EECS 442 Computer Vision: Homework 1

Instructions

e This homework is due at 11:59:59 p.m. on Wednesday February Sth, 2020.
e The submission includes two parts:

1. To Gradescope: a pdf file as your write-up, including your plots and answers to all the ques-
tions and key choices you made.
The write-up must be an electronic version. No handwriting, including plotting questions.
IKTEX is recommended but not mandatory.
You might like to combine several files to make a submission. Here is an example online link
for combining multiple PDF files: https://combinepdf.com/.

2. To Canvas: a zip file including a single directory named after your unigname, containing all
your code (in . py format) and files specified in questions with Submit. Remember to use the
script check_submission.py (available at https://github.com/eecs442/utils) to check the
format before you submit.

Python Environment

We are using Python 3.7 for this course. You can find references for the Python standard library here:
https://docs.python.org/3.7/library/index.html. To make your life easier, we recommend you to install Ana-
conda(https://www.anaconda.com/distribution/). This is a Python package manager that includes most of
the modules you need for this course.

We will use the following packages for this homework and refer to some of them as:
e numpy as np
e matplotlib.pyplot as plt (for plotting images)
e imageio (for loading/saving images)

e skimage (for processing images)


https://combinepdf.com/
https://github.com/eecs442/utils
https://docs.python.org/3.7/library/index.html
https://www.anaconda.com/distribution/

1 Camera projection Matrix [30 pts]

In this part we plot a cube from different camera placements and settings. We have provided some helper
functions in utils.py. Some of these are taken from the Projection and Dolly Zoom notebook released
on the course website, which you are encouraged to play with.

(a) Write a function rotY () which takes an angle theta (in radian) and outputs the 3D rotation matrix
of rotating by theta about the y-axis (right-hand rule). You may refer to this Wikipedia entry: https:
/len.wikipedia.org/wiki/Rotation_matrix#Basic_rotations After you are done, refer to the starter code to
generate and submit cube . gif of a cube rotating around itself. (5 pts)

(b) Similarly, write a function rotX () which rotates about the x-axis. Let § = 7 /4, consider the following
two transformations:

(a) rotX (theta), followed by rotY (theta)
(b) rotY (theta), followed by rotX (theta)

Using renderCube () in the same way, plot the resulting view of the cube from two transformations.
Are 3D rotation matrices commutative? (5 pts)

(c) Combine rotX () and rotY (), choose an appropriate order and a pair of parameters so that renderCube ()
draws a projection of the cube where one diagonal of the cube is projected to a single point, as shown
in Figure 1 (left). Report the order and parameters you choose. (10 pts)

Hint: The diagonal of the cube rotates together with the cube. When it projects to a single point in
2D, it is horizontal and perpendicular to the camera plane in 3D. You can either make a mathematical
calculation or perform a numerical search.

(d) Implement the function projectOrthographicLines () in util.py to handle the case of an
orthographic camera indicated with f = np.inf in projectLines (). Then plot the same rotated
cube in the previous part with this orthographic camera. It should look like Figure 1 (right). (10 pts)

4 4
2 2
u | @
-2 -2
-4 -4
4 2 0 2 4 4 2 0 2 4

Figure 1: The diagonal of a cube projected to a single point


https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations

2 Prokudin-Gorskii: Color from grayscale photographs [50 pts]

In this part, you are tasked with implementing the dream of Russian photographer, Sergei Mikhailovich
Prokudin-Gorskii (1863-1944), via a project invented by Russian-American vision researcher, Alexei A.
Efros (1975-present)!. Sergei was a visionary who believed in a future with color photography (which
we now take for granted). During his lifetime, he traveled across the Russian Empire taking photographs
through custom color filters at the whim of the czar. To capture color for the photographers of the future,
he decided to take three separate black-and-white pictures of every scene, each with a red, green, or blue
color filter in front of the camera. His hope was that you, as a student in the future, would come along and
produce beautiful color images by combining his 3 separate, filtered images.

Task 1: Combine (5 pts) We will provide you with a folder of Prokudin-Gorskii’s black-and-white
(grayscale) image composites (prokudin—-gorskii/ in the assignment zip). Each composite (alter-
natively triple-framed image or triptych) contains three grayscale photos preserved from the early 1900s.
The composite looks like a three panel vertical comic strip, with each grayscale photo in the composite
positioned vertically above one another. These photos represent images captured with a blue, green, and red
filter. Choose a single composite from this folder (your favorite) and write a program in Python that takes
the three grayscale panels and simply stacks them across the third color channel dimension to produce a
single, colored image. We expect this stacked photo to look wonky and unaligned - fixing this is what you
will do in Task 2. Note that the channels in the triptych are arranged as B, G, R from top to bottom, while
channels in the combined image should be stacked in order R, G, B.

Specifically: Write a function that takes in an image, splits it vertically into thirds, then saves a color image
with each third as the correct color channel. Choose and load an image from prokudin—-gorskii/, then
pass it to the function. Include the output colored image in your report.

Hint: Use imread () and imsave () from imageio to load and save images.

Task 2: Alignment (20 pts) As you will have noticed, the photos are misaligned due to inadvertent
jostling of the camera between each shot. To align the three channels, we can first keep one channel fixed,
say R, and search for the optimal offsets (within a range of [-15,15] pixels both vertically and horizontally)
for G and B channels respectively to align them to R channel. An optimal offset is one that maximizes a
similarity metric between the channels. Here we use normalized cross-correlation, which is normalizing R
and G channels with L2-norm (treating them as vectors) and then taking a dot product. Apply this method
to all the images in prokudin—-gorskii/ and "efros_tableau. jpg", so Professor Efros can have
his photo restored to color. Include these aligned images and the offsets in your report. For full credit,
your report needs to include properly aligned images. Figure 2 shows some examples of different alignment
qualities.

Specifically: First write a function that takes two channels of an image and outputs the optimal offsets
to align one channel to the other. (5 pts) Call this function twice to align a three-channel image with a
fixed channel of your choice. Combine and save the aligned images from prokudin-gorskii/ and
"efros_tableau. jpg’. (10 pts) Include these images as well as optimal offsets in your report. Addi-
tionally, experiment with another similarity metric that simply takes the dot product without normalization.
Include two results in your report and comment on the quality of alignment. (5 pts)

Hint: Use np.roll () to offset the channels while keeping the same dimensions among them. To improve
alignment quality, you can either calculate the similarity metric only on the region unaffected by offsetting

! Credit for this assignment goes to Alexei http://inst.eecs.berkeley.edu/ cs194-26/fal8/



Figure 2: Examples for different alignment qualities: Good (full credit), OK and Poor

artifacts, or try a different fixed channel.

Task 3: Pyramid (25 pts) For very large offsets (and high resolution images), comparing all the align-
ments for a broad range of offsets can be computationally intensive. An efficient solution is to start by
estimating an image’s alignment on a low-resolution version of itself, before refining it on higher resolu-
tions.

To implement this, you will build a three-level image pyramid, where each level downsamples the previous
level by a factor of 4 in both height and width. Start with the level with the lowest resolution and perform
alignment in Task 2 to get the optimal offsets on this level. Multiply this offsets by 4 and use it to roll the
images on the previous level. Repeat this process until the full-resolution images are aligned. Search for
offsets in range [-10, 10] on each level.

Specifically: Write a function that reuses the code from Task 2 either recursively or iteratively to perform
the image pyramid alignment on images ' seoul_tableau. jpg’ and ' vancouver_tableau. jpg’.
In your report, Include the aligned color images at full resolution, the intermediate offsets on each level and
the total offsets to align the original images. (15 pts) Then answer the following questions:

1. What is the equivalent range of offset in the original images that our pyramid approach searches over?
(5 pts)

2. Suppose the similarity metric between two images of the same size H x W takes time t = kHW
to compute (k is a constant). How many times faster is the pyramid approach compared to a simple
search over the equivalent range? (5 pts)

Hint: You can use skimage.transform.resize () to resize the image.

3 Color Spaces and illuminance [20 pts]

The same color may look different under different lighting conditions. Images indoor . pngand outdoor
are two photos of a same Rubik’s cube under different illuminances.”

1. Load the images and plot their R, G, B channels separately as grayscale images using plt . imshow ().

Then convert them into LAB color space using skimage.color.rgb2lab () and plot the three

>The images are taken from this blog post: https://www.learnopencv.com/color-spaces-in-opencv-cpp-python/

-png



channels again. Read documentations and be careful with value ranges. Include the plots in your
report. (5 pts)

2. Which color space (RGB vs. LAB) better separates the illuminance change from other factors (such
as hue)? Why? (5 pts)

3. Choose two different lighting conditions and take two photos of a non-specular object. Try to make
the same color look as different as possible (a large distance on AB plane in LAB space). Below
is an example of two photos of the same piece of paper, taken in the basement and by the window
respectively.

Figure 3: The same piece of paper in the basement and by the window

Submit the two images with names im1 . jpg and im2 . jpg, both cropped and scaled to 256 x 256.
Under the same folder, also submit a file info.txt that contains two lines: Line 1 contains four
integers x1,yv1, x2, y2 where we will take a 32 x 32 patch around the coordinate on each image and
compare colors. (You can use plt .imshow () and plt.show () to bring up a window where you
can select pixel with coordinates.) Line 2 is a description of the lighting conditions that you choose.
An example of this file is provided for you in the folder. (10 pts)

Since the sense of color difference is subjective, we will display all images and patches on a webpage.
Every student can vote for their favorite pair of images that illustrates color difference on Piazza. The
winner will get Extra Credits (2 pts).

Canvas Submission Checklist

In the z1ip file you submit to Canvas, the directory named after your unigname should include the following
files:

e Code files: main.py and util.py
e cube.gif from Part 1

e iml.jpg, im2. jpgand info.txt from Part 3



The rest should be all included in your pdf report submitted to Gradescope.

References

https://en.wikipedia.org/wiki/Camera_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
http://inst.eecs.berkeley.edu/~cs194-26/fal8/hw/projl/
https://sites.google.com/a/umich.edu/eecs442-winter2015/homework/color
https://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.rgb2lab


https://en.wikipedia.org/wiki/Camera_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
http://inst.eecs.berkeley.edu/~cs194-26/fa18/hw/proj1/
https://sites.google.com/a/umich.edu/eecs442-winter2015/homework/color
https://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.rgb2lab

	Camera projection Matrix [30 pts]
	Prokudin-Gorskii: Color from grayscale photographs [50 pts]
	Color Spaces and illuminance [20 pts]

