Lecture 25: Conclusion Open Problems

Justin Johnson

Lecture 25 - 1

Reminder: A5

Recurrent networks, attention, Transformers

Due on **Tuesday 4/12**, 11:59pm ET

Covers image generation and generative models:

Generative Models: GANs and VAEs

Network visualization: saliency maps, adversarial examples, class visualizations

Style Transfer

Due Tuesday 4/26, 11:59pm ET

YOU CANNOT USE LATE DAYS ON A6!!!!

Mini-Project Submission

Mini-project due Monday, 4/25 11:59 ET

Submit project here:

https://forms.gle/CauLnF9kTuv6JGZA9

Justin Johnson

Today: Course Recap What's next?

This Course: Deep Learning for Computer Vision

Justin Johnson

Lecture 25 - 6

Deep Learning for <u>Computer Vision</u>

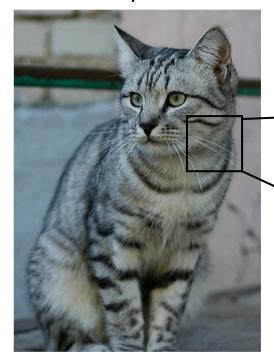
Building artificial systems that process, perceive, and reason about visual data

Justin Johnson

Lecture 25 - 7

Problem: Semantic Gap

What you see



This image by Nikita is licensed under CC-BY 2.0

What computer sees

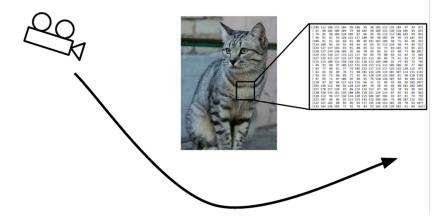
	[[105	112	108	111	104	99	106	99	96	103	112	119	104	97	93	87]
	[91	98	102	106	104	79	98	103	99	105	123	136	110	105	94	85]
	[76	85	90	105	128	105	87	96	95	99	115	112	106	103	99	85]
	[99	81	81	93	120	131	127	100	95	98	102	99	96	93	101	94]
	[106	91	61	64	69	91	88	85	101	107	109	98	75	84	96	95]
	[114	108	85	55	55	69	64	54	64	87	112	129	98	74	84	91]
	[133	137	147	103	65	81	80	65	52	54	74	84	102	93	85	82]
	[128	137	144	140	109	95	86	70	62	65	63	63	60	73	86	101]
	[125	133	148	137	119	121	117	94	65	79	80	65	54	64	72	98]
	[127	125	131	147	133	127	126	131	111	96	89	75	61	64	72	84]
	[115	114	109	123	150	148	131	118	113	109	100	92	74	65	72	78]
	[89	93	90	97	108	147	131	118	113	114	113	109	106	95	77	80]
	[63	77	86	81	77	79	102	123	117	115	117	125	125	130	115	87]
	[62	65	82	89	78	71	80	101	124	126	119	101	107	114	131	119]
	[63	65	75	88	89	71	62	81	120	138	135	105	81	98	110	118]
	[87	65	71	87	106	95	69	45	76	130	126	107	92	94	105	112]
	[118	97	82	86	117	123	116	66	41	51	95	93	89	95	102	107]
	[164	146	112	80	82	120	124	104	76	48	45	66	88	101	102	109]
	[157	170	157	120	93	86	114	132	112	97	69	55	70	82	99	94]
	[130	128	134	161	139	100	109	118	121	134	114	87	65	53	69	86]
	[128	112	96	117	150	144	120	115	104	107	102	93	87	81	72	79]
	[123	107	96	86	83	112	153	149	122	109	104	75	80	107	112	99]
	[122	121	102	80	82	86	94	117	145	148	153	102	58	78	92	107]
	[122	164	148	103	71	56	78	83	93	103	119	139	102	61	69	84]]
1																

Justin Johnson

Lecture 25 - 8

Problem: Visual Data is Complex!

Viewpoint



Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under <u>CC-BY 2.0</u>

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Justin Johnson

Lecture 25 - 9

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

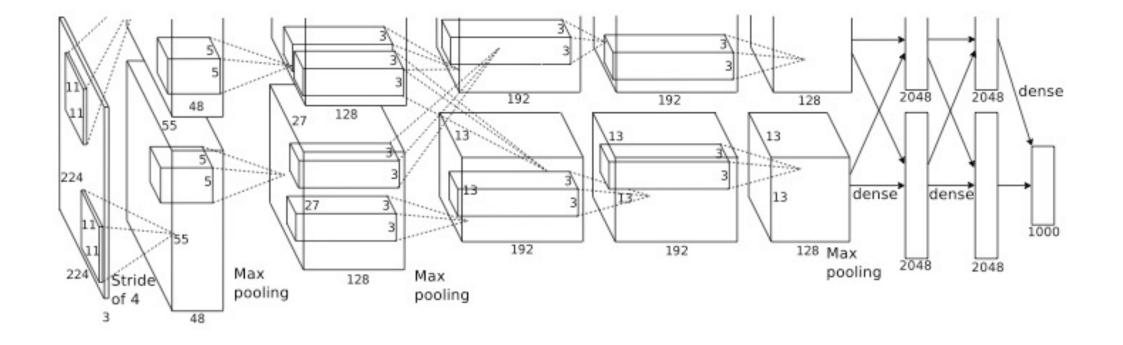
airplaneImage: Image: Imag

Example training set

Justin Johnson

Lecture 25 - 10

Model: Deep Convolutional Networks



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

Justin Johnson

Lecture 25 - 11

IM GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: 1,000 object classes 1,431,167 images

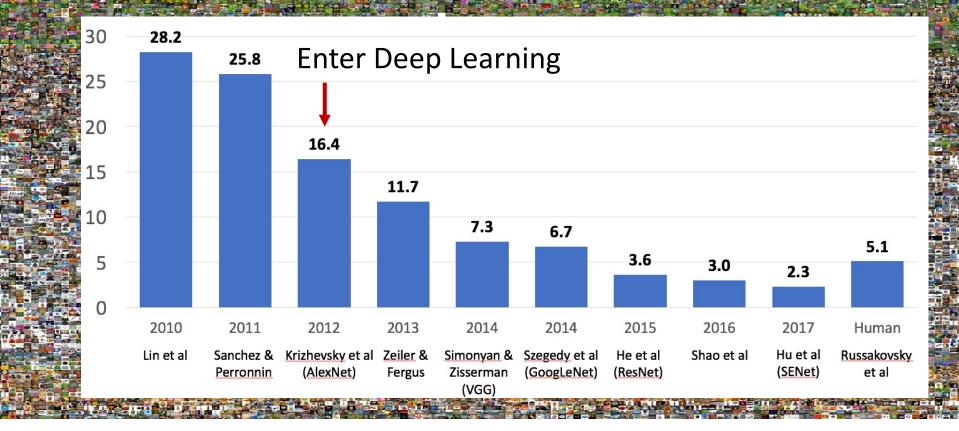
Output: Scale T-shirt Steel drum Drumstick Mud turtle

Deng et al, 2009 Russakovsky et al. IJCV 2015

Justin Johnson

Lecture 25 - 12

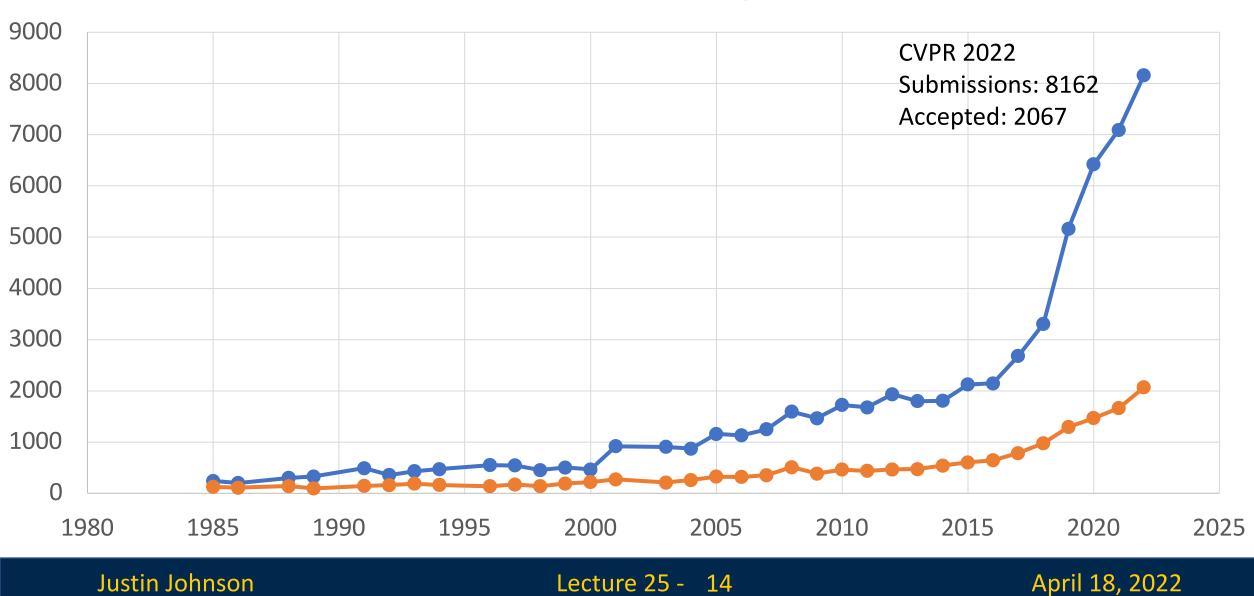
IM GENET Large Scale Visual Recognition Challenge

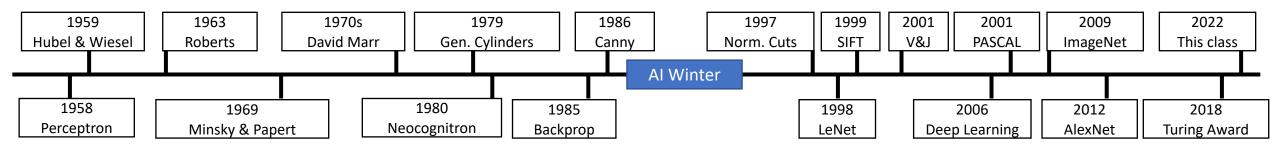


Justin Johnson

Lecture 25 - 13

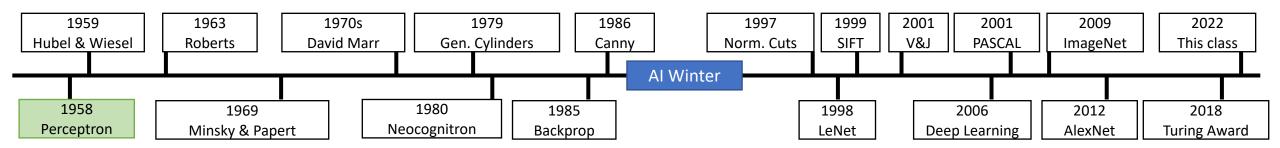
CVPR Papers



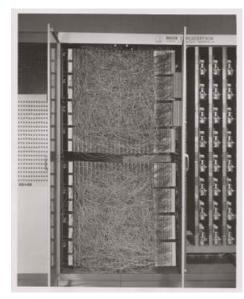


Justin Johnson

Lecture 25 - 15

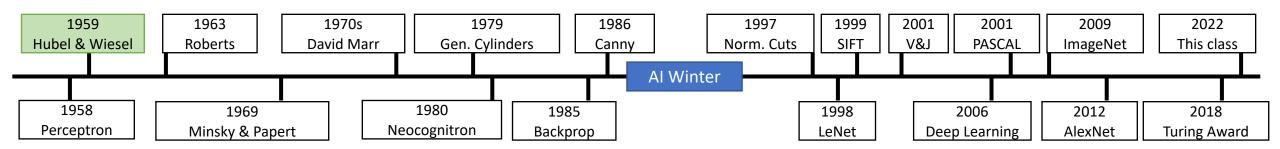


Perceptron

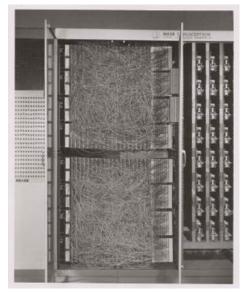


Frank Rosenblatt, ~1957

Justin Johnson

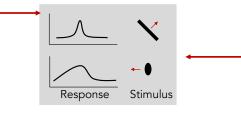


Perceptron



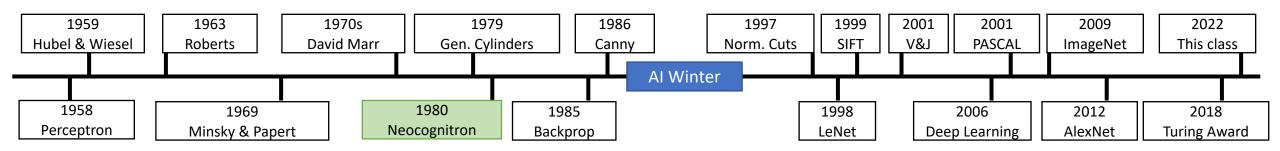
Simple and Complex cells



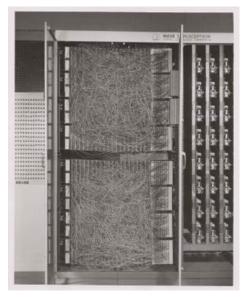


Frank Rosenblatt, ~1957 Hubel and Wiesel, 1959

Justin Johnson

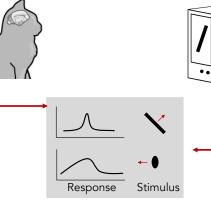


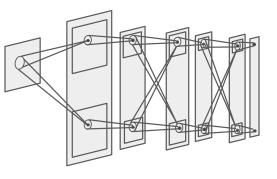
Perceptron



Simple and Complex cells

Neocognitron



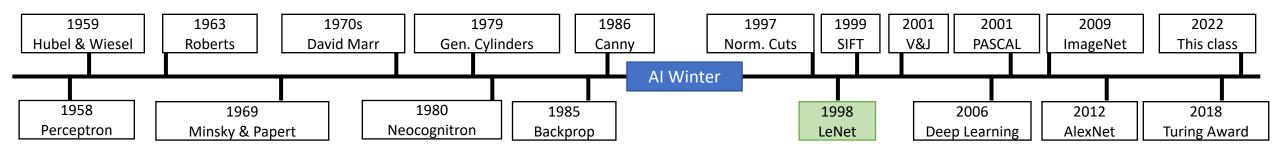


Frank Rosenblatt, ~1957

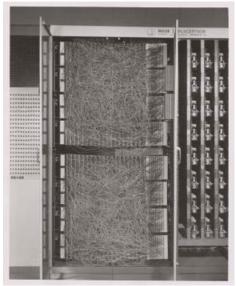
Hubel and Wiesel, 1959

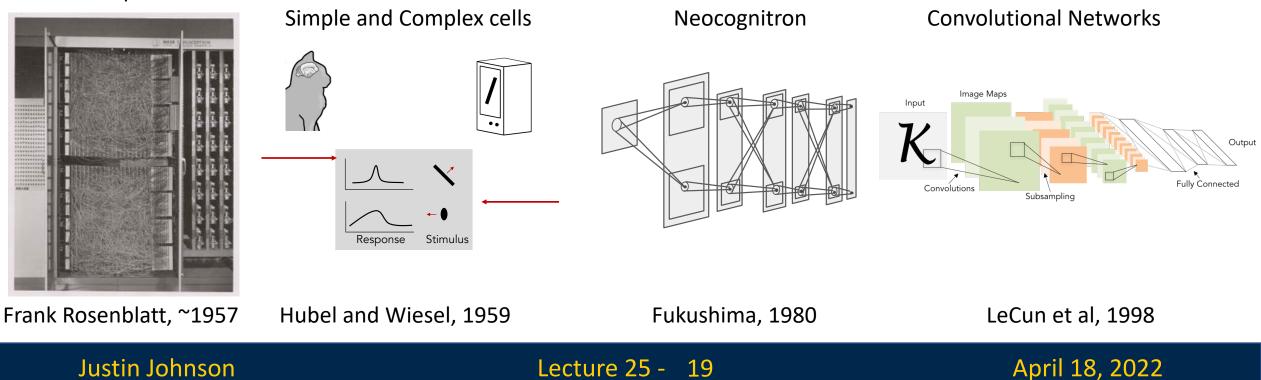
Fukushima, 1980

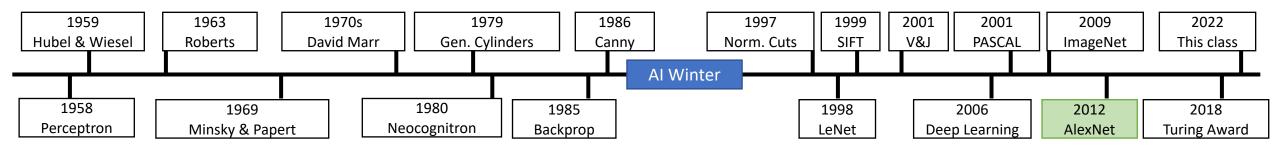
Justin Johnson



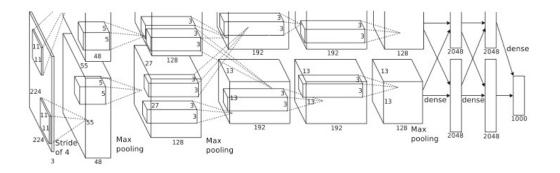
Perceptron







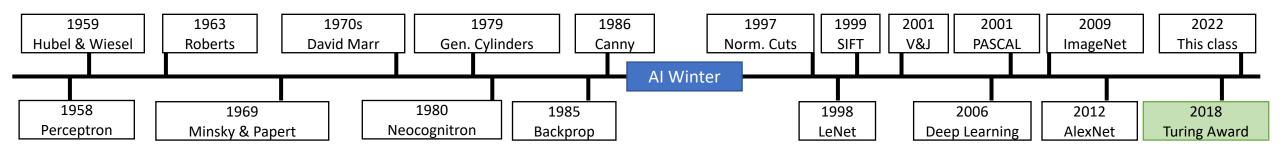
AlexNet



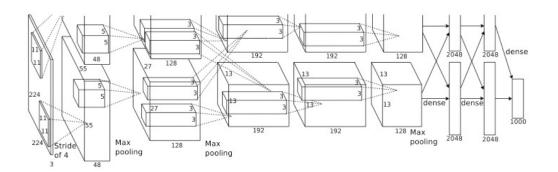
Krizhevsky, Sutskever, and Hinton, 2012

Justin Johnson

Lecture 25 - 20



AlexNet



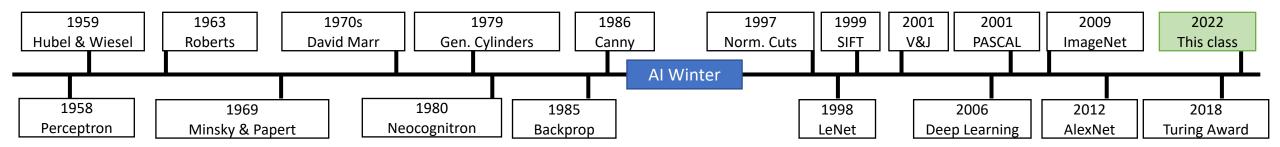
Yann LeCun

Krizhevsky, Sutskever, and Hinton, 2012

Yoshua Bengio Geoffrey Hinton

Justin Johnson

Lecture 25 - 21



Winter 2022: This class

Justin Johnson

Lecture 25 - 22

Simple Classifiers: kNN and Linear Classifiers

2.0

0.0

-0.3

231

24

2

1.1

-1.2

+|

3.2 =

-96.8

437.9

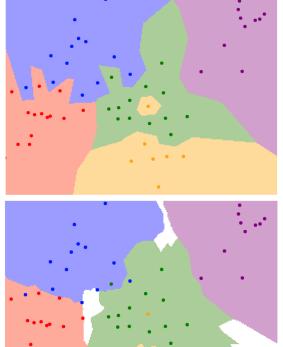
Cat score

Dog score

61.95 Ship score

truck

1-NN classifier



Stretch pixels into column

-0.5 0.1

1.3 2.1

0.25 0.2

0.2

1.5

0

Linear Classifiers: y = Wx + b



5-NN classifier

Justin Johnson

. .

Lecture 25 - 23

Optimization with Gradient Descent

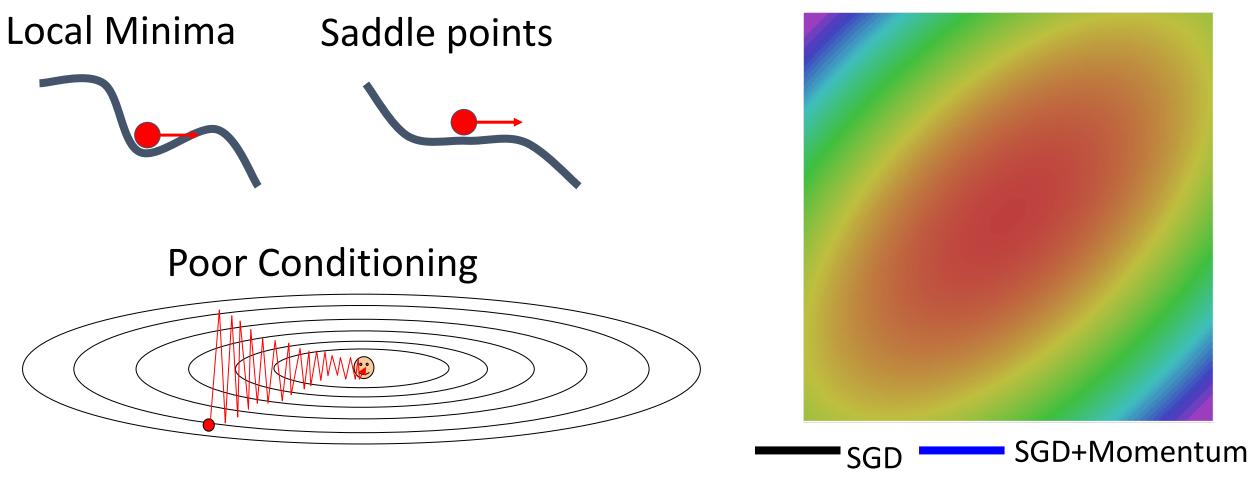
<pre># Vanilla gradient descent</pre>	
<pre>w = initialize_weights()</pre>	
<pre>for t in range(num_steps):</pre>	
dw = compute_gradient(loss_fn, data, w	1)
w —= learning_rate \star dw	

This image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain

Justin Johnson

Lecture 25 - 24

Problems with Gradient Descent



Gradient Noise

April 18, 2022

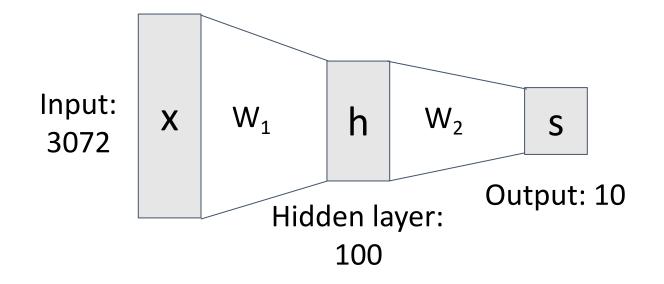
Lecture 25 - 25

Justin Johnson

Gradient Descent Improvements

Algorithm	Tracks first moments (Momentum)	Tracks second moments (Adaptive learning rates)	Leaky second moments	Bias correction for moment estimates	
SGD	X	X	X	X	
SGD+Momentum	\checkmark	X	X	X	
Nesterov	\checkmark	X	X	X	
AdaGrad	X	\checkmark	X	X	
RMSProp	X	\checkmark	\checkmark	X	
Adam	\checkmark	\checkmark	\checkmark	\checkmark	

More Complex Models: Neural Networks

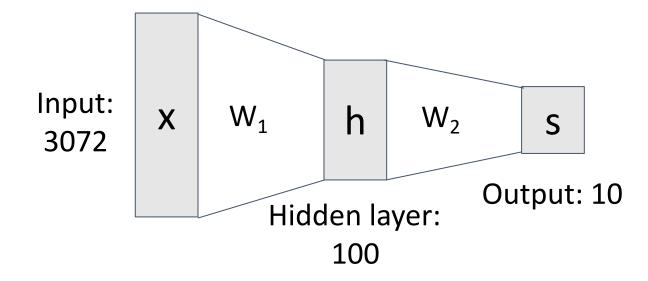


$$f=W_2\max(0,W_1x)$$

Justin Johnson

Lecture 25 - 27

More Complex Models: Neural Networks

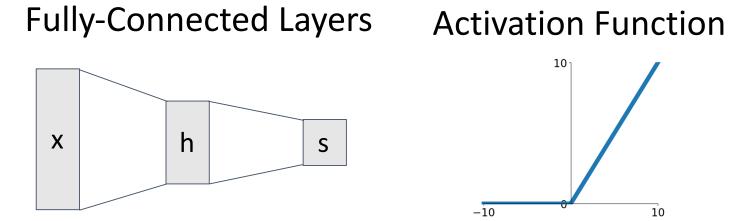


$$f=W_2\max(0,W_1x)$$

Learns bank of templates

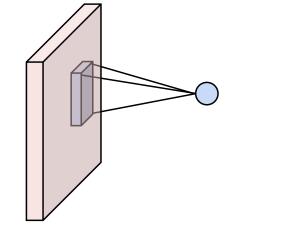
Justin Johnson

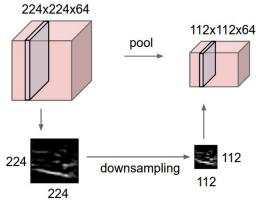
More Complex Models: Convolutional Networks

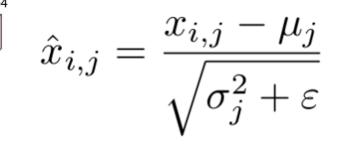


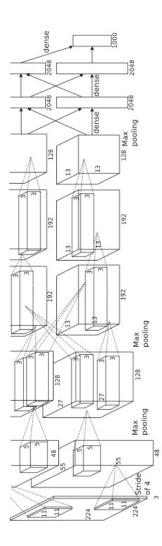
Convolution Layers

Normalization





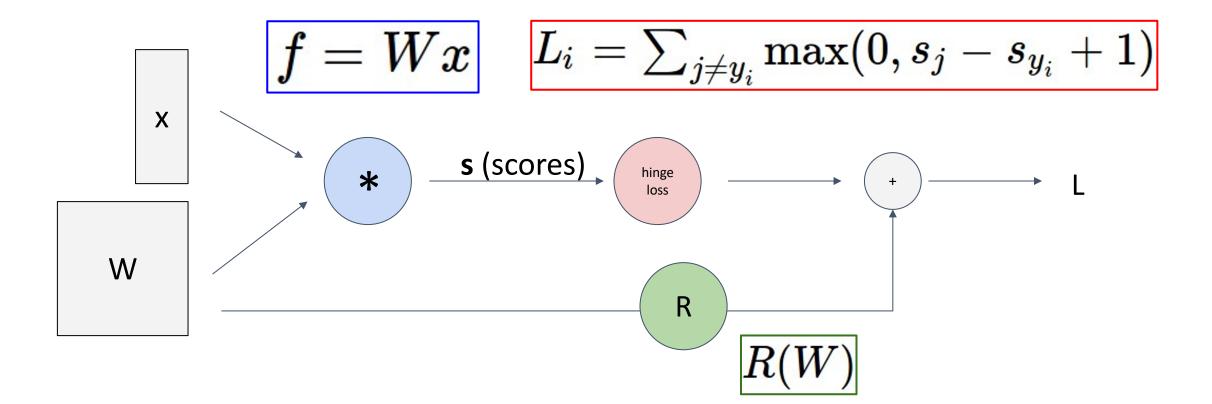




April 18, 2022

Justin Johnson

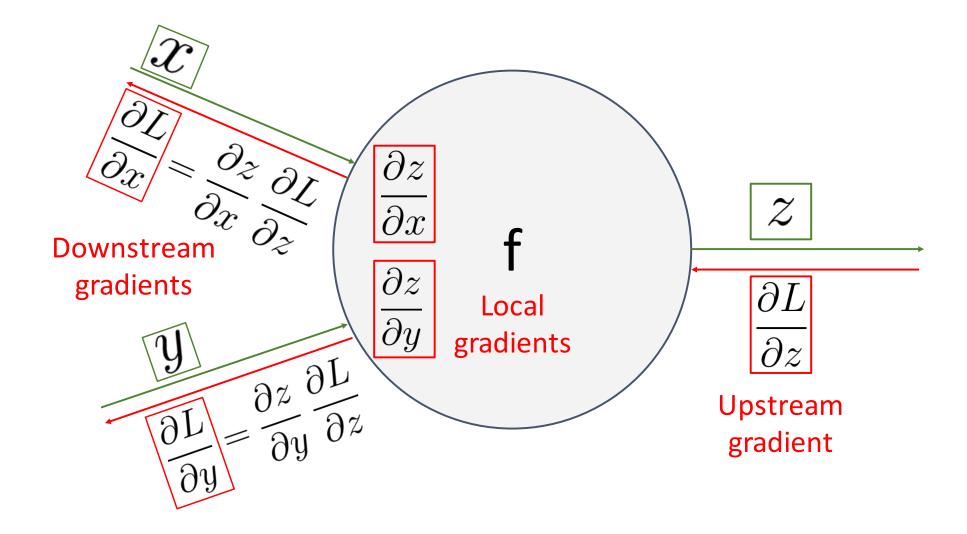
Representing Networks: Computational Graphs



	lict	in I	hnson
J	usi		

Lecture 25 - 30

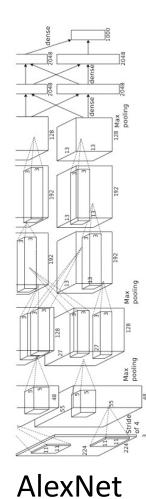
Computing Gradients: Backpropagation

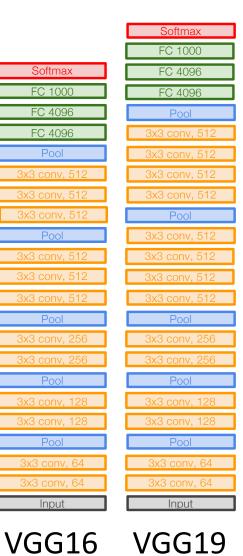


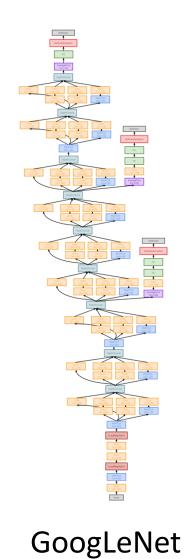
Justin Johnson

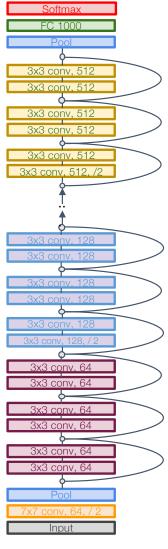
Lecture 25 - 31

CNN Architectures







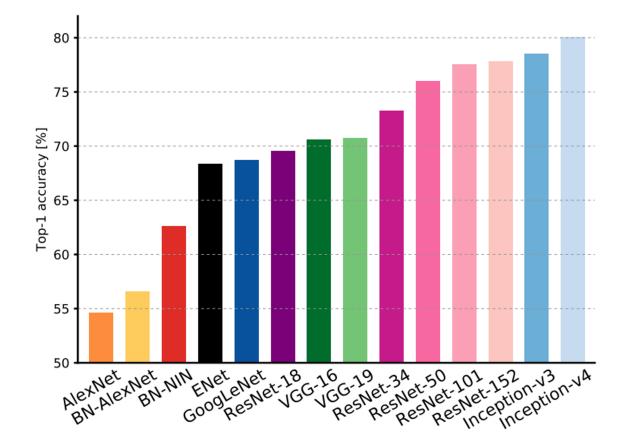


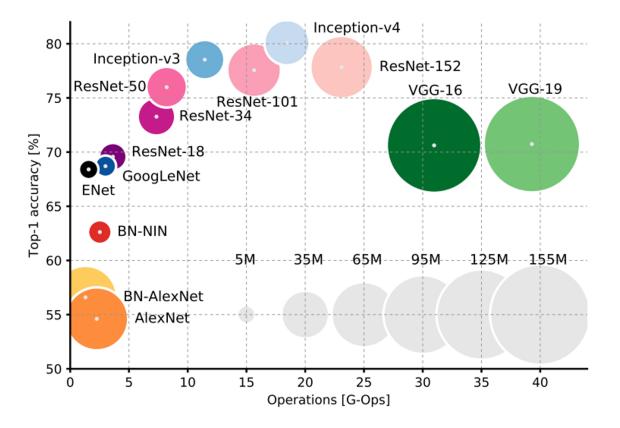
ResNet

Justin Johnson

Lecture 25 - 32

CNN Architectures: Efficiency



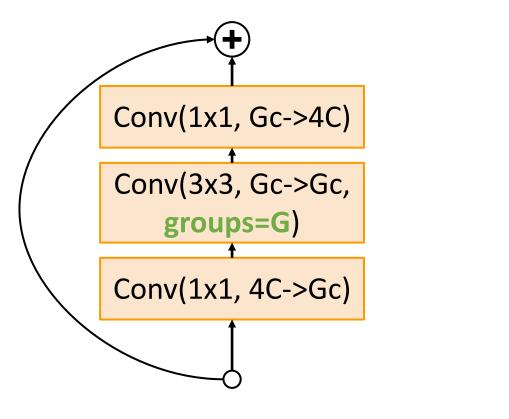


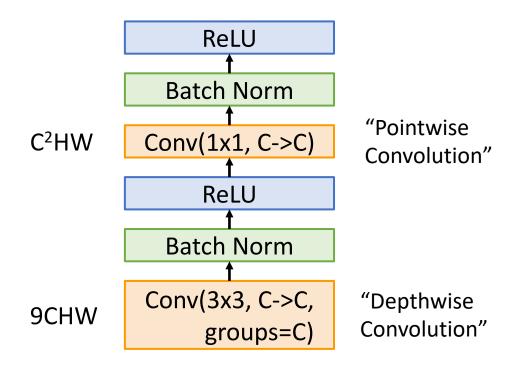
Canziani et al, "An analysis of deep neural network models for practical applications", 2017

Justin Johnson

Lecture 25 - 33

CNN Architectures: Efficiency



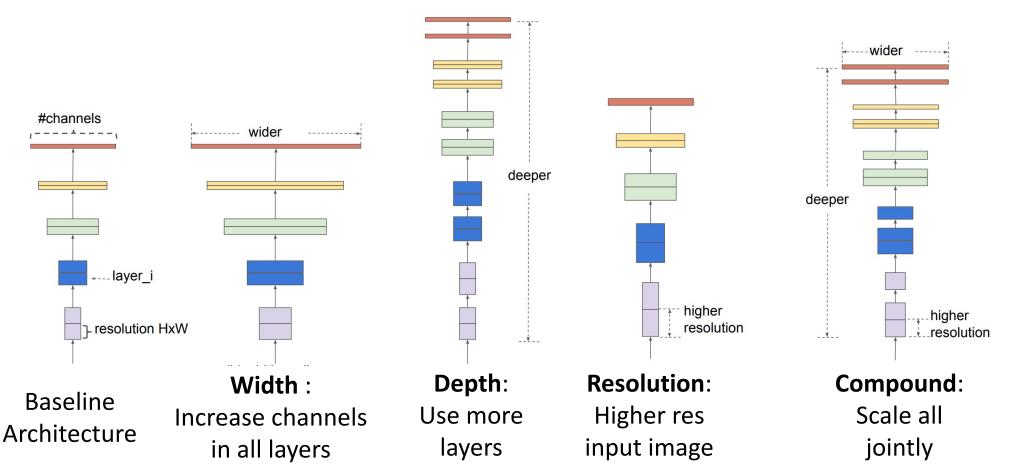


ResNeXt: Grouped convolution MobileNets: Depthwise / Pointwise Convolution

Justin Johnson

Model Scaling

Starting from a given architecture, how should you scale it up to improve performance?



Tan and Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", ICML 2019

Justin Johnson	Lecture 25 - 35	April 18, 2022

Model Scaling: RegNets Training Time (hours) ImageNet Top1 Accuracy EfficientNet —RegNetY EfficientNet —RegNetY Model GFLOPs Model GFLOPs

At same FLOPs, RegNet models get similar accuracy as EfficientNets but are up to 5x faster in training (each iteration is faster)

Radosavovic et al, "Designing Network Design Spaces", CVPR 2020 Dollar et al, "Fast and Accurate Model Scaling", CVPR 2021

Justin Johnson

Deep Learning Hardware and Software

CPU

GPU

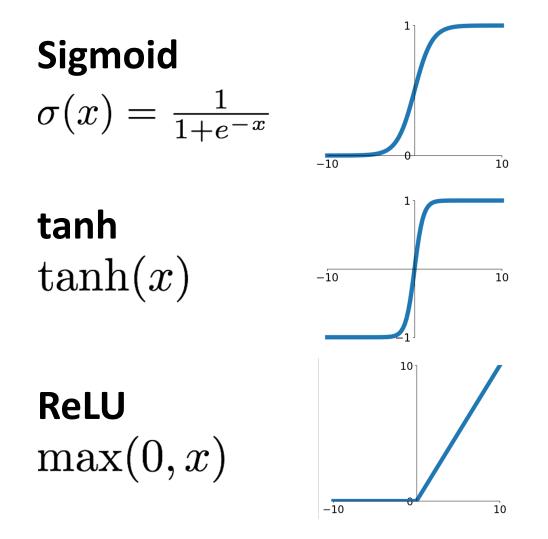
TPU

Static Graphs vs Dynamic Graphs PyTorch vs TensorFlow

Justin Johnson

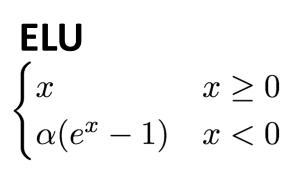
Lecture 25 - 37

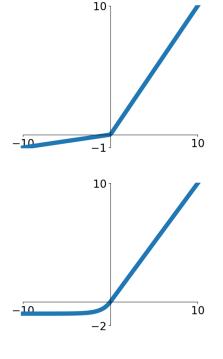
Training Networks: Activation Functions



Justin Johnson

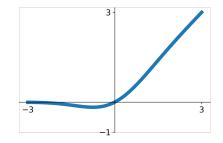
Leaky ReLU $\max(0.1x, x)$





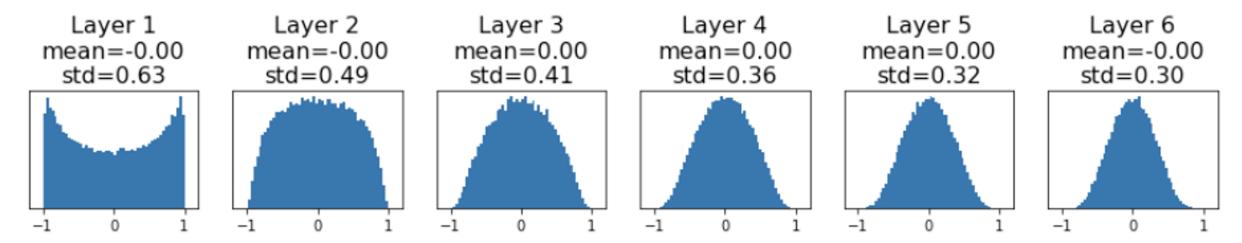
GELU $\approx x\sigma(1.702x)$

Lecture 25 - 38



Training Networks: Weight Initialization

```
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
"Just right": Activations are
nicely scaled for all layers!
```

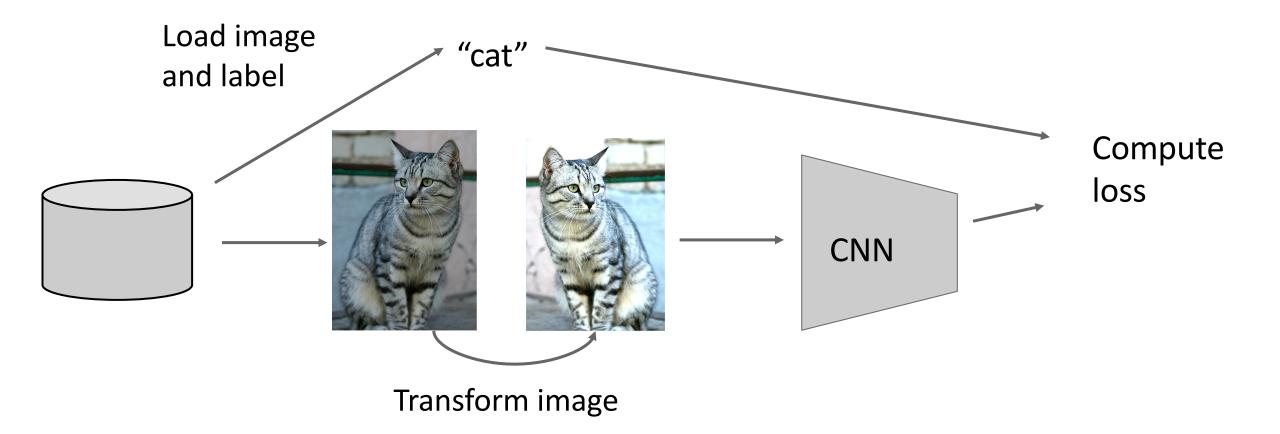


Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

Justin Johnson

Lecture 25 - 39

Training Networks: Data Augmentation



Justin Johnson

Lecture 25 - 40

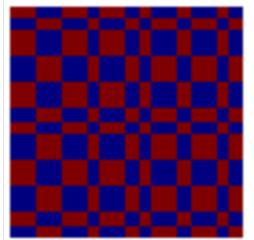
Training Networks: Regularization

Training: Add randomness **Testing**: Marginalize out randomness

Examples:

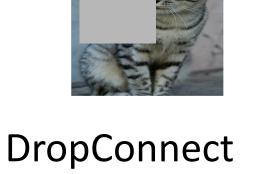
Batch Normalization Data Augmentation

Fractional pooling



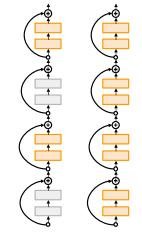
Justin Johnson

Dropout



Cutout

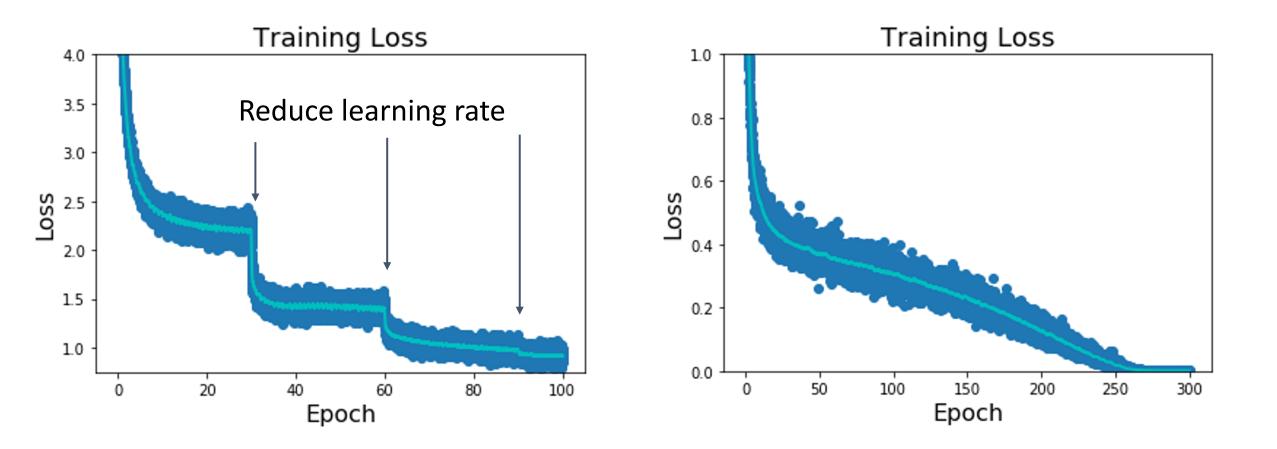
Stochastic Depth



X

Lecture 25 - 41

Training Neural Networks: Learning Rate Schedules



Justin Johnson

Lecture 25 - 42

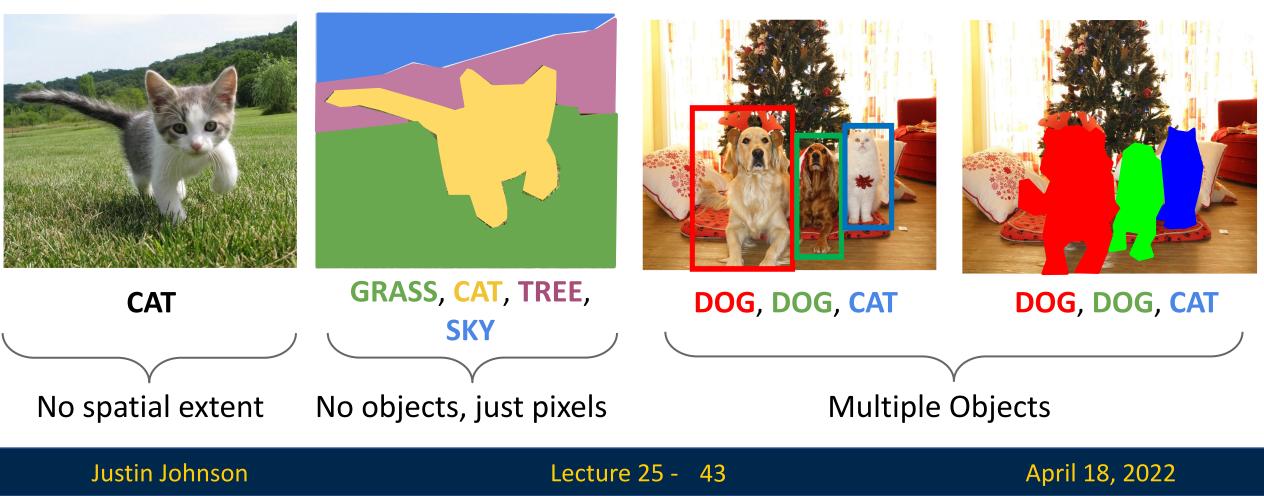
Computer Vision Tasks

Classification

Semantic Segmentation

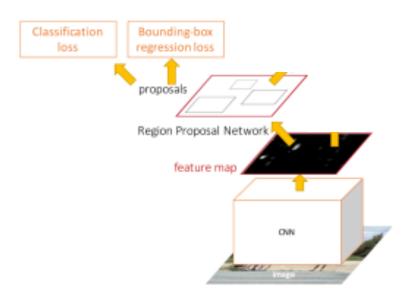
Object Detection

Instance Segmentation



Object Detection: Single Stage vs Two Stage

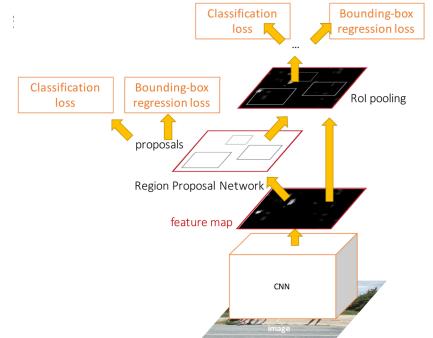
Single-Stage: FCOS, YOLO, RetinaNet Make all predictions with a CNN



Two-Stage:

Faster R-CNN Use RPN to predict proposals,

classify them with second stage



Justin Johnson

Lecture 25 - 44

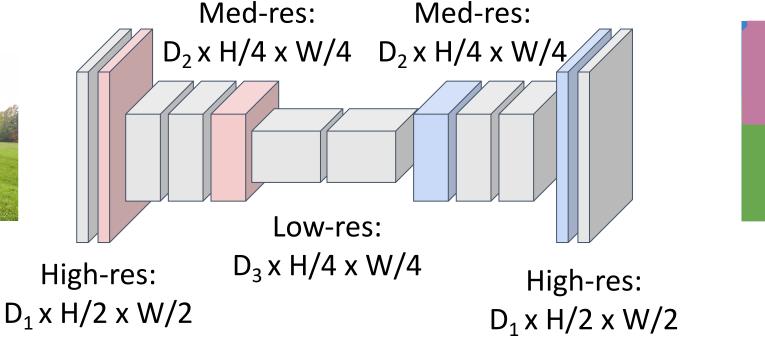
Semantic Segmentation: Fully Convolutional Network

Downsampling: Pooling, strided convolution

Input:

3 x H x W

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!



Upsampling: linterpolation, transposed conv

Predictions: H x W

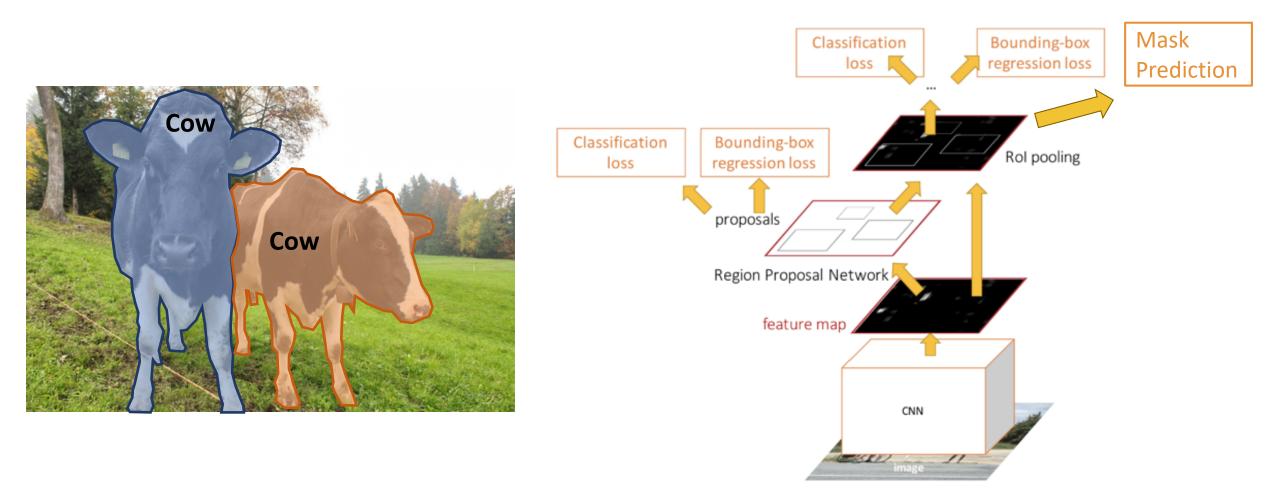
Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Loss function: Per-Pixel cross-entropy

Justin Johnson

Lecture 25 - 45

Instance Segmentation: Detection + Segmentation

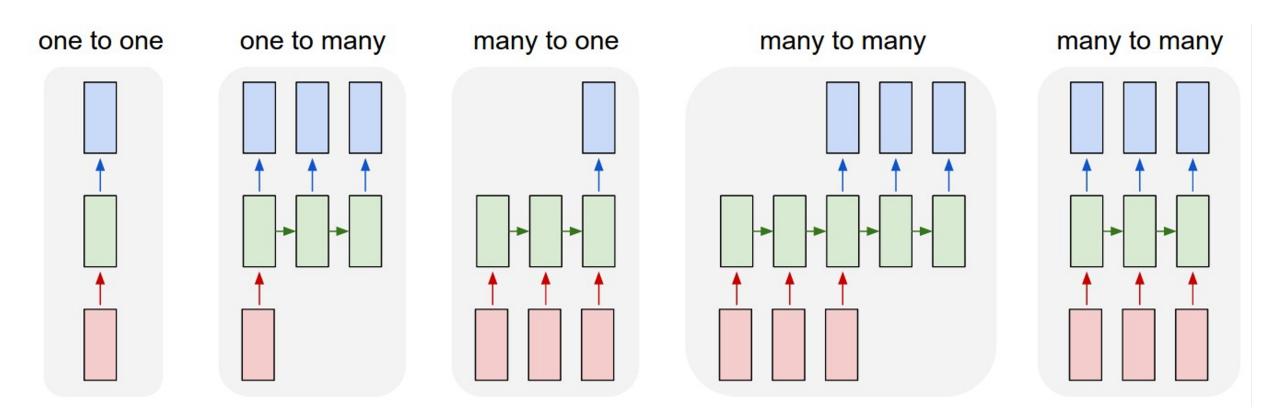


He et al, "Mask R-CNN", ICCV 2017

Justin Johnson

Lecture 25 - 46

Recurrent Neural Networks: Process Sequences

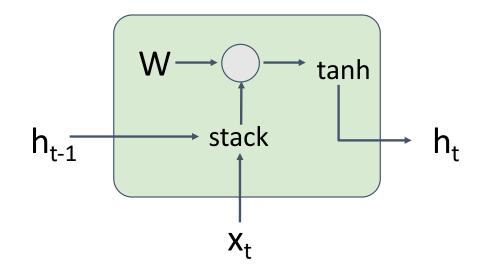


Justin Johnson

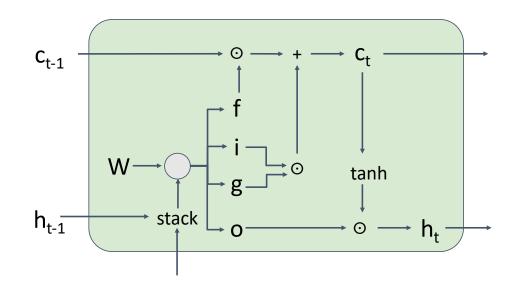
Lecture 25 - 47

Recurrent Neural Networks: Architectures

Vanilla Recurrent Network



Long Short Term Memory (LSTM)

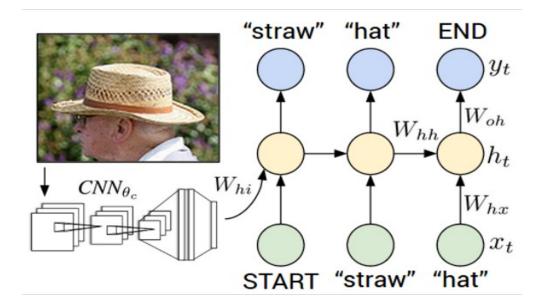


Justin Johnson

Lecture 25 - 48

Recurrent Neural Networks: Captioning

Captions generated using <u>neuraltalk2</u> All images are <u>CCO Public domain: cat</u> <u>suitcase, cat tree, dog, bear, surfers,</u> <u>tennis, giraffe, motorcycle</u>



Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015

A dog is running in the grass with a frisbee

Two giraffes standing in a grassy field

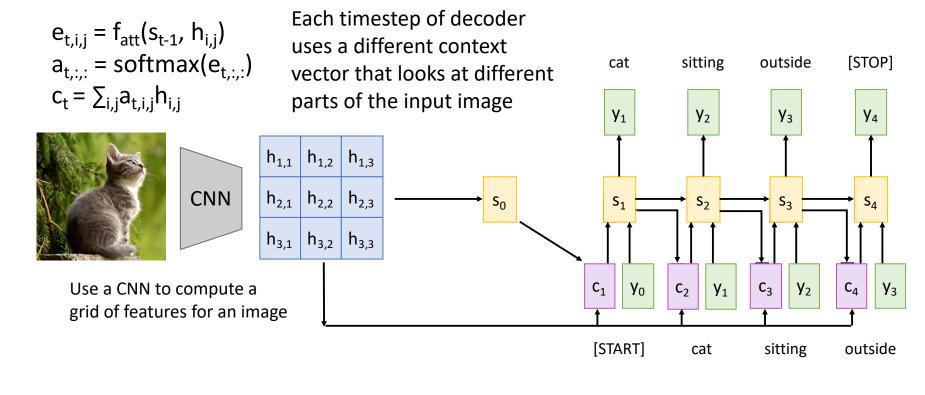
A white teddy bear sitting in the grass

A man riding a dirt bike on a dirt track

Justin Johnson

Lecture 25 - 49

Attention



Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Justin Johnson

Lecture 25 - 50

Self-Attention Layer

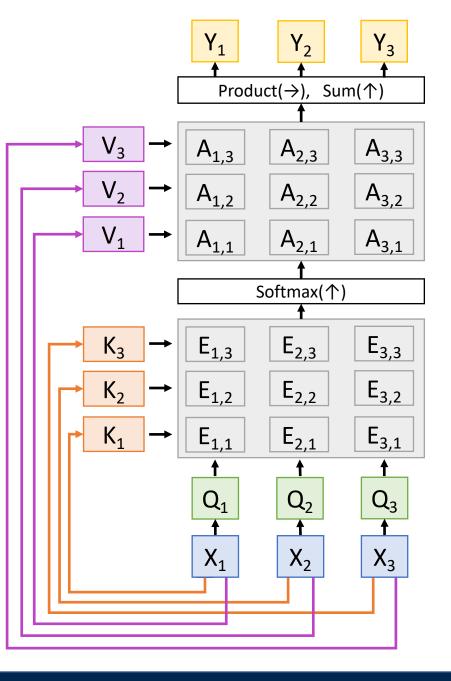
One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $\mathbf{Q} = \mathbf{XW}_{\mathbf{Q}}$ Key vectors: $\mathbf{K} = \mathbf{XW}_{\mathbf{K}}$ (Shape: $N_X \times D_Q$) Value Vectors: $\mathbf{V} = \mathbf{XW}_{\mathbf{V}}$ (Shape: $N_X \times D_V$) Similarities: $\mathbf{E} = \mathbf{QK}^{\mathsf{T}}$ (Shape: $N_X \times N_X$) $\mathbf{E}_{i,j} = \mathbf{Q}_i \cdot \mathbf{K}_j / \operatorname{sqrt}(D_Q)$ Attention weights: $\mathbf{A} = \operatorname{softmax}(\mathbf{E}, \operatorname{dim}=1)$ (Shape: $N_X \times N_X$) Output vectors: $\mathbf{Y} = \mathbf{AV}$ (Shape: $N_X \times D_V$) $\mathbf{Y}_i = \sum_j A_{i,j} \mathbf{V}_j$

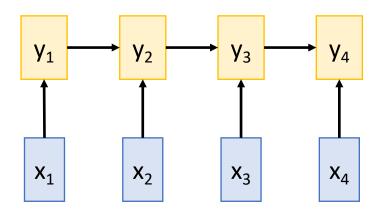


Justin Johnson

Lecture 25 - 51

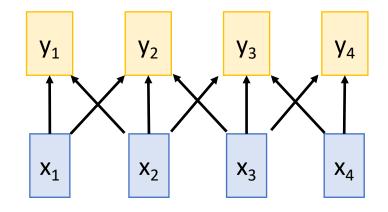
Processing Sequences

Recurrent Neural Network



Works on Ordered Sequences (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence (-) Not parallelizable: need to compute hidden states sequentially

1D Convolution



Works on Multidimensional Grids (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence

(+) Highly parallel: Each output can be computed in parallel

Self-Attention

	Y ₁	Y ₂	Y ₃				
	Product(→), Sum(↑)						
t							
\rightarrow V ₃ \rightarrow	A _{1,3}	A _{2,3}	A _{3,3}				
$V_2 \rightarrow$	A _{1,2}	A _{2,2}	A _{3,2}				
$V_1 \rightarrow$	A _{1,1}	A _{2,1}	A _{3,1}				
		t					
	Softmax(个)						
	*						
\rightarrow K ₃ \rightarrow	E _{1,3}	E _{2,3}	E _{3,3}				
\rightarrow K ₂ \rightarrow	E _{1,2}	E _{2,2}	E _{3,2}				
$ ightarrow K_1 \rightarrow$	E _{1,1}	E _{2,1}	E _{3,1}				
		t	t				
	Q ₁	Q ₂	Q ₃				
	<u>+</u>	t	1				
	X1	X ₂	X ₃				

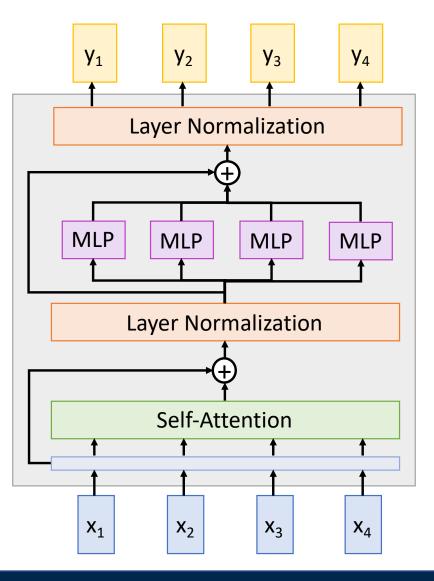
Works on Sets of Vectors

(-) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
(+) Highly parallel: Each output can be computed in parallel
(-) Very memory intensive

Justin Johnson

Lecture 25 - 52

Attention is all you need: The Transformer



Vaswani et al, "Attention is all you need", NeurIPS 2017

Justin Johnson

Lecture 25 - 53

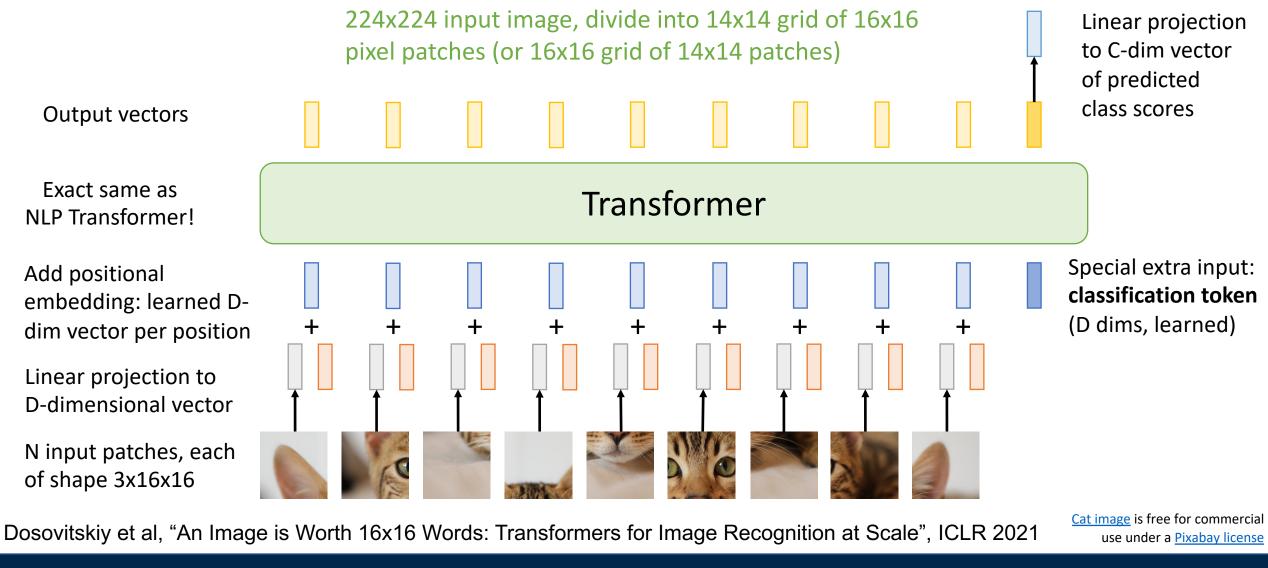
Scaling up Transformers

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hours)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)
BERT-Base	12	768	12	110M	13 GB	
BERT-Large	24	1024	16	340M	13 GB	
XLNet-Large	24	1024	16	~340M	126 GB	512x TPU-v3 (2.5 days)
RoBERTa	24	1024	16	355M	160 GB	1024x V100 GPU (1 day)
GPT-2	48	1600	?	1.5B	40 GB	
Megatron-LM	72	3072	32	8.3B	174 GB	512x V100 GPU (9 days)
Turing-NLG	78	4256	28	17B	?	256x V100 GPU
GPT-3	96	12,288	96	175B	694GB	?
Gopher	80	16,384	128	280B	10.55 TB	4096x TPUv3 (38 days)
PaLM	118	18,432	48	540B		6144x TPUv4

Chowdhery et al, "PaLM: Scaling Language Modeling with Pathways", arXiv 2022

Justin Johnson

Vision Transformer (ViT)



Justin Johnson

Lecture 25 - 55

Generative Models

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{N} p_{\theta}(x_i | x_1, \dots, x_{i-1})$$

Good image quality, can evaluate with perplexity. Slow to generate data, needs tricks to scale up.

Variational Autoencoders introduce a latent z, and maximize a lower bound:

$$p_{\theta}(x) = \int_{Z} p_{\theta}(x|z)p(z)dz \ge E_{z \sim q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

Latent z allows for powerful interpolation and editing applications.

Generative Adversarial Networks give up on modeling p(x), but allow us to draw samples from p(x). Difficult to evaluate, but best qualitative results today

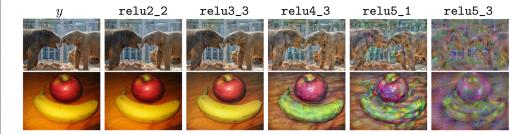
Justin Johnson

Visualizing and Understanding CNNs

Maximally Activating Patches

Nearest Neighbor

Synthetic Images via Gradient Ascent



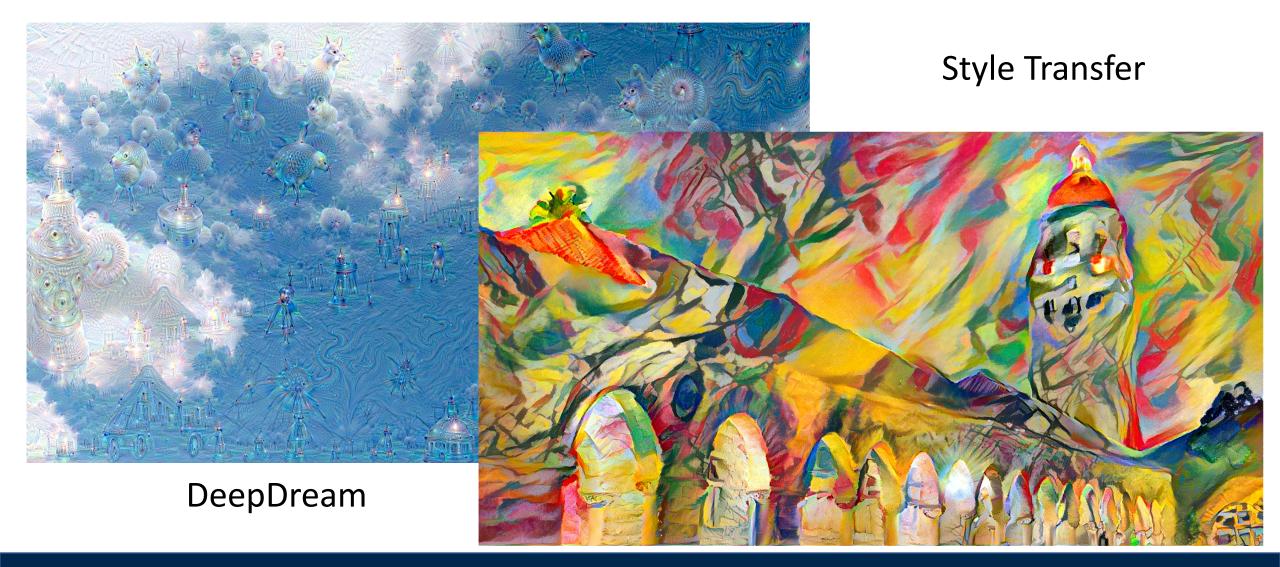
Feature Inversion

(Guided) Backprop

Justin Johnson

Lecture 25 - 57

Making Art with CNNs

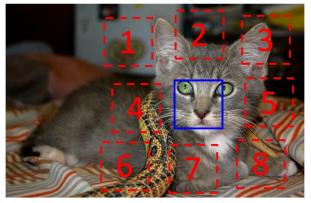


Justin Johnson

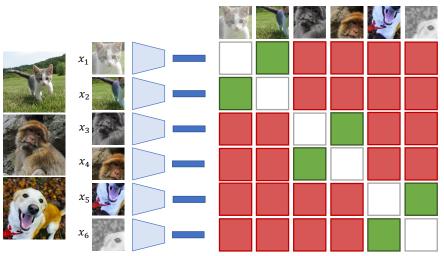
Lecture 25 - 58

Self-Supervised Learning

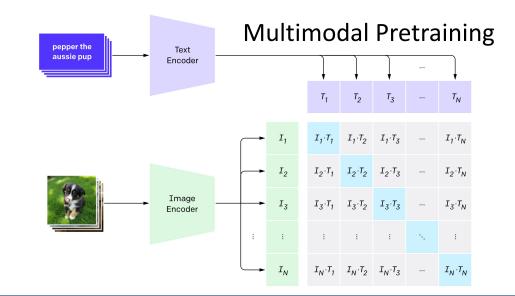
Context Prediction



Contrastive Learning



Colorization

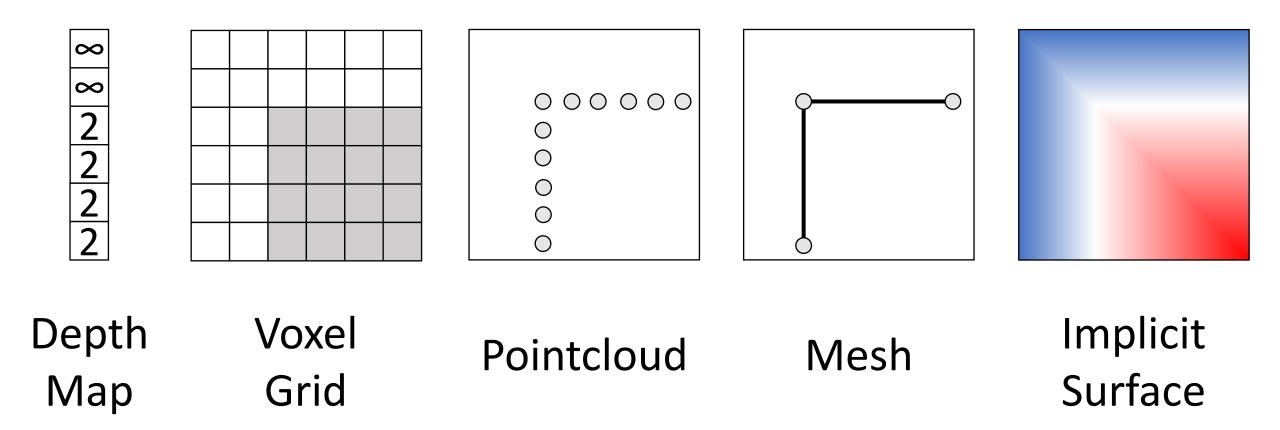


April 18, 2022

Justin Johnson

Lecture 25 - 59

Adding a Dimension: 3D Shapes



Justin Johnson

Lecture 25 - 60

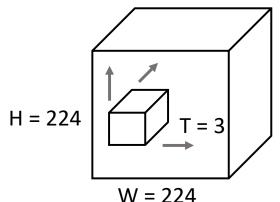
Adding a Dimension: NeRF

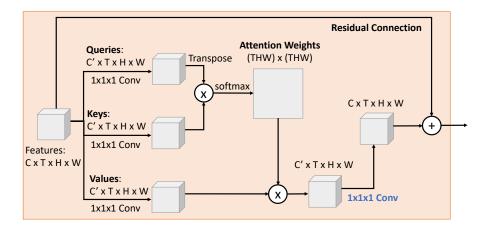
Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

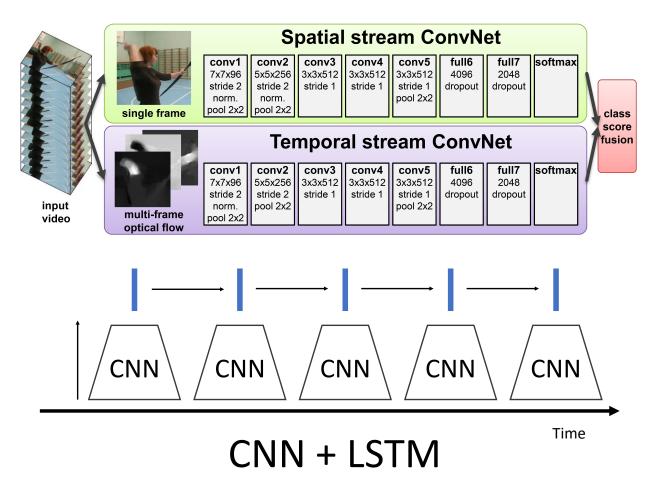
Justin Johnson

Lecture 25 - 61

Adding a Dimension: Deep Learning on Video 3D CNNs Two Stream Networks







Justin Johnson

Lecture 25 - 62

What's Next?

Justin Johnson

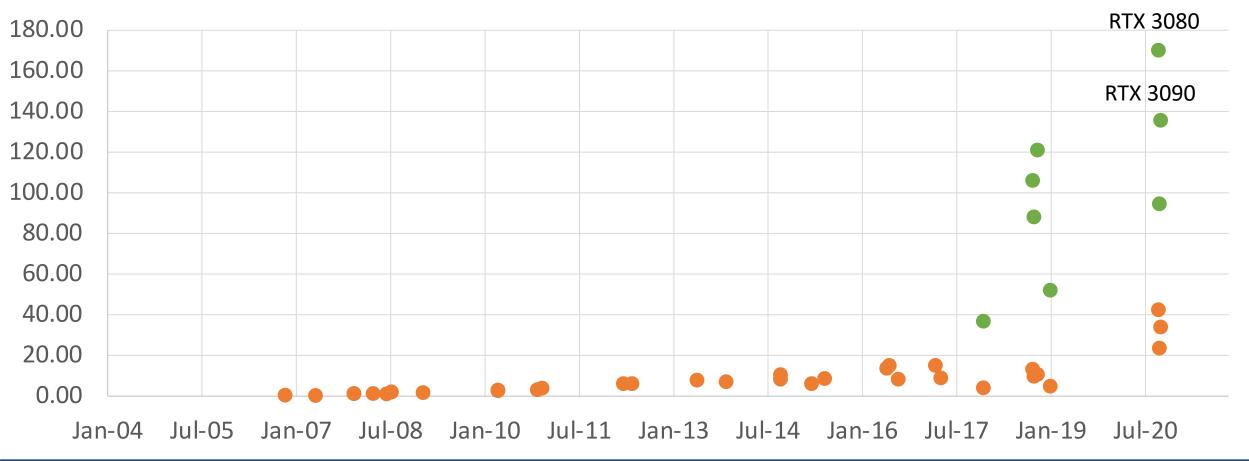
Lecture 25 - 63

Justin Johnson

Lecture 25 - 64

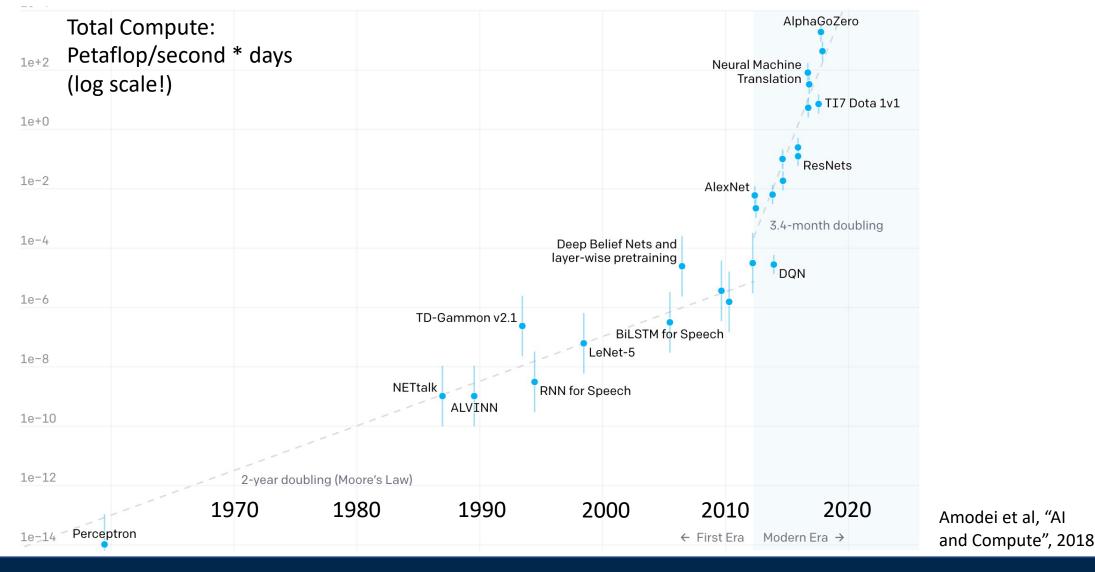
GFLOP per Dollar

• GPU (Tensor Core)



Justin Johnson

Lecture 25 - 65



Justin Johnson

Lecture 25 - 66

Two examples that came out since the start of this class:

PaLM: Transformer Language Model with 540B parameters Trained on 780 billion tokens using 6144 TPU-v4 chips

DALL-E 2: Text-to-Image model trained on 650M image/text pairs

Both show qualitative leaps in performance over prior systems

Chowdhery et al, "PaLM: Scaling Language Modeling with Pathways", arXiv 2022 Ramesh et al, "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022

Lecture 25 - 67

Model can explain jokes with zero-shot prompting!

Prompt:

I will explain these jokes:

(1) The problem with kleptomaniacs is that they always take things literally. Explanation: This joke is wordplay. Someone who "takes things literally" is someone who doesn't fully understand social cues and context, which is a negative trait. But the definition of kleptomania is someone who literally takes things.

(2) Always borrow money from a pessimist. They'll never expect it back. Explanation: Most people expect you to pay them back when you borrow money, however a pessimist is someone who always assumes the worst, so if you borrow money from them, they will expect that you won't pay them back anyways.

Chowdhery et al, "PaLM: Scaling Language Modeling with Pathways", arXiv 2022

Model can explain jokes with zero-shot prompting!

Input: I tried 10,000 random restarts of my neural network, but I was accused of overfitting. I guess no good seed goes unpunished.

Chowdhery et al, "PaLM: Scaling Language Modeling with Pathways", arXiv 2022

Justin Johnson

Lecture 25 - 69

Model can explain jokes with zero-shot prompting!

Input: I tried 10,000 random restarts of my neural network, but I was accused of overfitting. I guess no good seed goes unpunished.

Model Output: This joke is a pun. A neural network is a computer program that can learn from data. A "seed" is a number that is used to initialize a random number generator. A "good seed" is a number that produces a good random number generator. The phrase "no good deed goes unpunished" means that if you do something good, you will be punished for it.

Chowdhery et al, "PaLM: Scaling Language Modeling with Pathways", arXiv 2022

Model can explain jokes with zero-shot prompting!

Input: I was going to fly to visit my family on April 6th. My mom said "Oh great, your step dad's poetry reading is that night!" So now I'm flying in on April 7th.

Chowdhery et al, "PaLM: Scaling Language Modeling with Pathways", arXiv 2022

Justin Johnson

Lecture 25 - 71

Model can explain jokes with zero-shot prompting!

Input: I was going to fly to visit my family on April 6th. My mom said "Oh great, your step dad's poetry reading is that night!" So now I'm flying in on April 7th.

Model Output: The joke is that the speaker's mother is trying to get them to go to their step dad's poetry reading, but the speaker doesn't want to go, so they are changing their flight to the day after the poetry reading.

Bigger Models, More Data, More Compute: DALL-E 2

A rabbit detective sitting on a park bench and reading a newspaper in a victorian setting A shark and a dolphin cruise hand-in-hand with an undersea city in the background

Robot dinosaurs versus monster trucks in the colosseum

Source: https://twitter.com/sama/status/1511724264629678084

Justin Johnson

Lecture 25 - 73

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias Large models can lack common sense Who should control models and data?

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias

Large models can lack common sense Who should control models and data?

Stepping Back: Why Build ML Systems?

Automate decision making, so machines can make decision instead of people.

Ideal: Automated decisions can be cheaper, more accurate, more impartial, improve our lives

Reality: If we aren't careful, automated decisions can encode bias, harm people, make lives worse

Allocative Harms

- Some systems decide how to *allocate resources*
- If the system is biased, it may allocate resources unfairly or perpetuate inequality
- Examples:
 - Sentencing criminals
 - Loan applications
 - Mortgage applications
 - Insurance rates
 - College admissions
 - Job applications

Barocas et al, "The Problem With Bias: Allocative Versus Representational Harms in Machine Learning", SIGCIS 2017 Kate Crawford, "The Trouble with Bias", NeurIPS 2017 Keynote

Justin Johnson

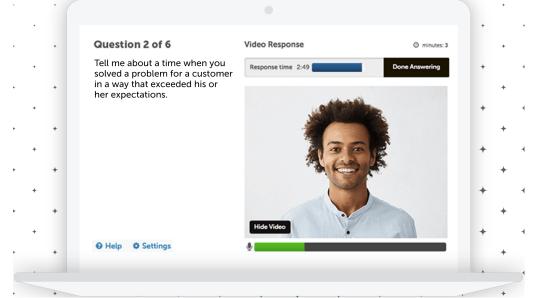
Lecture 25 - 77

Example: Video Interviewing

Technology

A face-scanning algorithm increasingly decides whether you deserve the job

HireVue claims it uses artificial intelligence to decide who's best for a job. Outside experts call it 'profoundly disturbing.'



Source: https://www.washingtonpost.com/technology/2019/10/22/ai-hiring-face-scanning-algorithm-increasingly-decides-whether-you-deserve-job/

https://www.hirevue.com/platform/online-video-interviewing-software

Example Credit: Timnit Gebru

Justin Johnson

Lecture 25 - 78

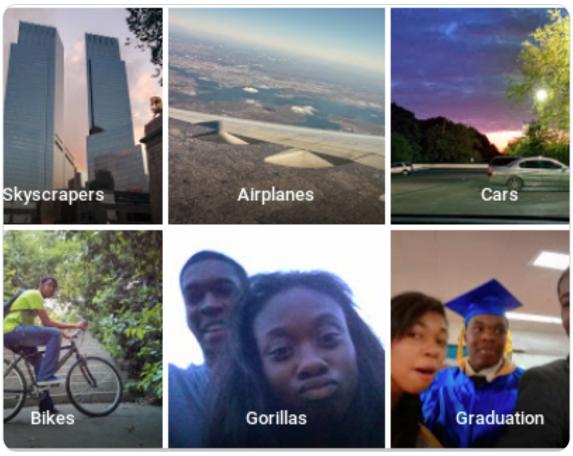
Representational Harms

A system reinforces harmful stereotypes

Justin Johnson

Representational Harms: Image classifiers

A system reinforces harmful stereotypes

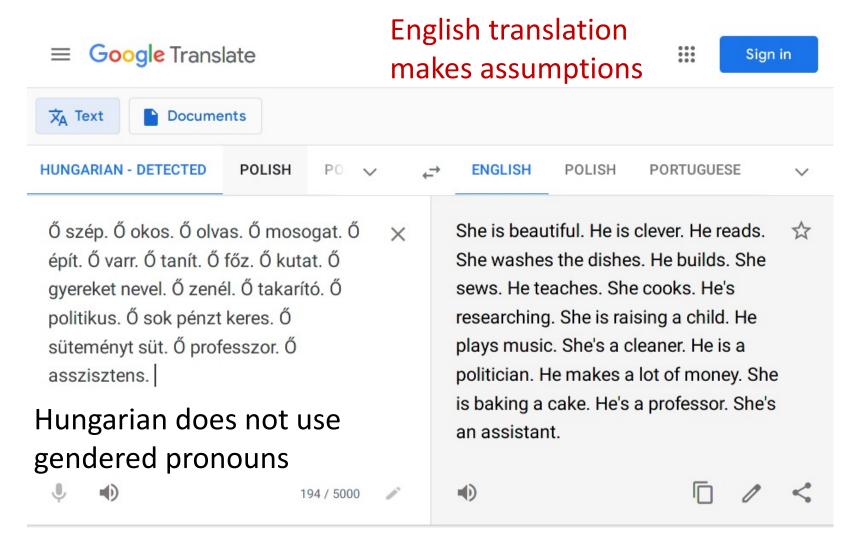


Barocas et al, "The Problem With Bias: Allocative Versus Representational Harms in Machine Learning", SIGCIS 2017 Kate Crawford, "The Trouble with Bias", NeurIPS 2017 Keynote Source: https://twitter.com/jackyalcine/status/615329515909156865 (2015)

Justin Johnson

Lecture 25 - 80

Representational Harms: Machine Translation



Source: <u>https://www.reddit.com/r/europe/comments/m9uphb/hungarian_has_no_gendered_pronouns_so_google</u>

Justin Johnson

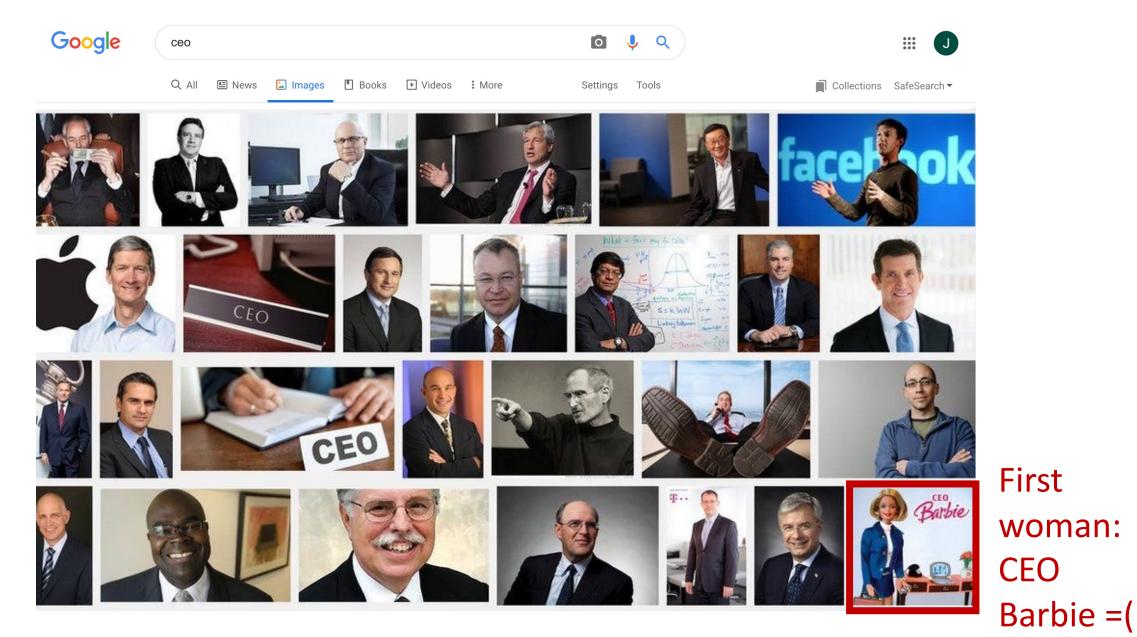
Representational Harms: Machine Translation

\equiv **Google** Translate

XA Text Documents									
HUNGARIAN - DETECTED	ENGLISH 🗸	÷	HUNGARIAN	ENGLISH	SPANISH	\sim			
ő szép	2	×	Translations are gender-specific. LEARN MORE						
Possible solution: Change the task; offer multiple suggestions			she is beautiful (feminine)						
						<			
maniple suggestions			he is beautiful (masculine)						
•	6 / 5000 🥒	*				<			

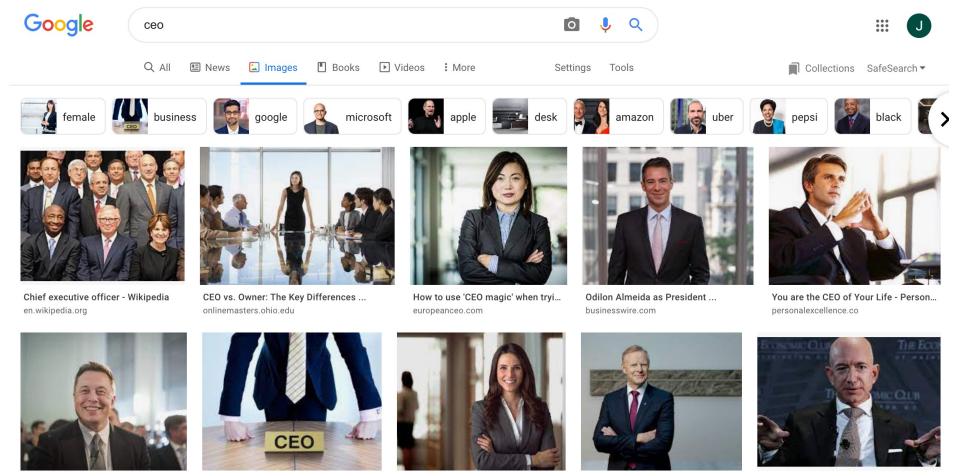
Justin Johnson

Lecture 25 - 82



Source: https://www.bbc.com/news/newsbeat-32332603

Justin Johnson



Harvard study: What CEOs do all day cnbc.com

CEO doesn't believe in CX ...

heartofthecustomer.com

7 Personality Traits Every CEO Shoul... forbes.com

Roeland Baan new CEO of Haldor T... blog.topsoe.com

EVI

Wartime CEOs are not the ideal leaders ... ft.com

Justin Johnson



Recent results more diverse

Representational Harm in Super-Resolution

Input: Low-Resolution Face

Output: High-Resolution Face

Menon et al, "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models", CVPR 2020 Example source: <u>https://twitter.com/Chicken3gg/status/1274314622447820801</u>

Justin Johnson

Lecture 25 - 85

Representational Harm in DALL-E 2

Text Prompt: "lawyer"

Ramesh et al, "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022 https://github.com/openai/dalle-2-preview/blob/main/system-card.md

Justin Johnson

Lecture 25 - 86

Representational Harm in DALL-E 2

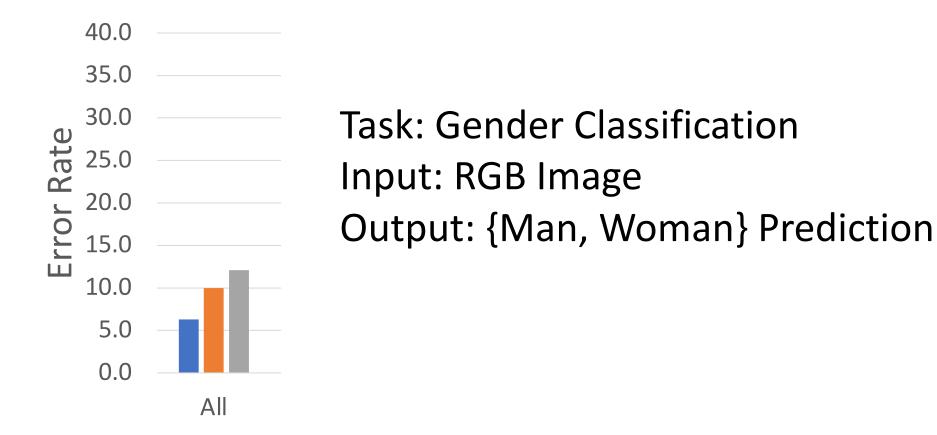
Text Prompt: "nurse"

Ramesh et al, "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022 https://github.com/openai/dalle-2-preview/blob/main/system-card.md

Justin Johnson

Lecture 25 - 87

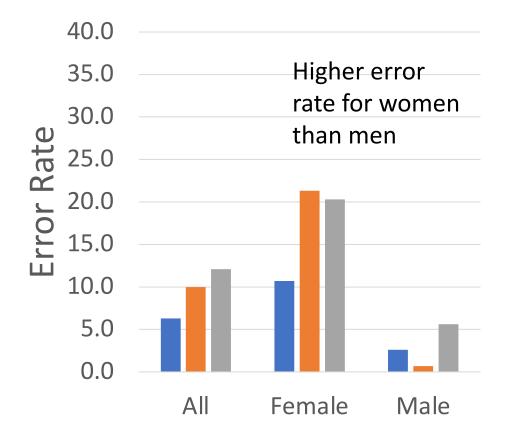
■ MSFT ■ Face++ ■ IBM



Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson

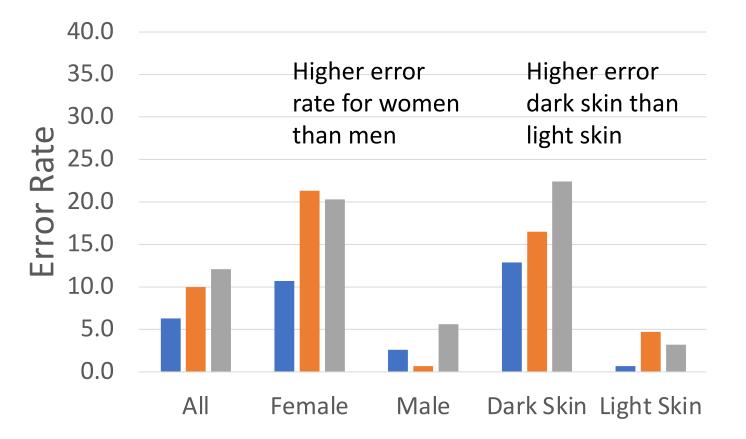
■ MSFT ■ Face++ ■ IBM



Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson

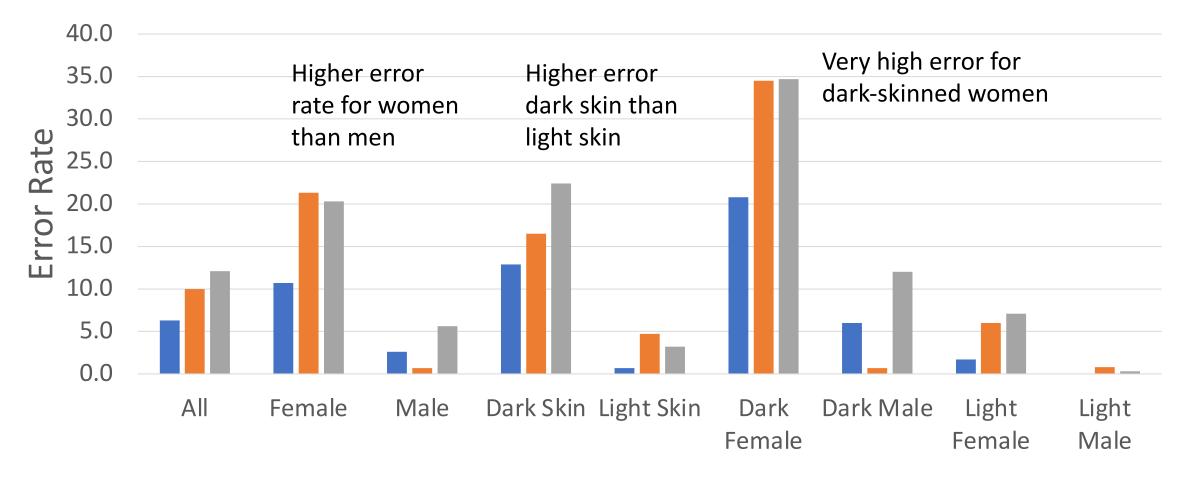
■ MSFT ■ Face++ ■ IBM



Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson

■ MSFT ■ Face++ ■ IBM

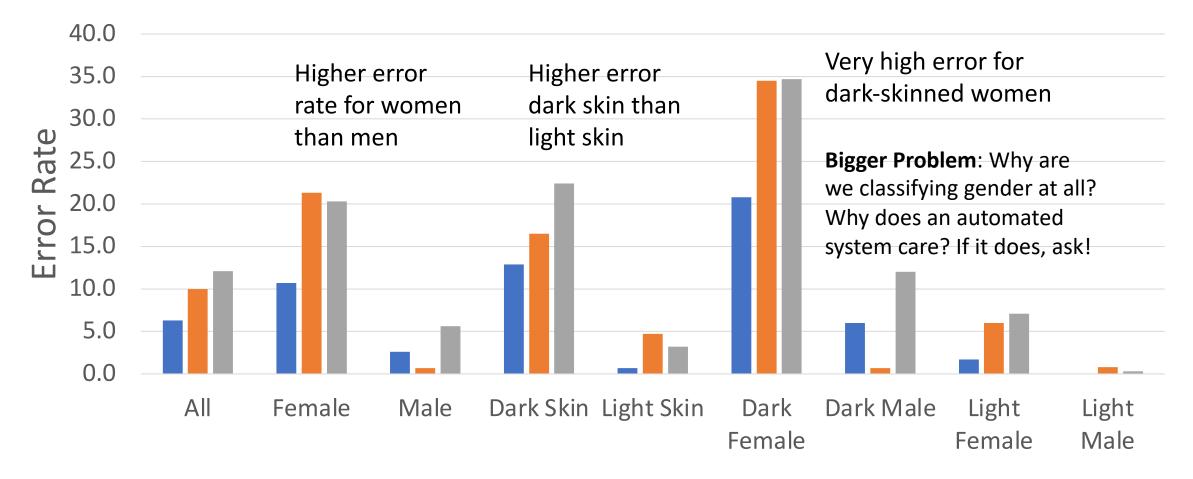


Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson

Lecture 25 - 91

■ MSFT ■ Face++ ■ IBM



Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson

Datasheets for Datasets

Idea: A standard list of questions to answer when releasing a dataset. Who created it? Why? What is in it? How was it labeled?

A Database for Studying Face Recognition in Unconstrained Environments

Labeled Faces in the Wild

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a description.

Labeled Faces in the Wild was created to provide images that can be used to study face recognition in the unconstrained setting where image characteristics (such as pose, illumination, resolution, focus), subject demographic makeup (such as age, gender, race) or appearance (such as hairstyle, makeup, clothing) cannot be controlled. The dataset was created for the specific task of pair matching: given a pair of images each containing a face, determine whether or not the images are of the same person.¹

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?

The initial version of the dataset was created by Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller, most of whom were researchers at the University of Massachusetts Amherst at the time of the dataset's release in 2007.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number. The construction of the LFW database was supported by a United States National Science Foundation CAREER Award.

The dataset does not contain all possible instances. There are no known relationships between instances except for the fact that they are all individuals who appeared in news sources on line, and some individuals appear in multiple pairs.

What data does each instance consist of? "Raw" data (e.g., unprocessed text or images)or features? In either case, please provide a description.

Each instance contains a pair of images that are 250 by 250 pixels in JPEG 2.0 format.

Is there a label or target associated with each instance? If so, please provide a description.

Each image is accompanied by a label indicating the name of the person in the image.

Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.

Everything is included in the dataset.

Are relationships between individual instances made explicit (e.g., users' movie ratings, social network links)? If so, please describe how these relationships are made explicit.

There are no known relationships between instances except for the fact that they are all individuals who appeared in paws sources

Gebru et al, "Datasheets for Datasets", FAccT 2018

Justin Johnson

Lecture 25 - 93

Model Cards

Idea: A standard list of questions to answer when releasing a trained model. Who created it? What data was it trained on? What should it be used for? What should it **not** be used for?

Model Card

- Model Details. Basic information about the model.
- Person or organization developing model
- Model date
- Model version
- Model type
- Information about training algorithms, parameters, fairness constraints or other applied approaches, and features
- Paper or other resource for more information
- Citation details
- License
- Where to send questions or comments about the model
- **Intended Use**. Use cases that were envisioned during development.
 - Primary intended uses
- Primary intended users
- Out-of-scope use cases
- **Factors**. Factors could include demographic or phenotypic groups, environmental conditions, technical attributes, or others listed in Section 4.3.
 - Relevant factors

Mitchell et al, "Model Cards for Model Reporting", FAccT 2019

- Evaluation factors

- **Metrics**. Metrics should be chosen to reflect potential realworld impacts of the model.
 - Model performance measures
 - Decision thresholds
 - Variation approaches
- **Evaluation Data**. Details on the dataset(s) used for the quantitative analyses in the card.
 - Datasets
 - Motivation
 - Preprocessing
- **Training Data**. May not be possible to provide in practice. When possible, this section should mirror Evaluation Data. If such detail is not possible, minimal allowable information should be provided here, such as details of the distribution over various factors in the training datasets.
- Quantitative Analyses
 - Unitary results
 - Intersectional results
- Ethical Considerations
- Caveats and Recommendations

Justin Johnson

Lecture 25 - 94

Model Cards

Out-of-Scope Use Cases

Some models are just for research and not to be deployed. Make it clear!

Any deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP's performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.

Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.

https://github.com/openai/CLIP/blob/main/model-card.md

Justin Johnson

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias Large models can lack common sense Who should control models and data?

Large Models Lack Common Sense

Some plants surrounding a lightbulb

A lightbulb surrounding some plants

Large vision + language models cannot correctly pair images with captions

Thrush et al, "Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality", CVPR 2022

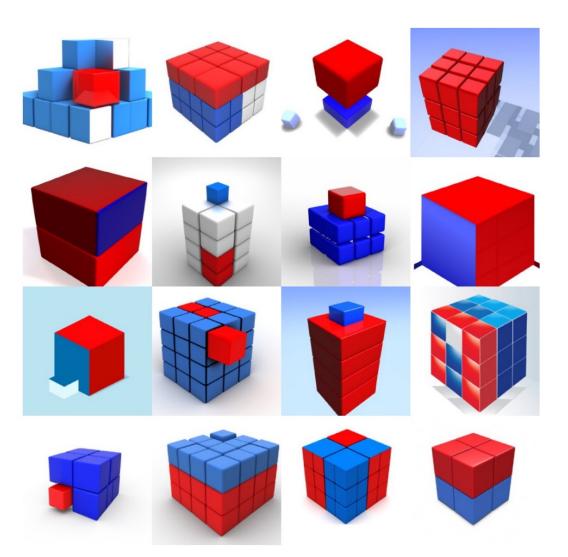
Justin Johnson

Large Models Lack Common Sense

Samples from DALL-E 2 for the prompt:

"a red cube on top of a blue cube"

Simple compositions of objects, attributes, relationships often not respected



Ramesh et al, "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022

Justin Johnson

Lecture 25 - 98

Large Models Lack Common Sense: GPT-2

Bold = prompt written by human *Italic = completion written by GPT-2*

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve.

I see a black dog and a brown horse. The bigger animal's color is black, and the smaller is brown.

Examples generated using https://talktotransformer.com/

Large Models Lack Common Sense: GPT-3

Bold = prompt written by human *Italic = completion written by GPT-3*

At the party, I poured myself a glass of lemonade, but it turned out to be too sour, so I added a little sugar. I didn't see a spoon handy, so I stirred it with a paper napkin. But that turned out to be a bad idea because the napkin disintegrated in the glass. After I finished the drink, I threw the napkin away in a wastebasket—but when I picked up the glass to wash it out, there was a big black spot on my hand.

Source: https://cs.nyu.edu/~davise/papers/GPT3CompleteTests.html

Large Models Lack Common Sense

Open question: Can large models learn common sense about the world from lots of (internet) data? Or are there fundamental limitations?

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias Large models can lack common sense Who should control models and data?

Who should control data?

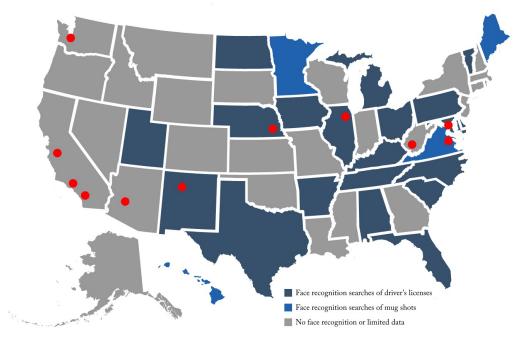
Image copyright != Consent to use in a dataset

Birhane and Prabhu, "Large Image Datasets: A Pyrrhic Win for Computer Vision?", WACV 2021

Justin Johnson

Who should control data?

Image copyright != Consent to use in a dataset



"One in two American adults is in a law enforcement face recognition network."

Garvie, Bedoya, and Frankle: "The Perpetual Line-Up", 2016, <u>https://www.perpetuallineup.org/</u>

Birhane and Prabhu, "Large Image Datasets: A Pyrrhic Win for Computer Vision?", WACV 2021

Justin Johnson

Lecture 25 - 104

Who should control models?

The largest models (e.g. PaLM, DALL-E 2) can only be trained by large non-academic institutions. Is this a problem?

Who should control models?

The largest models (e.g. PaLM, DALL-E 2) can only be trained by large non-academic institutions. Is this a problem?

Should governments regulate the use of ML-based solutions?

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias Large models can lack common sense Who should control models and data?

Deep Learning is Here to Stay

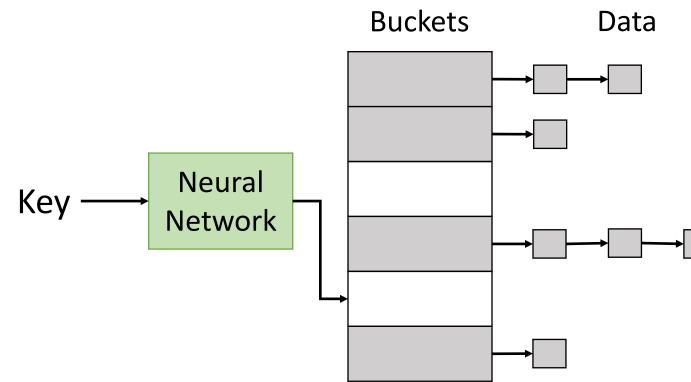
Deep Learning is Here to Stay and will impact more than vision, speech, NLP

Justin Johnson

Lecture 25 - 109

Deep Learning for Computer Science

Traditional Hash Table



Learn to assign keys to buckets in a way that minimizes hash collisions for the types of data you encounter

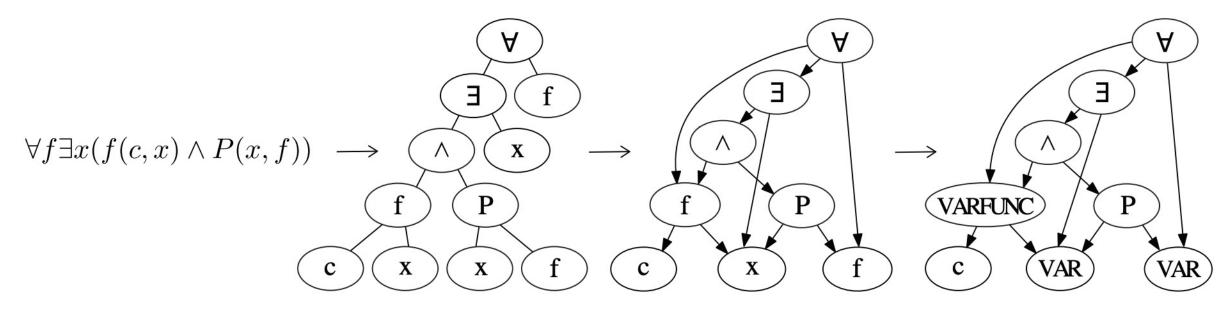
Kraska et al, "The Case for Learned Index Structures", SIGMOD 2018

Just			00
JUSU		1115	OL

Lecture 25 - 110

Deep Learning for Mathematics

Convert mathematical expressions into graphs, process then with graph neural networks!



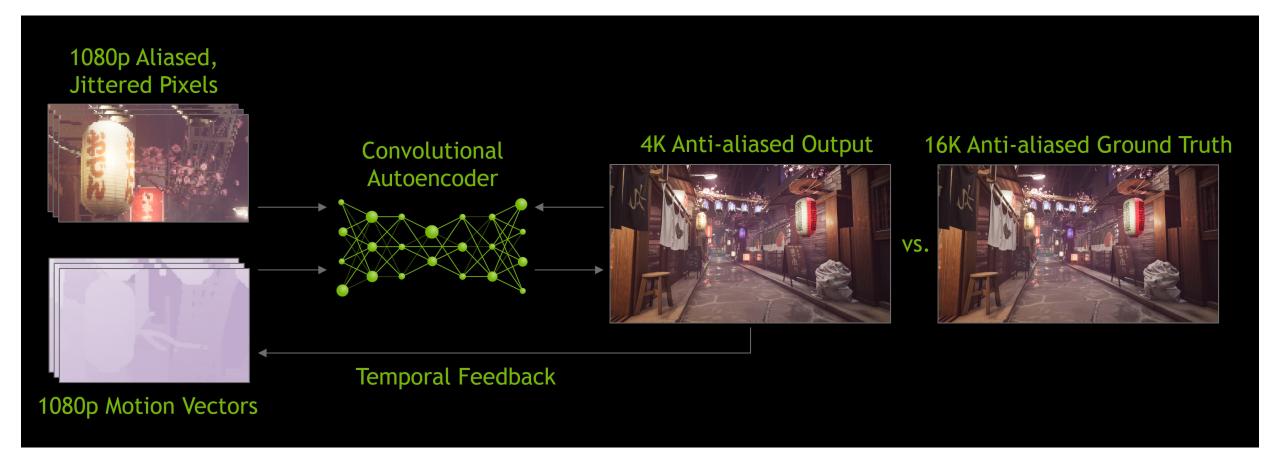
Applications: Theorem proving, symbolic integration

Wang et al, "Premise Selection for Theorem Proving by Deep Graph Embedding", NeurIPS 2017 Kaliszyk et al, "Reinforcement Learning of Theorem Proving", NeurIPS 2018 Lample and Charton, "Deep Learning for Symbolic Mathematics", arXiv 2019

Justin Johnson

Lecture 25 - 111

Deep Learning for Graphics: NVIDIA DLSS

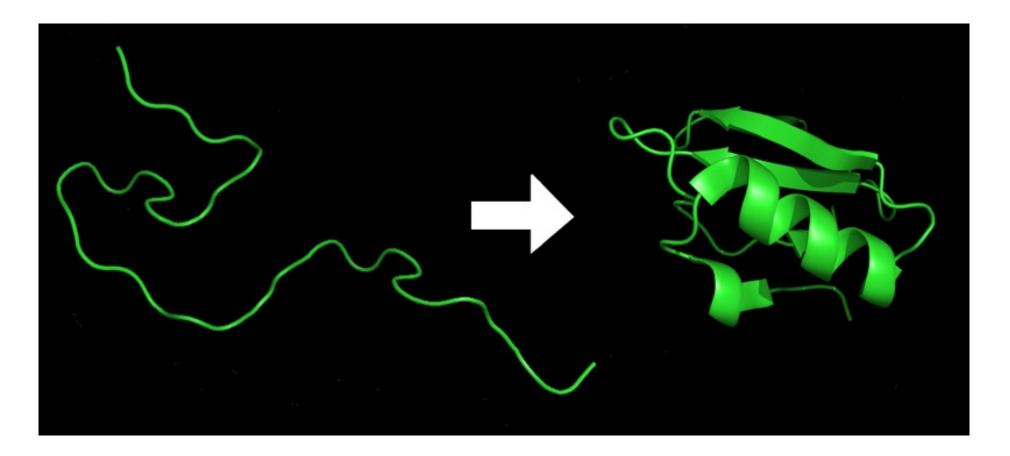


https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

Justin Johnson

Lecture 25 - 112

Deep Learning for Science: Protein Folding



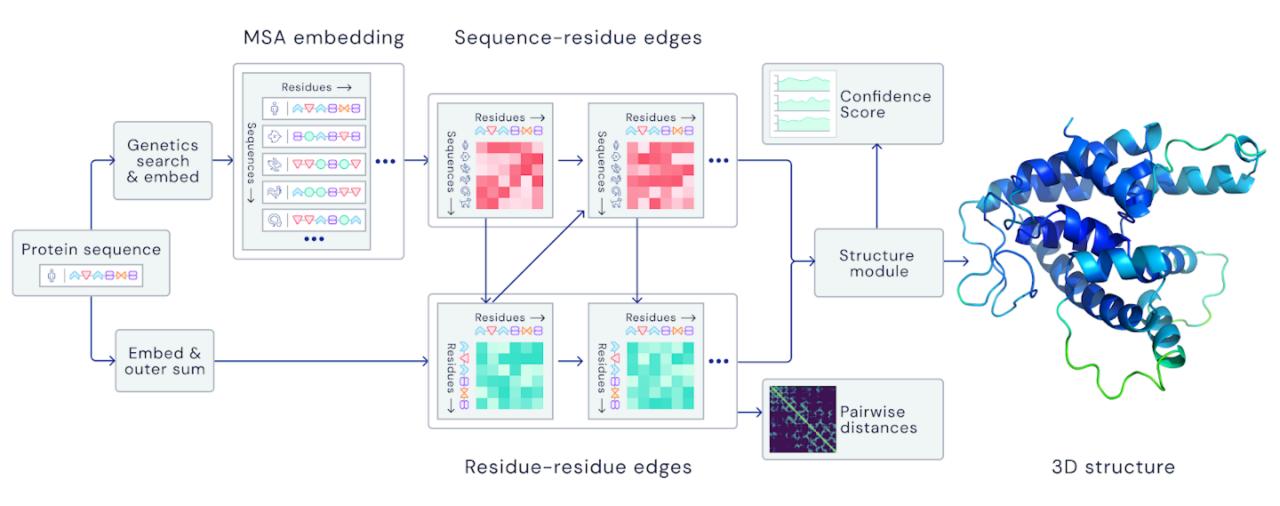
Input: 1D sequence of amino acids

Output: 3D protein structure

Justin Johnson

Lecture 25 - 113

Deep Learning for Science: AlphaFold 2



https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Justin Johnson

Lecture 25 - 114

Computer Vision Technology

Can Better Our Lives

Justin Johnson

den.

0.0

Lecture 25 - 115

Computer Vision Technology

Can Better Our Lives

Now is a great time to be working in computer vision and machine learning!

Justin Johnson

Lecture 25 - 116

Thanks GSIs and IAs!

Graduate Student Instructors

Jim Yang

Wallace Sui (WS)

Karan Desai (KD)

Janpreet Singh (JS)

Instructional Aides

Gaurav Kaul

Zubin T Aysola

Lecture 25 - 117

The End!

Justin Johnson

Lecture 25 - 118