
EECS 442 Computer Vision: Homework 3

Instructions

• This homework is due at 11:59:59 p.m. on Wednesday, March 10, 2021.

• The submission includes two parts:

1. To Canvas: submit a zip file of all of your code.
We have indicated questions where you have to do something in code in red.
We have indicated questions where we will definitely use an autograder in purple.
Please be especially careful on the autograded assignments to follow the instructions. Don’t
swap the order of arguments and do not return extra values.
If we’re talking about autograding a filename, we will be pulling out these files with a script.
Please be careful about the name.

Your zip file should contain a single directory which has the same name as your uniqname. If I
(David, uniqname fouhey) were submitting my code, the zip file should contain a single folder
fouhey/ containing all required files.

What should I submit? At the end of the homework, there is a canvas submission checklist
provided. We provide a script that validates the submission format here. If we don’t ask you for
it, you don’t need to submit it; while you should clean up the directory, don’t panic about having
an extra file or two.

2. To Gradescope: submit a pdf file as your write-up, including your answers to all the questions
and key choices you made.
We have indicated questions where you have to do something in the report in blue.
You might like to combine several files to make a submission. Here is an example online link
for combining multiple PDF files: https://combinepdf.com/.
The write-up must be an electronic version. No handwriting, including plotting questions.
LATEX is recommended but not mandatory.

Python Environment

We are using Python 3.7 for this course. You can find references for the Python standard library here:
https://docs.python.org/3.7/library/index.html. To make your life easier, we recommend you to install the
latest Anaconda for Python 3.7 (https://www.anaconda.com/download/). This is a Python package manager
that includes most of the modules you need for this course.

We will make use of the following packages extensively in this course:

• Numpy (https://docs.scipy.org/doc/numpy-dev/user/quickstart.html).

1

https://raw.githubusercontent.com/eecs442/utils/master/check_submission.py
https://combinepdf.com/
https://docs.python.org/3.7/library/index.html
https://www.anaconda.com/download/
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

• Matplotlib (http://matplotlib.org/users/pyplot tutorial.html).

• OpenCV (https://opencv.org/).

2

http://matplotlib.org/users/pyplot_tutorial.html
https://opencv.org/

Foreword

We’ll begin by reviewing the fitting of transformations from 2D points to 2D points. Some of this is from
lecture; some of it also appears in in textbooks. We figure you would benefit from a summarized version in
the same conventions as the lecture slides rather than having to translate conventions.

The Setup

Recall from lecture the setup:

1. Suppose we have a set of k correspondences (xi, yi) ↔ (x′i, y
′
i), or the pixel (xi, yi) in image 1

corresponds with the pixel at (x′i, y
′
i) in image 2.

2. It can be useful to avoid notational clutter to also define pT
i ≡ [xi, yi, 1] and p′Tj ≡ [x′j , y

′
j , 1]. These

are the homogeneous coordinates for the given pixels. When doing derivations, you should never to
assume that the last coordinate of pi is 1; however, once you build a specific matrix for a problem, the
“scale” of the coordinate is a free parameter, and so you can always set it to one.

3. Recall: Homogeneous coordinates are the 2D coordinates you know and love with an extra dimension.
So they have three coordinates [a, b, c]. When you have a homogeneous coordinate [a, b, c], you can
convert into an ordinary coordinate [a/c, b/c]. If c = 0, this corresponds to what’s called “the line
at infinity” (where parallel lines converge); for stitching you should have no points with c = 0. Two
homogeneous coordinates p and p′ represent the same point in the image if they are proportional to
each other, or p = λp′ for λ 6= 0.

4. We’d like to find a transformation or model between the images. This transformation is parameterized
by a small number of parameters. It is important to note that the precise direction (is it the transforma-
tion from image 1 to image 2 or is it the reverse?) will be the subject of many bugs and conventions
used by libraries you call. There is no shame in inverting it if you think things look wrong. We
may often refer to these transformations (or their parameters) in different shapes if this is notationally
convenient. For instance, a homography can be expressed as a 3x3 matrix of the form:

H =

 a b c
d e f
g h i

 =

 hT
1

hT
2

hT
3

 where h1 =

 a
b
c

 , h2 =

 d
e
f

 , h3 =

 g
h
i

 . (1)

Here, we have simply pulled the rows out. While you might want to use the 3 × 3 matrix H to
transform points (i.e., p′i ≡ Hpi if things fit right), you might also think of the homography as being
described by vertically stacking h1,h2,h3 together to make a 9 × 1 vector which you could call h
(the vector version of H). This isn’t a convenient form factor for doing matrix multiplications, but if
you want to formulate an optimization problem argmin ‖Ah‖22, it’s great. But in the end, the data is
the same.

Similarly, an affine transformation can be expressed as either a 3× 3 matrix, or a 2× 3 matrix M of
the form:

M =

 m1 m2 tx
m3 m4 ty
0 0 1

 or
[
m1 m2 tx
m3 m4 ty

]
, (2)

3

and we may want to gather all of the terms into one column vector [m1,m2,m3,m4, tx, ty]
T ∈ R6 or

in two matrices

S =

[
m1 m2

m3 m4

]
t =

[
tx
ty

]
. (3)

In the end it’s all the same transformation.

Reading a homography

So you have a homography H that your system produced. How do you read it? It’s tricky but you can get a
sense looking at individual terms while imagining the rest are identity.

First, always normalize by dividing by the last coordinate if you want to read it. You can arbitrarily scale
the homography without changing the operation it performs. If we use the notation from Eqn. 1, you will
always have to divide by the transformed point H[x, y, 1]T by gx+hy+ i. It’s better if you don’t have to do
this every time you want to read a component. If you have a zero in i, then things have really gone wrong.
This should not happen in the data we have given you (or rather, no homography with a zero in i should
have the best agreement with the correspondences you find).

Suppose you now have the matrix, but normalized. Keep in mind that you are doing this operation: x′

y′

1

 ≡
 a b c
d e f
g h 1

 x
y
1

 (4)

It can be helpful to examine what each set of terms does if the rest of the matrix is set to the identity matrix
(i.e., not transforming the points). This is when b, c, d, f, g, h = 0 and a, e = 1.

1. Linear transform (a, b, d, e): In general, this block is inscrutable without further processing. This
could be a rotation matrix if [a, b] and [d, e] are orthonormal (i.e., unit length and orthogonal to each
other); it could be a rotation followed by a shearing; it could be a scaling and shearing. In the end,
all matrices are a composition of a rotation, non-isotropic scaling, and rotation. But interpreting these
does not tell you what’s going on in an interpretable way. Precisely reading this bit is not worth your
trouble – the only thing to make sure is that the orders of magnitude of the matrix (and sign) are
roughly right.

2. Translation factors (c, f): This block always represents translation in x, y (c, f). These should be
about the size of the displacement between the two images (measured in one of the image’s pixels).

3. Scaling factors (a, e): These factors scale the values of x and y. You should not have very large
values here unless you are transforming between two very differently sized images. If these are
negative, your image is being flipped.

4. Shear factors (b, d): Each of these factors applies a shear mapping in the absence of other terms.
This does not mean, however, that if b, d 6= 0, then there is a shear mapping – if the transform is a
rotation in 2D, these will be non-zero as well (but a, e will also not be 1).

5. Affine transformation (a, b, c, d, e, f): If g, h are 0, then the rest of the homography is just an affine
mapping. Remember that affine transformations preserve lines and parallelism.

6. Perspective factors (g, h): These control how much “perspective effect” (to give a loose sense) is
incorporated. If g, h = 0, then parallel lines remain parallel; setting g, h 6= 0 is precisely what allows

4

https://en.wikipedia.org/wiki/Shear_mapping

this bend. If you represent the values of x, y in pixels (usually measured in hundreds), these should be
small. If they are large, something has gone wrong (or you somehow have HT so that the translation
factors are in the perspective factors’ location).

Fitting Models to Data

Here are some useful mathematical facts about least-squares and transformations, expressed concisely and
put in context of what they’re good for in computer vision:

1. Least-squares: Suppose I have a matrix A ∈ RN×M and vector b ∈ RN . The vector x∗ ∈ RM

that minimizes ||Ax − b||22 is given by (ATA)−1ATb, commonly referred to as the least-squares
solution. In practice, you should call np.linalg.lstsq, which handles the numerical catches to
this well.

What does this do for us? If I pick my variables A,b carefully, I can make the expression ||Ax−b||22
be something meaningful with regards to x (which typically contains the parameters of the model).
In particular, in our problems, we want to construct a matrix A and vector b so that they depend only
on the data we have (and not the models). Often in transformation-fitting problems, you put terms
involving the image coordinates from image 1 in A; then, if you put the terms of the transformation
into x, Ax contains the model’s assumptions about where the points go. Then if b are just the points
in image 2, ||Ax−b||22 is the sum of squared distances and measures how closely the transform maps
image 1 to image 2 given our correspondences. Then, when we solve for the optimal value for x, we
get the optimal terms of the model.

2. Homogeneous Least-squares: This is often good enough, but some setups are hard to do in standard
least-squares. Many computer vision problems are defined up to a scale. I can multiply the homogra-
phy matrix by a non-zero constant, and this has no impact on what the transformation actually does.
One of the standard tricks for dealing with this is called homogeneous least squares.

Suppose I have a matrix A ∈ RN×M . The unit vector x∗ ∈ RM s.t. ||x∗||22 = 1 that minimizes
||Ax||22 is given by the eigenvector of (ATA) that has the smallest eigenvalue. In some sense, you
can also read the above expression like minimizing ||Ax − 0||22 (just like setting b = 0 in the above
least-squares setup).

What does this do for our lives? Again, like setting up a least-squares problem, you put values
in A carefully so that if x∗ contains the transformation parameters (i.e., is the vertical stacking of
h1,h2,h3), Ax∗ should be close to zero if the transformation/model has fit well.

3. Degrees of freedom: Counting degrees of freedom can be tricky. We’ll do three here. The general
strategy is to try to identify how many parameters there are that you are free to pick. One way to
do this is to add one for every parameter, and then subtract off for every parameter that you are not
allowed to pick and then subtract one for every dimension that’s invariant (e.g., subtract one if the
object is known up to a scale). This can be dangerous since you can double count constraints – one
might imply another. Another option is to pick the parameters one by one, but only picking them if
they’re unconstrained. Then subtract for invariances (like scale).

Homographies: you have 9 parameters (+9); the matrix is known only up to a scale (−1). So it’s 8.

Homogeneous coordinates of the form [u, v, w] with w 6= 0: you have three coordinates (+3); the
value is known only up to a scale (−1). So it’s 2.

Rotation matrices: This is a 3× 3 matrix (+9) with the following constraints: the columns and rows
are each unit length, the rows and columns are orthogonal, and the determinant is 1 (not −1). A lot of

5

these constraints imply the others. An easier way to go about this is to pick the parameters column-by-
column. (Column 1) You can pick two out of the three coordinates in the first column (+2) since the
last coordinate is determined by the fact that the column must have unit norm. (Column 2) You can
pick one coordinate in the second column (+1) since the other two are constrained by the fact that that
column also has unit norm and must be orthogonal to the first column. (Column 3) The third column
is determined entirely by the first two: it is orthogonal to both (reducing the space you can pick to
a line), is unit norm (reducing it two two unit norm vectors on that line), and makes the determinant
positive (picking the specific vector).

4. Number of samples needed to constrain the problem: Given an object whose parameters we want
to estimate (e.g., a homography), we often fit the parameters of the object to data. Generally each
data point gives n equations which must be true if the model is functioning properly; the object
will generally have a number of free parameters/degrees of freedom which we’ll call p (e.g., for
homographies p = 8). Up to a small caveat, suppose we have k data points, if nk ≤ p, then the
system is underconstrained – the data points’ equations specify a family of models rather than a
specific one; if nk = p, then the system is constrained – the data points’ equations precisely specify a
model; if nk ≥ p then the system is overconstrained – almost certainly no model satisfies all the data
points’ equations and so we must find a best-fit model (e.g., via least-squares).

Caveat: In practice, one has to be careful with any of these setups: this analysis assumes that given
k points, you get nk equations. This isn’t necessarily true – suppose all the points were the same,
then you have only n independent equations. In computer vision, this is usually referred to as general
position and corresponds to the way that most points will behave (as opposed to something like trying
to fit a 3D plane to three collinear points).

Fitting Affine Transformations

We’ll next re-present the setups from class. In general, we will have k correspondences. Each correspon-
dence will produce multiple rows of the matrices A (and if appropriate b). You are free to allocate these
rows as zeros and fill them in, or write them out and concatenate them. If your solution doesn’t work, you
may want to re-enter the matrices in a different way.

...
x′i
y′i
...

 =

...

xi yi 0 0 1 0
0 0 xi yi 0 1

...

m1

m2

m3

m4

tx
ty

 or b = Ax (5)

where b ∈ R2k×1, A ∈ R2k×6, x ∈ R6×1. This setup may not seem intuitive at first – it’s designed for
least-squares and not for humans. But if you multiply Ax out, you should get m1xi +m2yi + tx in the top
row and m3xi +m4yi + ty in the bottom row.

So: given that Ax is where the model says the point should be, ||b−Ax||22 is computing the sum-of-squared
differences between the points, or:

||b−Ax||22 =
∑

1≤i≤k(x
′
i − (m1xi +m2yi + tx))

2 + (y′i − (m3xi +m4yi + ty))
2

=
∑

1≤i≤k ||[x′i, y′i]− [m1xi +m2yi + tx,m3xi +m4yi + ty]| |22
(6)

Finding the x that minimizes things is thus the best-fit model.

6

Fitting Homographies

This setup is a trickier and depends on homogeneous coordinates. The key to the setup is to try to make an
equation which is true when p′i ≡ Hpi (recall that pi ≡ [xi, yi, 1] from earlier).

The problem is that we test homogeneous equivalence (x ≡ y), which is true if and only if the two vectors
are proportional (there is a λ 6= 0 such that x = λy). Testing or whether two vectors are proportional by
finding the λ is ugly. So we use the following trick: the cross product x×y = 0 if x and y are proportional.
This trick is non-intuitive for many but arises from the fact that the magnitude of the cross product is equal to
the area of the parallelogram between the two vectors. If they both face the same way, that parallelogram’s
zero!

Once we have this, what we’ll do is calculate what Hpi looks like. If we have H broken into its rows, this
doesn’t look so annoying. Note that that h1 is the column vector containing a, b, and c from the homography.
We lay it on its side to get it into the matrix properly. If we calculate things out, we get:

Hpi =

 hT
1

hT
2

hT
3

pi =

 hT
1 pi

hT
2 pi

hT
3 pi

 . (7)

If the points are correctly related by the homography, then both of the following statements are true.

p′i ≡ Hpi ≡

 hT
1 pi

hT
2 pi

hT
3 pi

 or, equivalently, p′i ×

 hT
1 pi

hT
2 pi

hT
3 pi

 =

 0
0
0

 = 0 (8)

This gives a set of three equations involving h = [h1,h2,h3] via the following steps: explicitly calculate
each term of the cross-product and set it to 0; shuffle things around so that the expression is a linear expres-
sion with respect to all elements of h (with some of the terms equal to 0). It’s algebraic manipulation and
not particularly enlightening. The only catch is that not all three equations you get are linearly independent,
so you end up with two equations per correspondence.

In the end, for every correspondence you have, you get two rows of an ugly matrix in terms of image 1
points pi = [xi, yi, 1]

T and image 2 points (x′i, y
′
i):

...
0T −pT

i y′ip
T
i

pT
i 0T −x′ipT

i
...

 h1

h2

h3

 =

...
0
0
...

 or Ah = 0 (9)

where 0T = [0, 0, 0] (i.e., 1× 3) and pT
i = [xi, yi, 1] (i.e., also 1× 3). For sizes, each row of this matrix is

1× 9. If h is the 9× 1 vector of parameters, the first row of the expression says that [0T ,−pT
i , yip

T
i]h = 0,

or 0Th1 − pT
i h2 + y′ip

T
i h3 = 0.

So: Given that Ah is zero when the transformation exactly maps points together, h is invariant to its scale,
it seems sensible to use the homogeneous least-squares. In short: you construct A by putting the terms in
the right place, then compute the eigenvector of ATA that corresponds to the smallest eigenvalue.

Caveat: The only caveat is that this expression is convenient to minimize but not geometrically meaningful;
in practice, though, it’s usually good enough. That said, professional systems usually do a few steps of
standard nonlinear optimization afterwards directly minimizing the distance between Hpi and p′i (treated
as 2D points by dividing out by the last coordinate). There is, for what it’s worth, an even more incorrect
least-squares minimization that weights the per-point error arbitrarily.

7

Putting Stitching Together

We can put the whole pipeline together now.

1. Find and Describe Features: First, you detect image features like corners and extract descriptors near
these locations in both images.

You will call some code that will give you what’s called a keypoint. The keypoint consists of a location
pi (e.g., found by Harris Corner detection or the Laplacian of Gaussians) as well as a descriptor di

(e.g., histogrammed gradients) that describes the image content near that region in a fixed-length
vector (e.g., 128 dimensions). The keypoint often is used to describe the combination of the two, and
whether you are referring to its location or descriptor is implied from context. There’s typically also
some preferred distance that’s used to measure how similar the two descriptors are. In this homework,
we’ve pre-processed the data so that the square of the L2 distance works.

This gives you a set of locations and descriptors {pi,di}i in image 1 and a similar set {p′j ,d′j}j in
image 2. In general if keypoint i in image 1 has a good match in image 2, it is the nearest neighbor to
di in {d′j}j , or j∗ = argminj ‖di − d′j‖22.

2. Match Features Between Images: We can always find a nearest neighbor for a descriptor, but there’s
no guarantee it’s at all any good. Thresholding on ‖di − d′j‖22 usually doesn’t work: distances in
high-dimensional spaces are often of dubious value. The solution is this clever trick: find the nearest
neighbor j∗ and second nearest neighbor j∗∗. Then compute

r =
‖di − dj∗‖22
‖di − dj∗∗‖22

, (10)

and if this distance ratio is small (i.e, the nearest neighbor is substantially closer than the next-nearest
neighbor), then the match is good. Otherwise, you can safely throw it away. The intuition is that this
accepts a match if it’s distinctive.

By doing this trick, you can create a collection of matches between the images. This gives matches
for a subset of the original keypoints. Note: There are absolutely no guarantees this matching is
one-to-one/bijective. In practice it usually is not.

3. Robustly Fit Transformation: Given the matches between the keypoints’ descriptors, you then get a
collection of correspondences pi ↔ p′j . If you haveN matches, you then can create aN×4 matrix of
all the locations. You can then safely ignore the original keypoints and just focus on the corresponding
locations. By running RANSAC plus a homography fitting routine, you get a transformation between
the correspondences.

4. Warp Image Onto Another: This is best explained by doing. But once you have the transformation that
describes how the matches go from one image to another, you can warp (i.e., transfer and rearrange)
all of the pixels. You have to pick one image that doesn’t get warped; the other image gets warped
to that image’s coordinate system. You will almost certainly have to expand the image to cover both
images. This produces a composite image containing both images.

8

1 RANSAC and Fitting models

Task 1: RANSAC Theory (9 points)

In this section, suppose we are fitting a 3D plane (i.e., ax + by + cz + d = 0). A 3D plane can be defined
by 3 points in general position (2 give a line). Plane fitting happens when people analyze point clouds to
reconstruct scenes from laser scans. Each question depends on on the previous one. If you are not sure about
one previous answer, give an equation in terms of a set of variables. In keeping with other notation that you
may find elsewhere, we will refer to the model that is fit in the inner loop of RANSAC as the putative model.

(a) (3 points) Write in your report the minimum number of 3D points needed to sample in an iteration to
compute a putative model.

(b) (3 points) Determine the probability that the data picked for to fit the putative model in a single
iteration fails, assuming that the outlier ratio in the dataset is 0.2 and we are fitting 3D planes.

(c) (3 points) Determine the minimum number of RANSAC trials needed to have ≥ 95% chance of
success, assuming that the outlier ratio in the dataset is 0.2 and we are fitting planes.

Hint: You can do this by explicit calculation or by search/trial and error with numpy.

Task 2: Fitting Linear Transforms (6 points)

Throughout, suppose we have a set of 2D correspondences ([x′i, y
′
i]↔ [xi, yi]) for 1 ≤ i ≤ N .

(a) (3 points) Suppose we are fitting a linear transformation, which can be parameterized by a matrix M ∈
R2×2 (i.e., [x′, y′]T = M[x, y]T).

Write in your report: the number of degrees of freedom M has and the minimum number of 2D
correspondences that are required to fully constrain or estimate M.

(b) (3 points) Suppose we want to fit [x′i, y
′
i]
T = M[xi, yi]

T . We would like you formulate the fitting
problem in the form of a least-squares problem of the form

argmin
m∈R4

‖Am− b‖22 (11)

where m ∈ R4 contains all the parameters of M, A depends on the points [xi, yi] and b depends on the
points [x′i, y

′
i].

Write the form of A, m, and b in your report.

Task 3: Fitting Affine Transforms (11 points)

Throughout, again suppose we have a set of 2D correspondences [x′i, y
′
i]↔ [xi, yi] for 1 ≤ i ≤ N .

Files: We give an actual set of points in task3/points case 1.npy and task3/points case 2.npy:
each row of the matrix contains the data [xi, yi, x′i, y

′
i] representing the correspondence. You do not need to

turn in your code but you may want to write some file task3.py that loads and plots data.

9

(a) (3 points) Fit a transformation of the form

[x′, y′]T = S[x, y]T + t, S ∈ R2×2, t ∈ R2×1 (12)

by setting up a problem of the form
argmin
v∈R6

‖Av − b‖22 (13)

and solving it via least-squares.

Report (S,t) in your report for points case 1.npy.

Hint: There is no trick question – use the setup from the foreword. Write a small amount of code that
does this by loading a matrix, shuffling the data around, and then calling np.linalg.lstsq.

(b) (3 points) Make as scatterplot of the points [xi, yi], [x′i, y
′
i] and S[xi, yi]

T + t in one figure with different
colors. Do this for both points case 1.npy and point case 2.npy. In other words, there
should be two plots, each of which contains three sets of N points.

Save the figures and put them in your report

Hint: Look at plt.scatter and plt.savefig. For drawing the scatterplot, you can do
plt.scatter(xy[:,0],xy[:,1],1). The last argument controls the size of the dot and you
may want this to be small so you can set the pattern. As you ask it to scatterplot more plots, they
accumulate on the current figure. End the figure by plt.close().

(c) (5 points) Write in the report your answer to: how well does an affine transform describe the rela-
tionship between [x, y]↔ [x′, y′] for points case 1.npy and points case 2.npy? You should
describe this in two to thre sentences.

Hint: what properties are preserved by each transformation?

Task 4: Fitting Homographies (11 points)

Files: We have generated 9 cases of correspondences in task4/. These are named points case k.npy
for 1 ≤ k ≤ 9. All are the same format as the previous task and are matrices where each row contains
[xi, yi, x

′
i, y
′
i]. Eight are transformed letters M . The last case (case 9) is copied from task 3. You can use

these examples to verify your implementation of fit homography.

(a) (5 points) Fill in fit homography in homography.py.

This should fit a homography mapping between the two given points. Remembering that pi ≡ [xi, yi, 1]
and p′i ≡ [x′i, y

′
i, 1], your goal is to fit a homography H ∈ R3 that satisfies

p′i ≡ Hpi. (14)

Most sets of correspondences are not exactly described by a homography, so your goal is to fit a homog-
raphy using an optimization problem of the form

argmin
‖h‖22=1

‖Ah‖, h ∈ R9,A ∈ R2N×9, (15)

where h has all the parameters of H.

Hint: Again, this is not meant to be a trick question – use the setup from the foreword.

Important: This part will be autograded. Please follow the specifications precisely.

10

(b) (3 points) Report H for cases points case 1.npy and points case 4.npy. You must nor-
malize the last entry to 1.

(c) (3 points) Visualize the original points [xi, yi], target points [x′i, y
′
i] and points after applying a homogra-

phy transform T (H, [xi, yi]) in one figure. Please do this for points case 5.npy and points case 9.npy.
Thus there should be two plots, each of which contains 3 sets of N points.

Save the figure and put it in the report.

11

Image 1 Image 2 Merged

Figure 1: Stitched Results on Eynsham

2 Image Warping and Homographies

Task 5: Synthetic Views – Name that book! (13 points)

We asked David what he’s reading, and so he sent us a few pictures. They’re a bit distorted since he wants
you to get used to cv2.warpPerspective before you use it in the next task. He says “it’s all the same,
right, homographies can map between planes and book covers are planes, no?”.

Files: We provide data in task5/, with one folder per book. Each folder has: (a) book.jpg – an image
of the book taken from an angle; (b) corners.npy – a numpy containing a 4× 2 matrix where each row
is [xi, yi] representing the corners of the book stored in (top-left, top-right, bottom-right, bottom-left) order;
(c) size.npy which gives the size of the book cover in inches in a 2D array [height, width].

(a) (5 points) Fill in make synthetic view(sceneImage,corners,size) in task5.py.

This should return the image of the cover viewed head-on (i.e., with cover parallel to the image plane)
where one inch on the book corresponds to 100 pixels.

Walkthrough: First fit the homography between the book as seen in the image and book cover. In the
new image, the top-left corner will be at [x, y] = [0, 0] and the bottom-right corner will be at [x, y] =
[100w − 1, 100h− 1]. Figure out where the other corners should go. Then read the documentation for
cv2.warpPerspective.

(b) (3 points) Put a copy of both book covers in your report.

(c) (5 points) One of these images doesn’t have perfectly straight lines. Write in your report why you
think the lines might be slightly crooked despite the book cover being roughly a plane. You should
write about 3 sentences.

(d) (Suggestion/optional) Before you proceed, see if you can make another function that does the operation
in the reverse: it should map the corners of synthetic cover to sceneImage assuming the same
relationship between the corners of synthetic and the listed corners in the scene. In other words, if you
were to doodle on the cover of one of the books, and send it back into the scene, it should look as if it’s
viewed from an angle. Pixels that do not have a corresponding source should be set to 0. What happens
if synthetic contains only ones?

12

Image 1 Image 2 Merged

Figure 2: Stitched Results on LoweTag

Task 6: Stitching Stuff Together (50 points)

Recall from the introduction that a keypoint has a location pi and descriptor di. There are many types of
keypoints used. Traditionally this course has used SIFT and SURF, but these are subject to patents and
installed in only a few versions of opencv. Traditionally, this has led to homework 3 being an exercise
in figuring out how to install a very special version of opencv (and then figuring out some undocumented
features).

We provide another descriptor called AKAZE (plus some other features) in common.py. In addition to
this descriptor, you are encouraged to look at common.py to see if there are things you want to use while
working on the homework.

The calling convention is: keypoints, descriptors = common.get AKAZE(image)
which will give you aN×4 matrix keypoints and aN×F matrix descriptors containing descriptors
for each keypoint. The first two columns of keypoints contain x, y; the last two are the angle and
(roughly) the scale at which they were found in case those are of interest. The descriptor has also been
post-processed into something where ‖di − d′j‖22 is meaningful.

Files: We provide you with a number of panoramas in task6/ that you can choose to merge together. To
enable you to run your code automatically on multiple panoramas without manually editing filenames (see
also os.listdir), we provide them in a set of folders.

Each folder contains two images: (a) p1.jpg; and (b) p2.jpg. Some also contain images (e.g., p3.jpg)
which may or may not work. You should be able to match all the provided panoramas; you should be able
to stitch all except for florence3 and florence3 alt.

(a) (3 points) Fill in compute distance in task6.py. This should compute the pairwise squared L2
distance between two matrices of descriptors. You can and should use the ‖x− y‖22 = ‖x‖22 + ‖y‖22 −
2xTy trick from HW0, numpy test 11.

(b) (5 points) Fill in find matches in task6.py. This should use compute distance plus the ratio test
from the foreword to return the matches. You will have to pick a threshold for the ratio test. Something
between 0.7 and 1 is reasonable, but you should experiment with it (look output of the draw matches
once you complete it).

13

Beware! The numbers for the ratio shown in the lecture slides apply to SIFT; the descriptor here is
different so the ratio threshold you should use is different.

Hints: look at np.argsort as well as np.take along axis.

(c) (5 points) Fill in draw matches in task6.py. This should put the images on top of each other and
draw lines between the matches. You can use this to debug things.

Hints: Use cv2.line.

(d) (3 points) Put a picture of the matches between two image pairs of your choice in your report.

(e) (10 points) Fill in RANSAC fit homography in homography.py.

This should RANSACify fit homography. You should keep track of the best set of inliers you have seen
in the RANSAC loop. Once the loop is done, please re-fit the model to these inliers. In other words, if
you are told to run N iterations of RANSAC, you should fit a homography N times on the minimum
number of points needed; this should be followed by a single fitting of a homography on many more
points (the inliers for the best of the N models). You will need to set epsilon’s default value: 0.1 pixels
is too small; 100 pixels is too big. You will need to play with this to get the later parts to work.

Hints: when sampling correspondences, draw without replacement; if you do it with replacement you
may pick the same point repeatedly and then try to (effectively) fit a model to three points.

(f) (18 points) Fill in make warped in task6.py. This should take two images as an argument and do
the whole pipeline described in the foreword. The resulting image should use cv2.warpPerspective
to make a merged image where both images fit in. This merged image should have: (a) image 1’s pixel
data if only image 1 is present at that location; (b) image 2’s pixel data if only image 2 is present at that
location; (c) the average of image 1’s data and image 2’s data if both are present.

Walkthrough:

(a) There is an information bottleneck in estimating H. If H is correct, then you’re set; if it’s wrong,
there’s nothing you can do. First make sure your code estimates H right.

(b) Pick which image you’re going to merge to; without loss of generality, pick image 1. Figure out
how to make a merged image that’s big enough to hold both image 1 and transformed image 2.
Think of this as finding the smallest enclosing rectangle of both images. The upper left corner of
this rectangle (i.e., pixel [0, 0]) may not be at the same location as in image 1. You will almost
certainly need to hand-make a homography that translates image 1 to its location in the merged
image. For doing this calculations, use the fact that the image content will be bounded by the
image corners. Looking at the min, max of these gives you what you need to create the panorama.

(c) Warp both images to the merged image. You can figure out where the images go by warping
images containing ones to the merged images instead of the image and filling the image with 0s
where the image doesn’t go. These masks also tell you how to create the average.

Debugging hints:

(a) Make a fake pair of images by taking an image, rolling it by (10, 30) and then saving it. Debugging
this is far easier if you know what the answer should be.

(b) If you want to debug the warping, you can also provide two images that are crops of the same
image, (e.g., I[100:400,100:400] and I[150:450,75:375]) where you know the ho-
mography (since it is just a translation).

14

(g) (3 points) Put merges from two of your favorite pairs in the report. You can either choose an image
we provide you or use a pair of images you take yourself.

(h) (3 points) Put these merges as mypanorama1.jpg and mypanorama2.jpg in your zip submission.

(i) (Optional) If you would like to submit a panorama, please put your favorite as myfavoritepanorama.jpg.
We will have a vote. The winner gets 1 point of extra credit.

15

Template Scene To Transfer Transferred

Figure 3: Transferring via template matching

3 Augmented Reality on a Budget (Optional)

Task 7: Augmented Reality on a Budget (Optional)

Normally, a problem like this is mandatory. This year, we’ve made it optional to decrease the length
of this assignment. But we also want to give the code for people to play with if they feel like. If we get
submissions, we’ll show them for a vote.

If you can warp images together, you can replace things in your reality. Imagine that we have a template
image and this template appears in the world but viewed at an angle. You can fit a homography mapping
between the template and the scene. Once you have a homography, you can transfer anything. This enables
you to improve things.

Files: We give a few examples of templates and scenes in task7/scenes/. Each folder contains:
template.png: a viewed-from-head-on / distortion-free / fronto-parallel version of the texture; and
scene.jpg: an image where the texture appears at some location and viewed at some angle. We pro-
vide a set of seals (e.g., the UM seal) that you may want to put on things in task7/seals/. You can
substitute whatever you like.

(a) (Optional) Fill in the function improve image(scene,template,transfer) in task7.py
that aligns template to scene using a homography, just as in task 6. Then, instead of warping
template to the image, warp transfer. If you want to copy over your functions from task 6, you
can either import them or just copy them.

Hints:

• The matches that you get are definitely not one-to-one. You’ll probably get better results if you
match from the template to the scene (i.e., for each template keypoint, find the best match in scene).
Be careful about ordering though if you transfer your code!

• The image to transfer might not be the same size as the template. You can either resize transfer
to be the same size as template or automatically generate a homography.

(b) (Optional) Do something fun with this. Submit a synthetically done warp of something interesting.
We’ll have a contest. If you do something particularly neat to get the system to work, please write this
in the report.

Submit in your zip file the following files:

• myscene.jpg – the scene

16

• mytemplate.png OR mytemplate.jpg – the template. Submit either png or jpg but not both.

• mytransfer.jpg – the thing you transfer

• myimproved.jpg – your result

Guidelines: If you try this on your own images, here are some suggestions:

• Above all, please be respectful.

• This sort of trick works best with something that has lots of texture across the entire template. The
lacroix carton works very well. The aep.jpg image that you saw in dithering does not work so
well since it has little texture for the little building at the bottom.

• This trick is most impressive if you do this for something seen at a very different angle. You may
be able to extend how far you can match by pre-generating synthetic warps of the template (i.e,
generate synthi = apply(Hi, T) for a series of Hi, then see if you can find a good warping Ĥ
from synthi to the scene. Then the final homography is ĤHi

17

Canvas Submission Checklist

In the zip file you submit to Canvas, the directory named after your uniqname should include the following
files:

• common.py – do not edit though; this may be substituted

• homography.py

• task5.py

• task6.py

• mypanorama1.jpg, mypanorama2.jpg

The following are optional

• task7.py

• myfavoritepanorama.jpg

• myscene.jpg, mytemplate.{png,jpg}, mytransfer.jpg, myimproved.jpg

18

	RANSAC and Fitting models
	Image Warping and Homographies
	Augmented Reality on a Budget (Optional)

