

There is a company, Second Spectrum, that is officially
partnered with the National Basketball Association (NBA)
and provides teams with these advanced statistics to help
them improve their game. This type of digital analysis
would help save hours of manual review on film and pro-
vide more accurate data to coaches and players. This com-
pany currently utilizes a player tracking system and various
undisclosed machine learning and computer vision tech-
niques [1]. Similarly, a group of students from Stanford
University recently completed a project to track basketball
players from NCAA basketball games and map the player’s
positions from the court onto an aerial view of the court,
showing how a player’s movement changed between frames
[7].

Using computer vision to obtain various advanced statis-
tics in basketball is solvable using computer vision tech-
nologies. Our project estimates the distance a player has
moved on a court, which is not an easy statistic to track
while a game is occurring. This problem is solvable as it
relies on object tracking, single view depth perception, and
camera calibration. Object tracking has been a staple of
computer vision for quite some time and is reasonably reli-
able. Similarly, camera calibration using checkerboards is
accurate and dependable, as found in [8]. Simultaneously,
the accuracy of single view depth perception has been dras-
tically improved by deep learning techniques in recent years
[6].

To address this issue, we have figured out a way to obtain
this data through computer vision by tracking and identify-

ing a single player throughout a video and then determining
the real-world coordinates of the player. We can accomplish
it by finding and using the intrinsic matrix of a camera and
the depth of an object in an image. We obtained our intrin-
sic matrix through camera calibration and depth by utilizing
single view depth perception. This approach then allowed
us to compute and track the distance traveled by the player.

2. Approach

We developed our project in Python 3 code. To accom-
plish our goal of tracking the player distance, we collected
video footage of a player playing basketball using a cali-
brated camera, drew a bounding box to identify the player
in the initial frame, used a CSRT tracker to track the player
through subsequent frames, applied the MiDaS model [6]
to obtain a depth map of disparity to be used to estimate the
depth of the player, found the real-world coordinates of the
player on the court in each video frame using the depth and
pixel location of the player, and computed the distance trav-
eled over video. A visual representation of our algorithm is
shown in Figure 1.

2.1. Camera Calibration

To obtain the intrinsic matrix of our camera, we cali-
brated a Google Pixel 3’s camera following the steps out-
lined in OpenCV’s checkboard calibration tutorial [2]. We
obtained over 20 images of the same checkboard with
different angles, perspectives, distances, and distortions
through this process. Then, we used the intrinsic matrix
obtained from the camera to map from pixel coordinates to
world coordinates. The intrinsic matrix from our camera
was:fx 0 cx

0 fy cy
0 0 1

 ≈

1546.07 0 962.98
0 1544.42 526.78
0 0 1


fx and fy are the focal lengths, whereas cx and cy are the
coordinates of the principal point.

1



Figure 1. Algorithm overview

2.2. Player Tracking

Tracking begins once the user of our program draws a
bounding box around the player and the basketball hoop in
the video. We experimented with two OpenCV trackers,
the MIL and CRST trackers [3, 4], to track the player in
the video. The MIL tracker is based on Multiple Instance
Learning as detailed in [5], but in essence, the tracker uses
the space around the specified object and labels it as the
object. Meanwhile, the CRST tracker utilizes the Discrim-
inative Correlation Filter with Channel and Spatial Relia-
bility (CSR-DCF). A spatial reliability map makes sure that
the filters are constrained to only parts of the image that
are supposed to be tracked [10]. This method has been
known to work well with irregularly shaped objects that are
non-rectangular. We ultimately chose to use CRST as it
was more accurate when tracking the player in our videos,
but we did note a few observations about the two differ-
ent trackers. We noticed that MIL runs faster but will get
lost if someone moves too quickly, whereas CRST is much
slower than MIL but more reliably tracks the player. Both
of these trackers work well for our single-player videos, but
we must note that neither would work well for a real bas-
ketball game. The trackers would get confused when two
people appear close to each other. Solving this problem in-
volves implementing multiple object tracking (MOT), but
we chose not to focus on MOT for our project.

2.3. Depth Perception

Another integral part of our project was using depth per-
ception to help us determine the real-world coordinates of
the player. For depth perception, we used the MiDaS model
to generate depth maps of disparity for each of the frames
in our video [9]. The MiDaS model was beneficial for our
object as it was developed for monocular depth estimation,
allowing us to obtain the relative depth of the player from
the camera in each frame. MiDaS is relatively accurate
when used for single-view depth perception as it combines
deep learning techniques and a large variety of datasets, in-
cluding 3D movies [9]. This model was then evaluated on
datasets not used in training, in which the results were very
accurate [9]. For our project, we slightly modified the input
of the MiDaS model so that MiDaS takes in videos as inputs

and outputs depth disparity maps as images. With these dis-
parity maps, we obtained the disparity matrix of the image,
which we then used to compute the depth and, ultimately,
the distance.

2.4. Distance Computation

To compute the distance traveled by the player, we ref-
erenced all of the data we collected through the drawing
of the bounding boxes, player tracking, camera calibration,
and depth perception. Recall that two bounding boxes are
drawn in each video: one over the player and the other over
the basketball hoop. We decided to use the basketball hoop
as our landmark as it was simple to obtain the distance to
the camera. This technique worked well, as we could use
this to find the scaling constant to convert our pixel coordi-
nates into real-world ones. From the depth perception part
of our project, we obtained both the disparity matrices from
the basketball hoop and the player. We calculated the depth
by using the following equation: D = dH ∗ dispH/dispP ,
where D is depth, dH is the known depth from the hoop to
the camera, dispH is the disparity of the hoop, and dispP
is the disparity of the player. The disparity of the player
and the hoop was obtained by using the pixel values of the
player and hoop from the object tracker as the indices in the
disparity matrix of the image. With the depth of the player,
we computed the real-world of the player by using the fol-
lowing equations below, where x and y are the real-world
coordinates of the player, x1 and y1 are the pixel coordi-
nates of the player, (cx, cy) is the principal point obtained
from the intrinsic matrix, and fx and fy are the focal lengths
from the intrinsic matrix.

x = (x1 − cx) ∗D/fx
y = (y1 − cy) ∗D/fy

From this, we obtained the real-world coordinates of the
player in each frame, which we then used to compute the
Euclidean distance of the player and the total distance trav-
eled over the duration of the video.

3. Experiments
To ensure the validity and accuracy of our project, we

tested various parts of our project in isolation and then as



a whole. We evaluated our camera calibration system and
depth estimation separately before testing the overall accu-
racy of the distance computed.

3.1. Data Collection

To complete this project, we needed to record our videos
to simulate what it would be like for pickup basketball play-
ers to videotape themselves practicing or playing a game.
We went to a nearby park in Ann Arbor, Michigan, and
took several measurements, including the distance from the
basketball hoop to our camera and from the hoop to the
free-throw line. Figure 2 showcases all of the measure-
ments we took of the basketball court. For the videos, we
first recorded the player running in straight lines along these
measurements before advancing to more freeform paths.

Figure 2. Leslie Park Basketball Court Measurements

3.2. Empirical Evaluation of Camera Calibration

As we finished writing the code for camera calibration,
we wanted to ensure that it was valid; therefore, we tested
it by performing an extrinsic calibration with April Tags
[11]. Below, Figure 3 showcases our setup for evaluating
our camera calibration.

Figure 3. Setup for Extrinsic Calibration with April Tags

After performing the extrinsic calibration, we compared

the values we obtained with the actual measurements. Table
1 below shows the results of this evaluation.

Table 1. Results of April Tags Evaluation
Tag
No.

Ground
Truth (m)

Predicted
Value (m)

Absolute
Diff. (m)

% Er-
ror

0 [0.2,
0.0127,
0.0381]

[0.1784,
0.0103,
0.0474]

0.0237 11.59%

1 [0.2254,
-0.0127,
0.0381]

[0.2033,
-0.0119,
0.0478]

0.0242 10.55%

2 [0.2,
0.0127,
0.0127]

[0.1769,
0.0107,
0.0253]

0.0264 13.15%

3 [0.2254,
-0.0127,
0.0127]

[0.2016,
-0.0115,
0.0257]

0.0271 12.00%

From this evaluation, we observed that the average per-
cent error among the four tags was 11.78%. We decided
to use absolute average percent error as our error evalua-
tion metric due to there being multiple measurements. We
expected the errors to have a mean of zero, and the abso-
lute error difference here is in the range of 0.2 meters that
would not reflect well onto other ranges. Although our error
is 11.78%, the actual error is much lower since most of the
error was caused by external factors. These external factors
included the camera not being perfectly perpendicular to the
surface or the April Tags not being precisely at the specified
locations.

3.3. Evaluation of Depth Estimation

After applying the MiDaS model to our video, we took
random image frames, computed the depth, and compared
it with our ground truth values. Examples of depth map
images returned by the model are shown in Figure 4. Our
evaluation results are shown in Table 2.

Figure 4. Depth Map Images

From our results, we gathered that the average absolute
error among all of the images was 1.17236 meters while the



Table 2. Depth to Player Evaluation

Image Name
Ground

Truth (m)
Predicted
Value (m)

Absolute
Diff. (m)

short1/0 13.10 11.62808 1.47191
short1/7 7.36 7.61437 0.25437
short2/0 13.10 11.77528 1.32471
short2/6 7.36 8.19754 0.83754
short3/0 13.10 7.43173 5.66826
short3/6 5.56 4.75771 0.80228
med3/0 13.10 13.22718 0.12718
med3/6 7.36 6.51299 0.84701
med4/0 13.10 12.75974 0.34025
med4/6 7.36 7.30994 0.05005

Figure 5. Visualization of Distance Traveled

average percent error was 11.67%. These results were not
wholly unexpected as depth perception based on a single
camera is difficult; therefore, we expected many noise and
inaccuracies from depth estimation.

3.4. Distance Evaluation

The distance evaluation is essentially the final evaluation
of our project, as our main goal was to track player distance
using a video. To help us evaluate and better showcase the
distance, we added visuals on each image frame to show-
case where the player has been and the distance traveled,
as showcased in Figure 5. Once again, we compared the
distances computed for each video by our algorithm to the
ones that we measured, and the results are shown in Table
3.

We computed the average error to be 4.936 meters and
the average percent error to be 46.146%. Given that there
was some error in both the camera calibration and depth
perception stages, it is not surprising that there is a decent
amount of error in our final estimation. We should note that
our distances are still relatively accurate.

4. Implementation

Our project comprises many different parts: camera cali-
bration, player tracker, depth perception, translation to real-
world coordinates, and data visualization. For our camera

Table 3. Distance Traveled by Player Evaluation
Video
Name

Ground
Truth (m)

Predicted
Value (m)

Absolute
Diff. (m)

Percent
Error

short1 5.74 7.95 2.21 38.50%
short2 5.74 9.50 3.76 65.54%
short3 7.54 8.39 0.85 11.27%
med1 7.24 10.88 3.64 50.28%
med2 7.24 10.36 3.12 43.09%
med3 7.46 11.96 4.50 60.32%
med4 7.46 11.85 4.39 58.85%
long1 41.18 58.20 17.02 41.32%

calibration section, we followed the procedures based on
OpenCV’s Checkboard Calibration tutorial [2]. When eval-
uating our calibration, we calibrated the extrinsics of the
camera using April Tags, which returns the pixel coordi-
nates of the tags [11]. We computed the world coordinates
of each April Tag using both intrinsics and extrinsics cam-
era parameters. We compared that with the ground truth
tag locations. For the player tracker, we utilized the CSRT
tracker from OpenCV [3] based on [10] but wrote the code
to draw the bounding boxes and give visual indications of
what was selected. In terms of depth perception, most of
the code in the depth folder was imported through the Mi-
DaS repo [9] to use the model on our code. We modified
the original script that runs the model to take either photos
or videos as input. We wrote all of the code relating to the
translation of image pixel values to real-world coordinates.
We created a visualization on the final frame to showcase
where the distance was computed by showing the player’s
trajectory.

References
[1] ”Second Spectrum - Our Work.” Second Spectrum.

https://www.secondspectrum.com/ourwork/teams-
leagues.html (accessed Apr. 24, 2021). 1

[2] ”Camera Calibration.” OpenCV. https://docs.opencv.org
/master/dc/dbb/tutorial py calibration.html (accessed Apr.
24, 2021). 1, 4

[3] ”cv::TrackerCSRT Class Reference.” OpenCV. https://docs
.opencv.org/3.4/d2/da2/classcv 1 1TrackerCSRT.html
(accessed Apr. 20, 2021). 2, 4

[4] ”cv::TrackerMIL Class Reference.” OpenCV. https://docs
.opencv.org/3.4/d0/d26/classcv 1 1TrackerMIL.html#details
(accessed Apr. 20, 2021). 2

[5] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking
with online multiple instance learning. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
983–990, 2009. 2

[6] B. Babenko, M.-H. Yang, and S. Belongie. Robust ob-
ject tracking with online multiple instance learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33(8):1619–1632, 2011. 1



[7] E. Cheshire, M.-C. Hu, and M.-H. Chang. Player tracking
and analysis of basketball plays. 2015. 1

[8] A. Datta, J.-S. Kim, and T. Kanade. Accurate camera cali-
bration using iterative refinement of control points. In 2009
IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, pages 1201–1208, 2009. 1

[9] K. Lasinger, R. Ranftl, K. Schindler, and V. Koltun. To-
wards robust monocular depth estimation: Mixing datasets
for zero-shot cross-dataset transfer. CoRR, abs/1907.01341,
2019. 2, 4

[10] A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kris-
tan. Discriminative correlation filter with channel and spatial
reliability. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017. 2,
4

[11] J. Wang and E. Olson. AprilTag 2: Efficient and robust fidu-
cial detection. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Octo-
ber 2016. 3, 4


