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Lecture 23:
3D Vision
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Reminder: A5
Recurrent networks, attention, Transformers

Due on Tuesday 4/12, 11:59pm ET
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A6
Will cover image generation and visualization:

Generative Models: GANs and VAEs
Network visualization: saliency maps, adversarial examples, class 
visualizations
Style Transfer

Should be released tonight; due 2 weeks after release

YOU CANNOT USE LATE DAYS ON A6!!!!
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Last Time: Self-Supervised Learning
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Context Prediction Colorization

Contrastive Learning
Multimodal Pretraining
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Previously: Predicting 2D Shapes of Objects

5

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
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Today: Predicting 3D Shapes of Objects

He, Gkioxari, Dollár, and 
Girshick, “Mask R-CNN”, 
ICCV 2017

Mask R-CNN: 
2D Image -> 2D shapes

Mesh R-CNN: 
2D Image -> 3D shapes

Gkioxari, Malik, and Johnson, 
“Mesh R-CNN”, ICCV 2019
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Focus on Two Problems today

Predicting 3D Shapes 
from single image

Processing 3D 
input data

Input Image 3D Shape 3D Shape

Chair
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Many more topics in 3D Vision!

Computing correspondences 
Multi-view stereo
Structure from Motion
Simultaneous Localization and Mapping (SLAM)
Self-supervised learning
Differentiable graphics
3D Sensors
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3D Shape Representations
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3D Shape Representations: Depth Map

RGB Image: 3 x H x W Depth Map: H x W
Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015

For each pixel, depth map gives 
distance from the camera to the 
object in the world at that pixel

RGB image + Depth image 
= RGB-D Image (2.5D)

This type of data can be recorded 
directly for some types of 3D 
sensors (e.g. Microsoft Kinect)
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Predicting Depth Maps

RGB Input Image:
3 x H x W

Fully Convolutional 
network

Predicted Depth Image:
1 x H x W

Predicted Depth Image:
1 x H x W

Per-Pixel Loss
(L2 Distance)

Eigen, Puhrsh, and Fergus, “Depth Map Prediction from a Single Image using a Multi-Scale Deep Network”, NeurIPS 2014
Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015
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Problem: Scale / Depth Ambiguity

Image 
Plane

Small, close 
object

Large, far object

A small, close object looks exactly 
the same as a larger, farther-away 
object. Absolute scale / depth are 
ambiguous from a single image 
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Predicting Depth Maps

RGB Input Image:
3 x H x W

Fully Convolutional 
network

Predicted Depth Image:
1 x H x W

Predicted Depth Image:
1 x H x W

Per-Pixel Loss
(Scale invariant)

Eigen, Puhrsh, and Fergus, “Depth Map Prediction from a Single Image using a Multi-Scale Deep Network”, NeurIPS 2014
Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015

Scale invariant loss
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3D Shape Representations: Surface Normals

RGB Image: 3 x H x W Normals: 3 x H x W
Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015

For each pixel, surface normals
give a vector giving the normal 
vector to the object in the 
world for that pixel
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Predicting Normals

RGB Input Image:
3 x H x W

Fully Convolutional 
network

Predicted Normals:
3 x H x W

Ground-truth Normals:
3 x H x W

Per-Pixel Loss:
(x · y) / (|x||y|)

Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015

Recall:
x · y 

= |x| |y| cos θ
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3D Shape Representations
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3D Shape Representations: Voxels
• Represent a shape with a V x V x V grid of occupancies
• Just like segmentation masks in Mask R-CNN, but in 3D!
• (+) Conceptually simple: just a 3D grid!
• (-) Need high spatial resolution to capture fine structures
• (-) Scaling to high resolutions is nontrivial!

Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
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Processing Voxel Inputs: 3D Convolution

Class 
Scores

FC 
Layer

Input:
1 x 30 x 30 x 30

6x6x6 conv
48x13x13x13

5x5x5 conv
160x5x5x5

4x4x4 conv
512x2x2x2

Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes”, CVPR 2015
Train with classification loss
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Generating Voxel Shapes: 3D Convolution

Input image:
3 x 112 x 112

2D 
CNN

2D Features:
C x H x W

3D Features:
C’ x D’ x H’ x W’

3D CNN

Voxels:
1 x V x V x V

Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
Train with per-voxel cross-entropy loss
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Generating Voxel Shapes: ”Voxel Tubes”

Input image:
3 x 112 x 112

2D CNN

2D Features:
C x H x W

3D Features:
C’ x D’ x H’ x W’

Voxels:
V x V x V

Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
Train with per-voxel cross-entropy loss

2D CNN

Final conv layer: V filters
Interpret as a “tube” of 

voxel scores
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Voxel Problems: Memory Usage

0.1

1

10

100

1000

10000

0 256 512 768 1024

MB

Voxel memory usage (V x V x V float32 numbers)

Storing 10243 voxel grid 
takes 4GB of memory!
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Scaling Voxels: Oct-Trees

Tatarchenko et al, “Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”, ICCV 2017

Use voxel grids with heterogenous resolution!
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3D Shape Representations
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3D Shape Representations: Point Cloud
• Represent shape as a set of P points in 3D space
• (+) Can represent fine structures without huge numbers of points
• (  ) Requires new architecture, losses, etc
• (-) Doesn’t explicitly represent the surface of the shape: extracting a mesh 

for rendering or other applications requires post-processing

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Processing Pointcloud Inputs: PointNet

Input pointcloud:
P x 3

Point features:
P x D

Run MLP on 
each point Max-Pool

Pooled vector:
D

Fully 
Connected

Class score:
C

Want to process 
pointclouds as sets: 

order should not matter

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017
Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017
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Generating Pointcloud Outputs

Input Image:
3 x H x W

2D 
CNN

Image 
Features:

C x H’ x W’

2D 
CNN

Fully connected 
branch

Convolutional 
branch

Points: 
P1 x 3

Points: 
(P2x3) x H’ x W’ Pointcloud: 

(P1 + H’W’P2) x 3
Fan et al, “A Point Set Generation Network for 3D Object 
Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function
We need a (differentiable) way to compare pointclouds as sets!

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function
We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function
We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function
We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function
We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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3D Shape Representations

∞
∞
2

2
2

2

Depth 
Map

Voxel 
Grid

Implicit 
Surface

Pointcloud Mesh



Justin Johnson April 11, 2022Lecture 23 - 34

3D Shape Representations: Triangle Mesh
Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
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3D Shape Representations: Triangle Mesh
Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
(+) Adaptive: Can represent flat surfaces 
very efficiently, can allocate more faces to 
areas with fine detail

Dolphin image is in the public domain

https://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.svg
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3D Shape Representations: Triangle Mesh
Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
(+) Adaptive: Can represent flat surfaces 
very efficiently, can allocate more faces to 
areas with fine detail
(+) Can attach data on verts and 
interpolate over the whole surface: RGB 
colors, texture coordinates, normal 
vectors, etc.

UV mapping figure is licensed 
under CC BY-SA 3.0. Figure 
slightly reorganized.

https://en.wikipedia.org/wiki/UV_mapping
https://creativecommons.org/licenses/by-sa/3.0
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Predicting Meshes: Pixel2Mesh

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Input: Single RGB 
Image of an object

Output: Triangle 
mesh for the object
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Predicting Meshes: Pixel2Mesh

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Input: Single RGB 
Image of an object

Output: Triangle 
mesh for the object

Key ideas:
Iterative Refinement
Graph Convolution
Vertex Aligned-Features
Chamfer Loss Function
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Predicting Triangle Meshes: Iterative Refinement

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Idea #1: Iterative mesh refinement
Start from initial ellipsoid mesh
Network predicts offsets for each vertex
Repeat.
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Predicting Triangle Meshes: Graph Convolution

Input: Graph with a feature 
vector at each vertex

Output: New feature 
vector for each vertex

Vertex 𝑣! has feature 𝑓!

New feature 𝑓!" for vertex 
𝑣! depends on feature of 
neighboring vertices 𝑁 𝑖

Use same weights 𝑊#
and 𝑊$ to compute 
all outputs

𝑓-. = 𝑊/𝑓- +%
0∈2 -

𝑊3𝑓0
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Each of these blocks consists of a 
stack of graph convolution layers 
operating on edges of the mesh

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Predicting Triangle Meshes: Graph Convolution
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Predicting Triangle Meshes: Graph Convolution
Each of these blocks consists of a 
stack of graph convolution layers 
operating on edges of the mesh

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Problem: How 
to incorporate 
image features?
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Predicting Triangle Meshes: Vertex-Aligned Features

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Idea #2: Aligned vertex features
For each vertex of the mesh:
- Use camera information to 

project onto image plane
- Use bilinear interpolation to 

sample a CNN feature

2D 
CNN

Input Image

Image 
Features
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Predicting Triangle Meshes: Vertex-Aligned Features

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Idea #2: Aligned vertex features
For each vertex of the mesh:
- Use camera information to 

project onto image plane
- Use bilinear interpolation to 

sample a CNN feature
Similar to RoI-Align operation from 
detection: maintains alignment 
between input image and feature 
vectors

CNN

Project proposal 
onto features

f6,6 f7,6

f6,5 f7,5

f6.5,5.8
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Predicting Meshes: Loss Function

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth
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Predicting Meshes: Loss Function

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Idea: Convert meshes to pointclouds, then compute loss
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Predicting Meshes: Loss Function

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Idea: Convert meshes to pointclouds, then compute loss
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Predicting Meshes: Loss Function

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Loss = Chamfer distance between predicted verts and ground-truth samples
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Predicting Meshes: Loss Function

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Problem: Doesn’t 
take the interior 
of predicted faces 
into account!

Loss = Chamfer distance between predicted verts and ground-truth samples
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Predicting Meshes: Loss Function
The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points 
from the surface 
of the predicted 
mesh (online!)

Smith et al, “GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects”, ICML 2019
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Predicting Meshes: Loss Function

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points 
from the surface 
of the predicted 
mesh (online!)

Problem: Need to sample online! Must be efficient!
Problem: Need to backprop through sampling!

Smith et al, “GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects”, ICML 2019
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Predicting Meshes: Pixel2Mesh

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Input: Single RGB 
Image of an object

Output: Triangle 
mesh for the object

Key ideas:
Iterative Refinement
Graph Convolution
Vertex Aligned-Features
Chamfer Loss Function
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3D Shape Prediction: Mesh R-CNN

He, Gkioxari, Dollár, and 
Girshick, “Mask R-CNN”, 
ICCV 2017

Mask R-CNN: 
2D Image -> 2D shapes

Mesh R-CNN: 
2D Image -> Triangle Meshes

Gkioxari, Malik, and Johnson, 
“Mesh R-CNN”, ICCV 2019
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Mesh R-CNN: Task
Input: Single RGB image

Output:
A set of detected objects
For each object:
- Bounding box
- Category label
- Instance segmentation
- 3D triangle mesh

Mask R-CNN

Mesh head
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Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good 
results, but the topology (verts, faces, 
genus, connected components) fixed 

by the initial mesh
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Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good 
results, but the topology (verts, faces, 
genus, connected components) fixed 

by the initial mesh

Our approach: Use voxel 
predictions to create 

initial mesh prediction!
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Mesh R-CNN Pipeline
Input image
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Mesh R-CNN Pipeline
Input image 2D object recognition
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Mesh R-CNN Pipeline
Input image 2D object recognition

3D object voxels
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Mesh R-CNN Pipeline
Input image 2D object recognition

3D object voxels3D object meshes
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Mesh R-CNN: ShapeNet Results
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Mesh R-CNN: Pix3D Results
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Mesh R-CNN: Pix3D Results

Box & Mask Predictions Mesh Predictions

Predicting many objects per scene
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Mesh R-CNN: Pix3D Results

Box & Mask Predictions Mesh Predictions

Amodal completion: predict 
occluded parts of objects
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Mesh R-CNN: Pix3D Results

Box & Mask Predictions Mesh Predictions

Segmentation failures 
propagate to meshes
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3D Shape Representations: Implicit Functions
Learn a function to classify arbitrary 3D 
points as inside / outside the shape

The surface of the 3D object is the level set {x : o(x) = ½}

Implicit function Explicit Shape
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3D Shape Representations: Implicit Functions
Learn a function to classify arbitrary 3D 
points as inside / outside the shape

The surface of the 3D object is the level set {x : o(x) = ½}

Implicit function Explicit Shape

Same idea: signed 
distance function  
(SDF) gives the 
Euclidean distance to 
the surface of the 
shape; sign gives 
inside / outside
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3D Shape Representations: Implicit Functions
Learn a function to classify arbitrary 3D 
points as inside / outside the shape

The surface of the 3D object is the level set {x : o(x) = ½}

Mescheder et al, “Occupancy Networks: Learning 3D 
Reconstruction in Function Space”, CVPR 2019

Allows for multiscale 
outputs like Oct-Trees
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3D Shape Representations: Implicit Functions
Learn a function to classify arbitrary 3D 
points as inside / outside the shape

The surface of the 3D object is the level set

Extracting explicit shape outputs 
requires post-processing

{x : o(x) = ½}

Mescheder et al, “Occupancy Networks: Learning 3D 
Reconstruction in Function Space”, CVPR 2019
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Neural Radiance Fields (NeRF)
for View Synthesis

71
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View Synthesis

72

Input: Many images of the same scene
(with known camera parameters)

Image source: Mildenhall et al, “Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV 2020
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View Synthesis

73

Input: Many images of the same scene
(with known camera parameters)

Output: Images showing the 
scene from novel viewpoints

Image source: Mildenhall et al, “Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV 2020
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Stepping Back: Pinhole Camera Model

74

Camera
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Stepping Back: Pinhole Camera Model

75

Sensors:
Records

light

Camera
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Stepping Back: Pinhole Camera Model

76

Sensors:
Records

light

Camera

Pinhole:
Lets light in
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Stepping Back: Pinhole Camera Model

77

Sensors:
Records

light

Camera

Pinhole:
Lets light in

Focal Length
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Stepping Back: Pinhole Camera Model

78

Sensors:
Records

light

Camera

Pinhole:
Lets light in

Focal Length

Light sources
emit light



Justin Johnson April 11, 2022Lecture 23 -

Stepping Back: Pinhole Camera Model

79

Sensors:
Records

light

Camera

Pinhole:
Lets light in

Focal Length

Light sources
emit light

Objects in the
world reflect light

Reflected light 
captured by 
the camera
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Stepping Back: Pinhole Camera Model

80

Sensors:
Records

light

Camera

Pinhole:
Lets light in

Focal Length

Light sources
emit light

Objects in the
world reflect light

Reflected light 
captured by 
the camera

Opaque objects 
block light
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Stepping Back: Pinhole Camera Model

81

Sensors:
Records

light

Camera

Pinhole:
Lets light in

Focal Length

Light sources
emit light

Objects in the
world reflect light

Reflected light 
captured by 
the camera

Transparent objects 
attenuate light
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Volume Rendering

82

Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1
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Volume Rendering

83

Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Point on car:
(1) Emits red light in

hemisphere
(2) Complete opaque 

𝜎 = 1
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Point on car:
(1) Emits red light in

hemisphere
(2) Complete opaque 

𝜎 = 1Point in empty space:
(1) Emits no light (black)
(2) Completely

transparent 𝜎 = 0
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Ray origin

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Ray origin

Color observed by the camera given 
by volume rendering equation:

𝐶 𝒓 = )
%!

%"
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Ray origin

Color observed by the camera given 
by volume rendering equation:

𝐶 𝒓 = )
%!

%"
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡

Near point: 𝑡&
Far point: 𝑡'Current point: 𝑡

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !



Justin Johnson April 11, 2022Lecture 23 -

Volume Rendering

88

Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Ray origin

Color observed by the camera given 
by volume rendering equation:

𝐶 𝒓 = )
%!

%"
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡

Near point: 𝑡&
Far point: 𝑡'Current point: 𝑡

Transmittance: How much light from the 
current point will reach the camera?Parameterize each ray as origin plus 

direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Ray origin

Color observed by the camera given 
by volume rendering equation:

𝐶 𝒓 = )
%!

%"
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡

Near point: 𝑡&
Far point: 𝑡'Current point: 𝑡

Transmittance: How much light from the 
current point will reach the camera?
Opacity: How opaque is the current point?

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Ray origin

Color observed by the camera given 
by volume rendering equation:

𝐶 𝒓 = )
%!

%"
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡

Near point: 𝑡&
Far point: 𝑡'Current point: 𝑡

Transmittance: How much light from the 
current point will reach the camera?
Opacity: How opaque is the current point?
Color: What color does the current point emit
along the direction toward the camera?

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !

Ray origin

Color observed by the camera given 
by volume rendering equation:

𝐶 𝒓 = )
%!

%"
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡

𝑇 𝑡 = exp −)
%!

%
𝜎 𝒓(𝑠) 𝑑𝑠

Near point: 𝑡&
Far point: 𝑡'Current point: 𝑡

Transmittance: How much light from the 
current point will reach the camera?

Compute transmittance by accumulating
volume density up to current point
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !

Ray origin

Color observed by the camera given 
by volume rendering equation:

𝐶 𝒓 = )
%!

%"
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡

𝑇 𝑡 = exp −)
%!

%
𝜎 𝒓(𝑠) 𝑑𝑠

𝑡$
Approximate integrals with a set of samples:

𝑡( 𝑡) 𝑡*
𝛿$ 𝛿( 𝛿)
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !

Ray origin

Color observed by the camera given 
by volume rendering equation:

𝐶 𝒓 = )
%!

%"
𝑇 𝑡 𝜎 𝒓 𝑡 𝒄 𝒓 𝑡 , 𝒅 𝑑𝑡

𝑇 𝑡 = exp −)
%!

%
𝜎 𝒓(𝑠) 𝑑𝑠

𝑡$
Approximate integrals with a set of samples:

𝐶 𝒓 ≈%
)*#

+
𝑇) 1 − exp −𝜎)𝛿) 𝒄)

𝑇) = exp −%
,*#

)-#
𝜎,𝛿,

𝑡( 𝑡) 𝑡*
𝛿$ 𝛿( 𝛿)

Mildenhall et al, “Representing 
Scenes as Neural Radiance Fields 
for View Synthesis”, ECCV 2020
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Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !

Ray origin

𝑡$
Approximate integrals with a set of samples:

𝐶 𝒓 ≈%
)*#

+
𝑇) 1 − exp −𝜎)𝛿) 𝒄)

𝑇) = exp −%
,*#

)-#
𝜎,𝛿,

𝑡( 𝑡) 𝑡*
𝛿$ 𝛿( 𝛿)

Train a neural network to input position p
and direction d, output 𝜎 𝒑 and 𝑐 𝒑, 𝒅

Mildenhall et al, “Representing 
Scenes as Neural Radiance Fields 
for View Synthesis”, ECCV 2020



Justin Johnson April 11, 2022Lecture 23 -

Neural Radiance Fields (NeRF)

95

Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !

Ray origin

𝑡$
Approximate integrals with a set of samples:

𝐶 𝒓 ≈%
)*#

+
𝑇) 1 − exp −𝜎)𝛿) 𝒄)

𝑇) = exp −%
,*#

)-#
𝜎,𝛿,

𝑡( 𝑡) 𝑡*
𝛿$ 𝛿( 𝛿)

Train a neural network to input position p
and direction d, output 𝜎 𝒑 and 𝑐 𝒑, 𝒅

Training loss: Estimated pixel colors 𝐶 𝒓
should match actual pixel colors from images 

Mildenhall et al, “Representing 
Scenes as Neural Radiance Fields 
for View Synthesis”, ECCV 2020



Justin Johnson April 11, 2022Lecture 23 -

Neural Radiance Fields (NeRF)

96

Abstract away light sources, objects.
For each point in space, need to know:
(1) How much light does it emit?
(2) How opaque is it? 𝜎 ∈ 0,1

Parameterize each ray as origin plus 
direction: 𝒓 𝑡 = 𝒐 + 𝑡𝒅
Volume Density is 𝜎 𝒑 ∈ 0,1
Color that a point p emits in direction d
is 𝑐 𝒑, 𝒅 ∈ 0,1 !

Ray origin

𝑡$
After training, can generate novel 
views of the scene by integrating along 
rays corresponding to new pixels

𝑡( 𝑡) 𝑡*
𝛿$ 𝛿( 𝛿)

Train a neural network to input position p
and direction d, output 𝜎 𝒑 and 𝑐 𝒑, 𝒅

Training loss: Estimated pixel colors 𝐶 𝒓
should match actual pixel colors from images 

Mildenhall et al, “Representing 
Scenes as Neural Radiance Fields 
for View Synthesis”, ECCV 2020
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Mildenhall et al, “Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV 2020

X
3

X
3

d
3

Fully-connected network: Input
position x and direction d, and output
volume density and RGB color



Justin Johnson April 11, 2022Lecture 23 -
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Mildenhall et al, “Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV 2020

Fully-connected network: Input
position x and direction d, and output
volume density and RGB color

Rather than pass raw xyz values to network, 
instead use positional encodings:

𝛾 𝑝 = sin 2"𝜋𝑝 , cos 2"𝜋𝑝 ,… , sin 2#$%𝜋𝑝 , cos 2#$%𝜋𝑝
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Main Problem: Very slow!

Training: 1-2 days on a V100 GPU, for just a single scene!

Inference: Sampling an image from a trained model:
(256 x 256 pixels) x (224 samples per pixel)
= 14.6M forward passes through MLP

Tons of follow-up work!

Mildenhall et al, “Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV 2020



Justin Johnson April 11, 2022Lecture 23 -

Mip-NeRF: Model cones rather than rays
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Barron et al, “Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields”, ICCV 2021
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Dynamic NeRF: Deformable Scenes
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Park et al, “Nerfies: Deformable Neural Radiance Fields”, ICCV 2021
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RawNeRF: High-Dynamic Range Imagery
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Mildenhall et al, “NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images”, CVPR 2022
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BlockNeRF: A Neighborhood of San Francisco 
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Tancik et al, “Block-NeRF: Scalable Large Scene Neural View Synthesis”, arXiv 2022
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Training NeRF models in minutes!
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Yu et al, “Plenoxels: Radiance Fields without Neural Networks”, CVPR 2022
Muller et al, “Instant Neural Graphics Primitives with a Multiresolution Hash Encoding”, arXiv 2022
Chen et al, “TensoRF: Tensorial Radiance Fields”, arXiv 2022

TensoRF Instant-NGPPlenoxels
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Generalizable NeRF: Same model for many scenes
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Yu et al, “pixelNeRF: Neural Radiance Fields from One or Few Images”, CVPR 2021
Wang et al, “IBRNet: Learning Multi-View Image-Based Rendering”, CVPR 2021
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Summary: 3D Shape Representations

∞
∞
2

2
2

2

Depth 
Map

Voxel 
Grid

Implicit 
Surface

Pointcloud Mesh
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Summary: Neural Radiance Fields
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Represent neural radiance fields with neural networks

Train using posed RGB images of a scene

Render novel views, extract 3D scene representations

One of the hottest topics in computer vision for past few years
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Next Time:
Videos


