EECS 442 Computer Vision: Homework 5

Instructions

e This homework is due at 11:59:59 p.m. on Wednesday April 15th, 2020.
e The submission includes two parts:

1. To Gradescope: a pdf file as your write-up, including your plots and answers to all the ques-
tions and key choices you made.
The write-up must be an electronic version. No handwriting, including plotting questions.
IKTEX is recommended but not mandatory.
You might like to combine several files to make a submission. Here is an example online link
for combining multiple PDF files: https://combinepdf.com/.

2. To Canvas: a zip file including a single directory named after your unigname, containing all
your code (in . py format) and files specified in questions with Submit. Remember to use the
script check_submission.py (available at https://github.com/eecs442/utils) to check the
format before you submit.

Python Environment

We are using Python 3.7 for this course. You can find references for the Python standard library here:
https://docs.python.org/3.7/library/index.html. To make your life easier, we recommend you to install Ana-
conda(https://www.anaconda.com/distribution/). This is a Python package manager that includes most of
the modules you need for this course.

In this homework, you are required to use PyTorch for building and training neural networks. In-
stall PyTorch as torch and torchvision for datasets. You will also need matplotlib.pyplot to
visualize results and t gdm to display a progress bar.

As a deep learning library, PyTorch performs backpropagation automatically for you and performs faster
tensor operations. To familiarize yourself with PyTorch, we provide a notebook at https://github.com/
eecs442/notebooks/blob/master/MNIST _pytorch.ipynb which contains a simple demo of image classifica-
tion on MNIST dataset.

For visualization in Part 3, you will also need to install pypng and colormap.

https://combinepdf.com/
https://github.com/eecs442/utils
https://docs.python.org/3.7/library/index.html
https://www.anaconda.com/distribution/
https://github.com/eecs442/notebooks/blob/master/MNIST_pytorch.ipynb
https://github.com/eecs442/notebooks/blob/master/MNIST_pytorch.ipynb

1 Fashion-MNIST Classification [35 pts]

In this part, you will implement and train Convolutional Neural Networks (ConvNets) in PyTorch to classify
images. Unlike HW4, backpropagation is automatically inferred by PyTorch, so you only need to write code
for the forward pass.

C; S; C,; S; n; n;
input feature maps feature mapsfeature mapsfeature maps output

2x2

\ O
L O full
\ subsampling convolution 2x2 L] \\ con:eZted\
\\ subsampling \\ \

feature extraction classification

/1]
7]
[/]]
[
H
[

5x5 -
convolution

Figure 1: Convolutional Neural Networks for Image Classification'

on M btk Gl 5 o it iy oy i A N A
e it et e Ml D 0 g S it s L il B il i P D

~Buiaemtueg LBw om
Sy e TG, v R ™ |

Figure 2: Example images from Fashion MNIST dataset [2]

The dataset we use is Fashion-MNIST dataset, which is available at https://github.com/zalandoresearch/
fashion-mnist andin torchvision.datasets. Fashion-MNIST has 10 classes, 60000 training+validation
images (we have splitted it to have 50000 training images and 10000 validation images, but you can change
the numbers), and 10000 test images. We have provided some starter code in partl.py where you need
to modify and experiment with the following:

"Tmage comes from https://medium.com/data-science-group-iitr/building-a-convolutional-neural-network-in-python-with-
tensorflow-d251c3ca8117

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

e The architecture of the network (define layers and implement forward pass)

e The optimizer (SGD, RMSProp, Adam, etc.) and its parameters. (weight_decay is the L2 regular-
ization strength)

e Training parameters (batch size and number of epochs)

You should train your network on training set and change those listed above based on evaluation on the
validation set. You should run evalution on the test set only once at the end.

Complete the following:

1. Submit a program which trains with your best combination of model architecture, optimizer and
training parameters, and evaluates on the test set to report an accuracy at the end. (15 pts)

2. Report the detailed architecture of your best model. Include information on hyperparameters chosen
for training and a plot showing both training and validation loss across iterations. (10 pts)

3. Report the accuracy of your best model on the test set. We expect you to achieve over 90%. (10 pts)

Hints: Read PyTorch documentation for torch.nn at https://pytorch.org/docs/stable/nn.html and pick
layers for your network. Some common choices are

e nn.Linear

e nn.Conv2d, try different number of filters (out _channels) and size of filters (kernel_size)
e nn.RelLU, which provides non-linearity between layers

e nn.MaxPool2d and nn.AvgPool2d, two kinds of pooling layer

e nn.Dropout, which helps reduce overfitting

Your network does not need to be complicated. We achieved over 90% test accuracy with two convolutonal
layers, and it took less than 15 mins to train on a laptop with CPU only. You will get partial credits for any
accuracy over 50%, so do not worry too much and spend your time wisely.

2 Activation Visualization [35 pts]

In this part, we will investigate a method to visualize the activation map of an image through a classification
network and show intuitively how each part of the image contribute to the prediction. We have provided
some starter code in part2.py.

To observe a meaningful pattern, we construct a custom dataset that localizes the Fashion-MNIST image
with the help of MNIST images. Each image in this new dataset will be a 2x2 grid of one Fashion-
MNIST image and three MNIST images. The Fashion-MNIST image is placed at a random grid, where
the other three grids will be randomly-chosen MNIST images. This part is implemented for you in class
GridDataset.

To apply the visualization method, our network needs to contain a global average pooling (GAP) layer
followed by a linear layer at the end. When visualizing, we replace GAP and linear layers with a 1x1
convolution layer using weights from the linear layer. Instead of C class scores, the network output is now

https://pytorch.org/docs/stable/nn.html

C 2D arrays corresponding to each of the C' classes. If we plot them as heatmaps as shown in the figure
below, we should see that at ground truth class, activation is higher at the position of the Fashion-MNIST
image in the input image, implying that our model has learned to "look at” only the Fashion-MNIST images
for classification.

Notes on dimensions:

1. A global average pooling layer reduces each H x W channel to a single value by simply taking the
average of all HW values.

2. Suppose the input to GAP layer in the original network has shape (F, H, W), it will become (F, 1, 1)
after GAP layer, so the linear layer has weight of shape (F, C'). In the adapted network, the 1x 1 conv
layer has F' input channels and C' output channels, and therefore has weight of shape (F,C,1,1).
Since linear layer and 1x1 conv layer have weights of the same size, we can transfer weights from
the former to the latter with a simple reshaping.

3. In PyTorch, the first dimension of the data tensor is for batch and the second is for channels. So each
batch of input to the network (the input to forward (self, x) in code) has size (N,C, H, W),
where NV is the batch size and C' is the number of channels.

Activation map for each class

Original Image, label 8

Figure 3: Example image from our custom dataset and its per-class activation maps
Complete the following:

1. Report the detailed architecture of your self.base module. Include information on hyperparam-
eters chosen for training, and the accuracy on the test set. To make the visualization look nice, you
should achieve over 80% on the test set. (10 pts)

2. Choose a correctly classified image from the evaluation on test set. Report its index in the test set and
include plots of both the image and the activation maps of all classes. (10 pts)

3. Submit a program which contains your best combination of self.base module, optimizer and
training parameters, along with the code to select a correctly classified image and to visualize the
results. (15 pts)

Hints: Apart from the last two layers, your network should look similar to the one in the previous part, and
takes a similar amount of time to train. Again, any test accuracy over 50% will receive partial credits.

3 Semantic Segmentation [30 pts]

Besides image classification, Convolutional Neural Networks can also generate dense predictions. A popular
application is semantic segmentation. In this part, you will design and implement your Convolutional Neural
Networks to perform semantic segmentation on the Mini Facade dataset.

Mini Facade dataset consists of images of different cities around the world and diverse architectural styles
(in . jpg format), shown as the image on the left. It also contains semantic segmentation labels (in . png
format) in 5 different classes: balcony, window, pillar, facade and others. Your task is to
train a network to convert image on the left to the labels on the right.

Note: The label images are plotted using 8-bit indexed color with pixel value listed in Table 1. We have
provided you a visualization function using a “jet” color map.

Table 1: Label image consists of 5 classes, represented in [0, 4].
class color pixel value
others black 0
facade blue 1
pillar green 2
3
4

window orange
balcony red

We have provided some starter code in part3/train.py which contains a dummy network. It uses a 1x1
convolution to convert 3 channels (RGB) to 5 channels, i.e. 5 heatmaps for each class, with cross-entropy
loss. Your network should give an output of the same shape, but contains more layers of different types.

We will evaluate your model on its average precision (AP) on the test set (higher the better). We have
provided you the code to evaluate AP and you can directly use it. An introduction to AP is available at
https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics.

Complete the following:

1. Report the detailed architecture of your model. Include information on hyperparameters chosen for
training and a plot showing both training and validation loss across iterations. (10 pts)

2. Report the average precision on the test set. You can use provided function to calculate AP on the test
set. You should only evaluate your model on the test set once. All hyperparameter tuning should be
done on the validation set. We expect you to to achieve 0.45 AP on the test set. (10 pts)

https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics

3. Submit a program which contains your best combination of self.base module, optimizer and
training parameters. (5 pts)

4. Take a photo (or search for an image online) of a building in UM, preprocess it as you like and input
it to your best trained model. Plot the output labels and comment qualitatively on why it works or
doesn’t work. Include both the original image and the label plot in your report. (5 pts)

Hints: You should still choose layers from classes under torch.nn. In addition to layers mentioned in
the previous part, you might want to try nn.Upsample that upsamples the activation map by a simple
interpolation, and nn.ConvTranspose2d that upsamples by performing transpose convolution. Any
test AP over 0.25 will receive partial credits. Below are some architectures from papers that you can try:

e Jonathan Long, Evan Shelhamer, Trevor Darrell. Fully Convolutional Networks for Semantic Segmen-
tation. CVPR 2015.

e Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. MICCAI 2015.

e Alejandro Newell, Kaiyu Yang, Jia Deng. Stacked Hourglass Networks for Human Pose Estimation.
ECCV 2016.

You will easily get a high test AP if you use one of these models, but they can take a long time to train (hours
with a CPU). Consider doing this part with the help of a GPU on Google Colab.

Canvas Submission Checklist

In the z1ip file you submit to Canvas, the directory named after your unigname should include the following
files:

e Code files: partl.py,part2.py and train.py (from Part 3)

All plots and answer to questions should be included in your pdf report submitted to Gradescope.

References

[1] Jonathan Long, Evan Shelhamer, Trevor Darrell. Fully Convolutional Networks for Semantic Segmenta-
tion. CVPR 2015.

[2] Han Xiao, Kashif Rasul, Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv:1708.07747.

[3] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. Image-to-Image Translation with Conditional
Adversarial Nets. CVPR 2017.

[4] Radim Tylecek and Radim Séra. Spatial Pattern Templates for Recognition of Objects with Regular
Structure. GCPR 2013.

Acknowledgement

The Mini Facade dataset are modified from CMP Facade Database by Radim Tyletek and Radim Séra.
Please feel free to similarly re-use our problems while similarly crediting us.

	Fashion-MNIST Classification [35 pts]
	Activation Visualization [35 pts]
	Semantic Segmentation [30 pts]

