EECS 442 Project: MasKlassifier

Shiqi Sheng
University of Michigan

ssheng@umich.edu

Milan Gupta
University of Michigan

milagu@umich.edu

Abstract

This project is a deep learning classifier that can de-
termine if a person is wearing a face mask correctly or
not when shown an image of said person. This classifier
contains three sub-classifiers, one for detection of a visible
nose, one for a detection of a mouth, and one for detection
of a mask. These three outputs are combined to determine
if a mask is worn correctly, covering the mouth and nose.

1. Introduction

The COVID-19 pandemic took the world by surprise in
the first months of 2020, forcing the entire world to adapt to
an isolative way of life to avoid the spread of a new, highly
contagious, and lethal coronavirus that transmits through
viral particles that are absorbed through the eyes and nose.
An invaluable part of curtailing transmission of the
COVID-19 virus is wearing a mask over the nose and
mouth. This keeps potentially viral particles restrained,
minimizing infection risk in both private and public through
interactions between people who are not in each others’
households.

1.1. The Problem

Although most established public health organizations
both nationally and internationally (including the WHO and
CDC) highly recommend wearing masks in public, research
done in August 2020 by Dr. Deborah Cohen et al. as shown
in [2] found that 49% of people Philadelphia in commercial
corridors were wearing their masks incorrectly, if at all.

This poses a huge problem as the pandemic rages on to
this day, over a year after it began. Unless the entire popula-
tion contributes to public health and safety by following cur-
rent guidelines, everyone is put at a significantly higher risk
of contracting COVID-19 and spreading it further. Thus,

Ashutosh Bhown
University of Michigan

asbhown@umich.edu

Adityasai Koneru
University of Michigan

adityask@umich.edu

Vishnu Murthy
University of Michigan

vrmurthy@umich.edu

most businesses and establishment chains that host their pa-
trons in indoor spaces require masks at all times within their
buildings. However, it is all too easy for customers to wear
their masks incorrectly by leaving their nose, mouth, or both
exposed, or even remove their masks completely.

1.2. The Solution

The only current line of defense to prevent these con-
sumers from putting an entire building’s occupants at risk
is for employees to notice these rule-breakers and initiate
the appropriate resolution process. However, this is not a
guaranteed nor efficient solution, as employees have other
duties to attend to, and it is possible to avoid employees to
begin with. This system evidently leaves much to be de-
sired; if there was some sort of automated method of de-
tecting whether someone was not wearing their mask cor-
rectly, and employees could be alerted to deal with these
situations promptly, it would promote a significantly safer
environment in businesses for everyone.

Thankfully, deep learning technology has permitted de-
velopers like Adrian Rosebrock to be able to do just this [4].
He developed a program to recognize masks in real-time
video feeds. APIs such as PyTorch, OpenCV, and Tensor-
Flow allow streamlined construction of deep learning net-
works that can utilize image manipulation and convolution
to learn features through spatial patterns and then learn to
predict classes when presented with unlabeled examples.
Many of these current models are binary in detecting ei-
ther mask or no mask. Thus, these models fail to account
for incorrectly worn masks.

Using PyTorch, we created three convolutional neural
networks to determine if a person is wearing their mask cor-
rectly. The three networks detect noses, mouths, and masks.
If a mask is detected and both nose and mouth are not visi-
ble, the system will label the face as correctly masked. If no
mask is detected, it will be labelled as maskless. Otherwise,
it will be flagged as incorrectly masked.



2. Approach

The deep learning classifier we created takes in an im-
age of a face and determines if that person is wearing their
mask correctly. This was implemented in Python, largely
using the PyTorch Application Programming Interface. It
consists of four components: A neural network used to de-
termine if a nose is visible in an image (this will be referred
to as the Nose Classifier), a neural network used to deter-
mine if a mouth is visible in an image (this will be referred
to as the Mouth Classifier), a neural network to determine if
a mask is visible (this will be referred to as the Mask Classi-
fier), and a driver program to consolidate the outputs of all
of these individual feature classifiers into a determination
of whether the subject is correctly wearing a mask, cov-
ering their nose and mouth with their mask, or incorrectly
wearing their mask, or not wearing a mask at all.

2.1. Dataset

The dataset selected for this project is called
MaskedFace-Net and consists of 133,783 images of
both Correctly Masked and Incorrectly Masked faces [1].
A correctly masked image is defined as a mask covering
both the nose and mouth of the face. Incorrectly worn
masks fail to cover either one or multiple of these facial
features. However, this dataset fails to include faces with
no mask worn.

The MaskedFace-Net dataset is based on the dataset
Flickr-Faces-HQ (FFHQ) which contains 70,000 images of
human faces [3]. MaskedFace-Net features these faces with
realistic computer generated masks placed on the faces. In
order to access images without any masks, we defaulted to
the original FFHQ dataset.

Images in both datasets are 1024 by 1024 pixels.

2.2. Data Preprocessing

Before even considering the procedure that turns the in-
put of an image of a face into classification of whether they
are correctly masked or not, the very first thing to consider
is augmentation of the actual dataset itself to potentially im-
prove efficiency and performance, which in this case con-
sisted of color images of resolution 1024 pixels by 1024
pixels, with each image containing a face with either a cor-
rectly worn mask, an incorrectly worn mask, or no mask
at all. Two augmentations were made to the images from
this dataset used to train and test the system: resizing and
greyscaling.

In addition to resizing and greyscaling, we created an
additional dataset called the “Translations” dataset.

2.2.1 Resizing

The images used in this dataset were a default size of 1024
pixels by 1024 pixels, which provides a very high resolu-

tion. Although this may provide more image clarity, it does
not translate well into being processed by a neural network,
as it takes significantly more time to process more complex
images. As the classifier depends on three neural networks
for final output, using these high definition images would be
extremely slow. To speed this process up, each image used
was resized to 256 pixels by 256 pixels. This makes images
significantly easier to process for the neural networks and
also works to reduce some noise in the image.

2.2.2 Greyscaling

This dataset was created only using one form of mask —
blue surgical masks. Although these are common, there are
many other types of masks in use today, and it would thus
be a possible danger to train on these types of masks, as
recognition of the distinctive blue color of these masks may
create a shortcut for the Mask Classifier to prematurely clas-
sify a positive instance of a mask and/or restrict potential
instances of masks to have the color blue. This would not
be able to translate well to the real world, as application to
another type of mask (i.e. a black cloth mask) could poten-
tially result in a false negative from the Mask Classifier.

To work against this, we chose to greyscale images that
would be used for training and testing the classifier, such
that the possibility of the networks (the Mask Classifier
in particular) learning shortcuts through the colors of the
masks or anything unnecessary in the image would be re-
duced. This reduces the image from three channels (R, G,
B) to one channel (greyscale).

2.2.3 Augmented Dataset with Translations

Our dataset primarily consists of images with faces located
in the center of the image. Although this is ideal in terms
of consistency, this may not reflect real-world scenarios as
heads can be shifted and tilted. We want to make sure our al-
gorithm is more generalizable and robust. Thus, we created
a separate dataset to reflect this. For each greyscaled/resized
image, we performed 4 shifts (up/left, up/right, down/left,
down/right each by 15% of the height and width of the im-
age), 20° clockwise rotation, and 20° counterclockwise ro-
tation. Each image would produce a series of 6 additional
images, one for each of the aforementioned translations.
Due to computational limits, 2 resultant images out of the 7
candidate images (6 translations and the original) were ran-
domly chosen to be in the dataset. Augmenting our dataset
with translated images allows for a model with greater sem-
blance to real-world scenarios.



2.3. Network Architectures and Specifications
2.3.1 Classifier Architecture

The Nose Classifier, Mouth Classifier, and Mask Classifier
were all implemented using PyTorch. The same architec-
ture was used across all three neural networks to maintain
consistency and make debugging easier. The architecture is
as follows:

1. Max CNN Block I:
(a) Convolutional 2D Layer (input size, hidden layer
size, 3x3 kernel size)
(b) Batch Norm 2D Layer (hidden layer size)
(c) ReLU Activation layer
(d) Max Pool 2D Layer (2x2 kernel size, 2x2 stride)

2. Avg CNN Block:

(a) Convolutional 2D Layer(input size, hidden layer
size, 3x3 kernel size)

(b) Batch Norm 2D Layer (hidden layer size)
(c) ReLU Activation layer

(d) Average Pool 2D Layer (2x2 kernel size, 2x2
stride)

3. Max CNN Block II:

(a) Convolutional 2D Layer(input size, hidden layer
size, 3x3 kernel size)

(b) Batch Norm 2D Layer (hidden layer size)
(c) ReLU Activation layer
(d) Max Pool 2D Layer (2x2 kernel size, 2x2 stride)

4. Fully Connected Layer (flattened hidden layer output
size, output size)

2.3.2 Classifier Hyperparameters

Each neural network also contains the following hyperpa-
rameters:

Input size = 1

Hidden Layer Size = 32

Output Size =2

Batch Size = 64

Learning Rate = 0.01

Weight Decay = 0.0001

Number of Training Epochs = 10

2.4. Final Output Consolidation Algorithm

Once all three neural network sub-classifiers have their
outputs, the final step is to aggregate the information from
all three networks and determine if the person in the original
input image is wearing their mask correctly, incorrectly, or
not wearing a mask at all. This is done in essentially several
conditional statements:

If a visible nose is not detected, a visible mouth is not de-
tected, and a mask is detected, the image is classified as
”correctly masked”.

If no mask is detected at all, the other two inputs are ignored
and the image is classified as ’no mask”.

In any other combination of outcomes (mask/nose visi-
ble/mouth not visible, mask/nose not visible/mouth visible,
mask/nose visible/mouth visible), the classifier labels the
image as “incorrectly masked”.

2.5. Visualizations of System

Illustration of Image Preprocessing:

CORRECT

Input
Image

INCORRECT

INCORRECT

3. Experiments
3.1. Training Process

As stated previously, our model is a compilation of three
classifiers: Nose Classifier, Mouth Classifier, and Mask
Classifier. In our training process, we decided to train each
of these classifiers separately before combining the trained
models. Using the preprocessed MaskedFace-Net images,
we trained all three classifiers for 10 epochs each. We also
class balanced our data for each of the three models by train-
ing on an equal number of images per class.



Below you can see the training and validation accuracy
plots for each of the classifiers:

Nose Classification

10

09

08

Accuracy

06

| = Training
05 Validation

o 1 2 3 4 5 B 7 :] 9
Epoch

Accuracy

— Taining
04 Validation

a 5 6 7 8 9
Epoch

o
~
w

Mask Classification

——
I ——

Accuracy

= Training
Validation

o
-
"
w
S
v
e
-

:] 9
Epoch

The final testing accuracies for Nose Classifier, Mouth
Classifier, and Mask Classifier are 99.45%, 98.67 %, and
97.6 %, respectively. All three of these classifiers perform
significantly better than the accuracy of a random classifier
(50%).

3.2. Combined Model

The final model uses the outputs of all three intermedi-
ary classifiers to make a ternary decision. If a mask is not
detected by the Mask Classifier, the model will identify the
individual in the image as not wearing a mask. If a mask
is detected but either the Nose Classifer or Mouth Classifier
detect their respective facial feature, the model will output a
classification of an incorrectly worn mask. The model only
classifies a correctly work mask if a mask is detected with-
out detecting a nose or mouth.

In all, our designed model makes a ternary decision: no
mask, incorrectly worn mask, and correctly worn mask.

Here is an example classification on an incorrectly masked
individual:

Nose Classification: nose
Mouth Classification: no_mouth
Mask Classification: mask
Classification: incorrect

Based on our final tests on the MaskedFace-Net dataset,
our model has an accuracy of 79.15%.

Since most of the faces in those images were centered,
we used our translation dataset to test the robustness of our
model. When testing on this augmented dataset, our model
had an accuracy score of 58.13% which is still significantly
better than a random ternary choice (33%).

4. Implementation

In terms of our classifiers, our primary goal for this por-
tion was to design a convolutional neural network architec-
ture which would be effective. In order to do so, we used
various built-in functionality from PyTorch and Numpy.

We started by trying to create our own driver for the clas-
sifiers but ran into several difficulties due to lack of expe-
rience. Since we primarily wanted to focus on the model
architecture, we started by modifying the driver code from
Homework 5 of EECS 442 to maximize our time. Once we
had designed three viable classifiers from scratch, we de-
signed our own script to combine these three classifiers into
one cohesive model (as seen in classifier.py).

References

[1] cabani. Maskedface-net dataset. 2020. 2

[2] B. H. D. Cohen, T. MacKenzie and S. Williamson. Studio
Iudo somad report, 2020. 1

[3] N.R. Labs. Flickr-faces-hq dataset. 2019. 2

[4] A. Rosebrock. Covid-19: Face mask detector with opencv,
keras/tensorflow, and deep learning, 2020. 1



