Lecture 23: 3D Vision

Justin Johnson

Lecture 23 - 1

Reminder: A5

Recurrent networks, attention, Transformers

Due on **Tuesday 4/12**, 11:59pm ET

Will cover image generation and visualization:

Generative Models: GANs and VAEs

Network visualization: saliency maps, adversarial examples, class visualizations

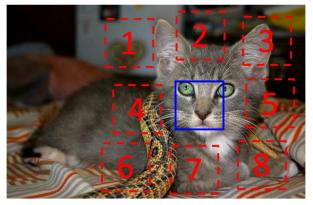
Style Transfer

Should be released tonight; due 2 weeks after release

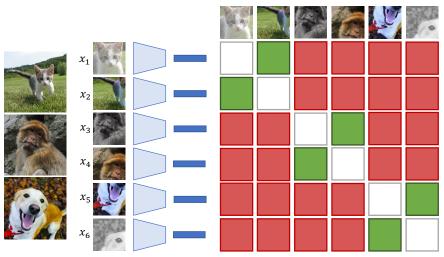
YOU CANNOT USE LATE DAYS ON A6!!!!

Last Time: Self-Supervised Learning

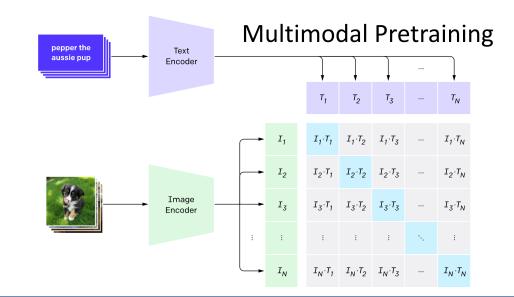
Context Prediction



Contrastive Learning



Colorization



April 11, 2022

Justin Johnson

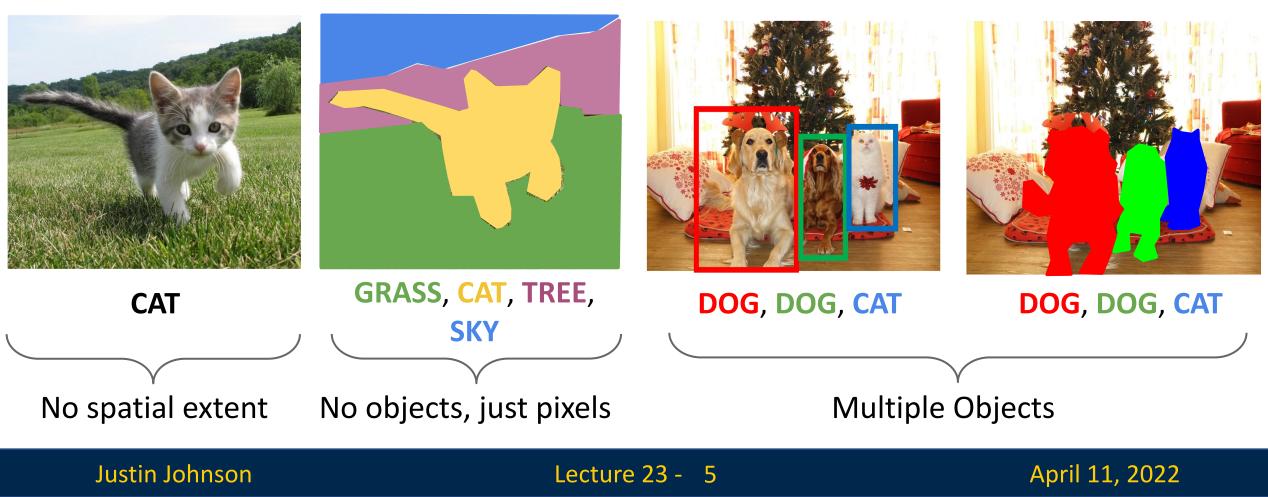
Previously: Predicting 2D Shapes of Objects

Classification

Semantic Segmentation

Object Detection

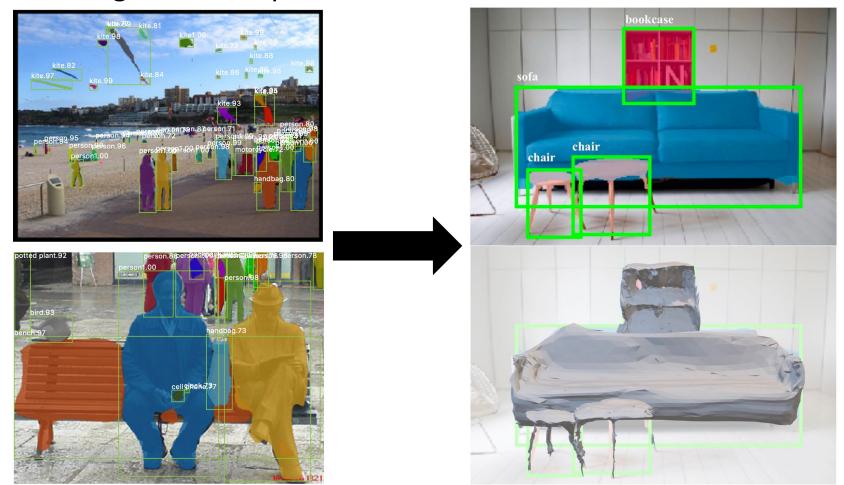
Instance Segmentation



Today: Predicting **3D Shapes of Objects**

Mask R-CNN: 2D Image -> 2D shapes

Mesh R-CNN: 2D Image -> **3D** shapes



Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Justin Johnson

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN",

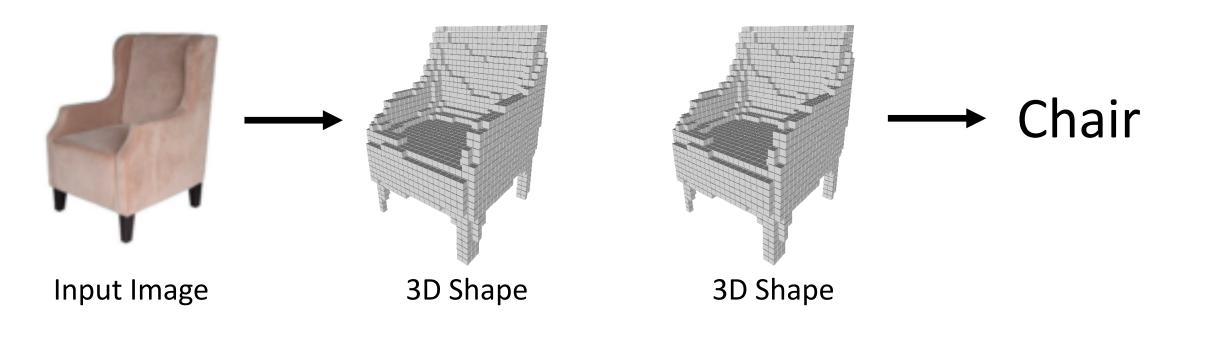
ICCV 2017

Lecture 23 - 6

Focus on Two Problems today

Predicting 3D Shapes from single image

Processing 3D input data

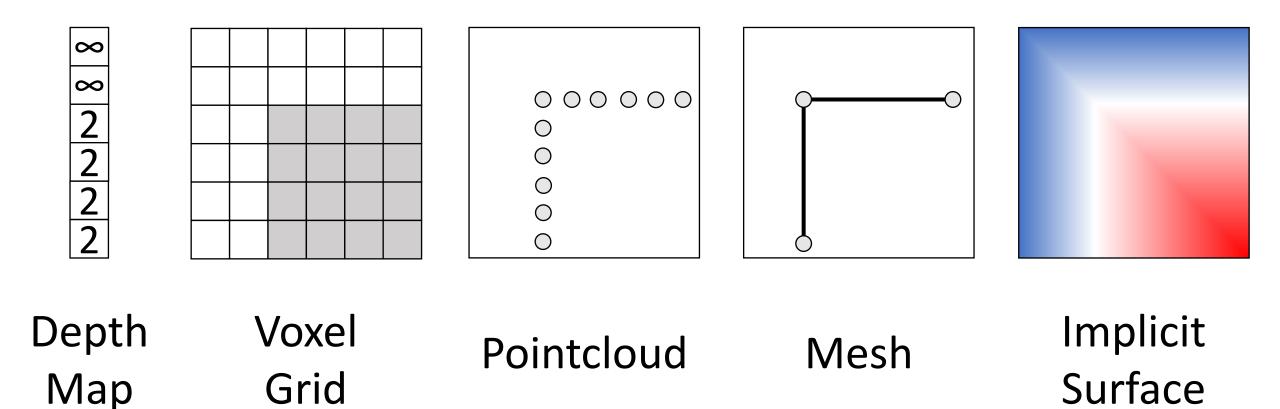


Justi				~ ~
JUSU	IN J	U	INS	<u>ON</u>

Many more topics in 3D Vision!

Computing correspondences Multi-view stereo Structure from Motion Simultaneous Localization and Mapping (SLAM) Self-supervised learning Differentiable graphics 3D Sensors

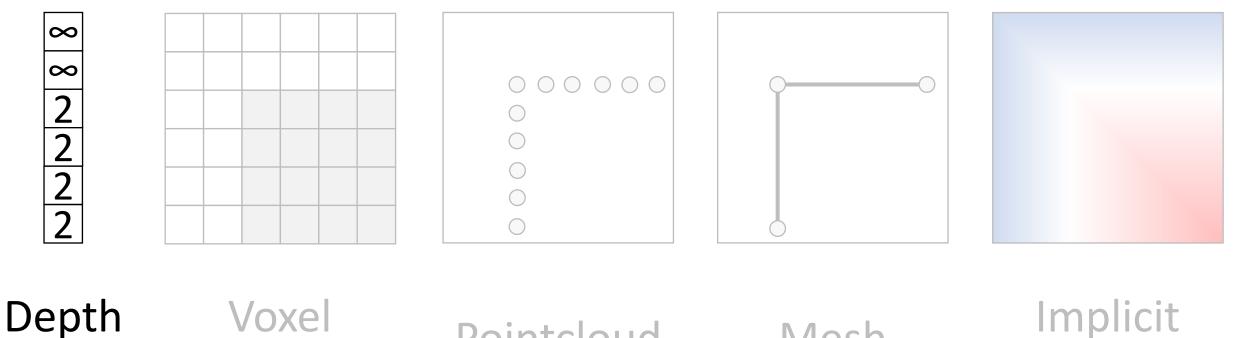
3D Shape Representations



Justin Johnson

Lecture 23 - 9

3D Shape Representations



Map

Grid

Pointcloud Mesh

Implicit Surface

Justin Johnson

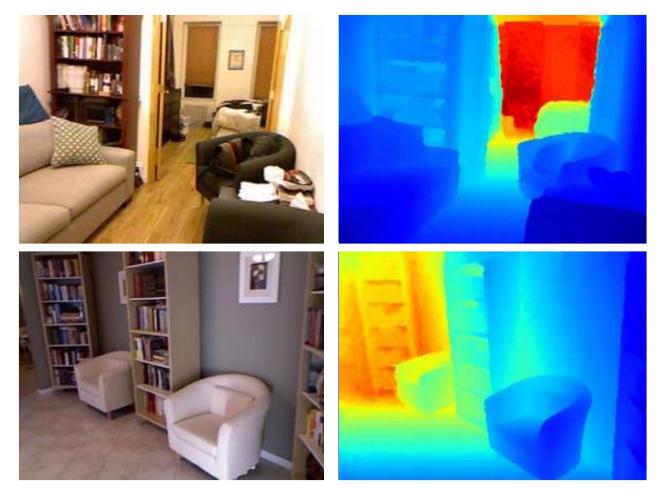
Lecture 23 - 10

3D Shape Representations: Depth Map

For each pixel, **depth map** gives distance from the camera to the object in the world at that pixel

RGB image + Depth image = RGB-D Image (2.5D)

This type of data can be recorded directly for some types of 3D sensors (e.g. Microsoft Kinect)



RGB Image: 3 x H x W Depth Map: H x W

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

Predicted Depth Image: Predicting Depth Maps $1 \times H \times W$ **Per-Pixel Loss** (L2 Distance)

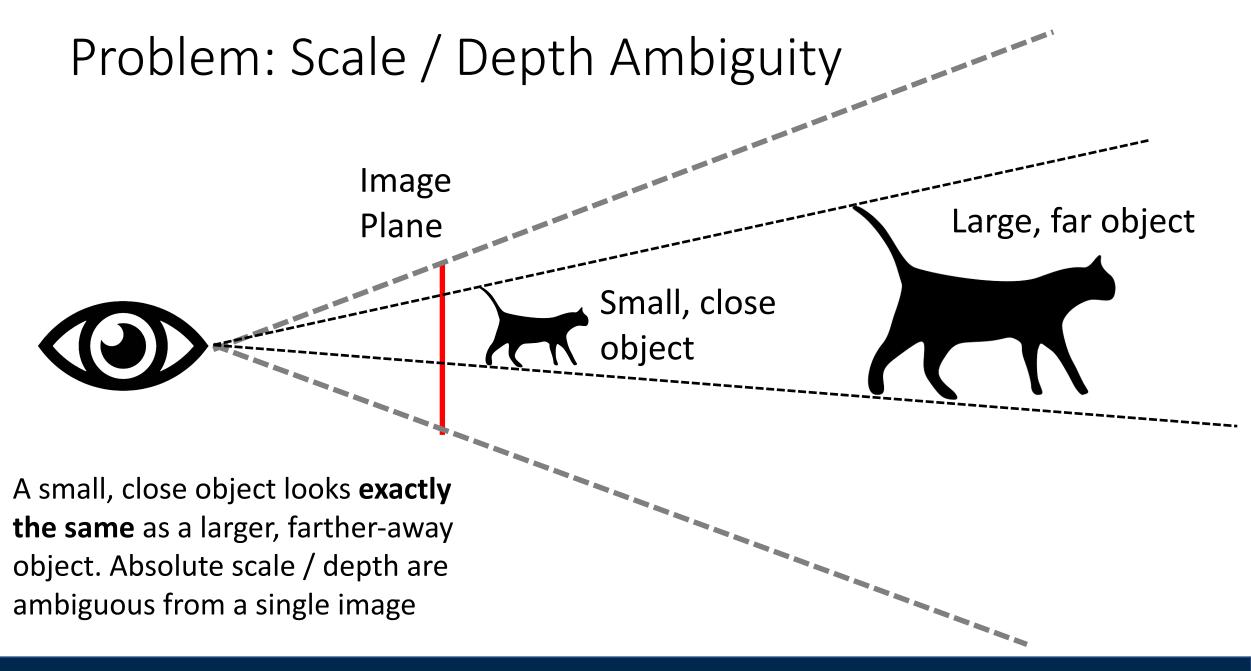
RGB Input Image: 3 x H x W

Fully Convolutional
networkPredicted Depth Image:
1 x H x W

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014

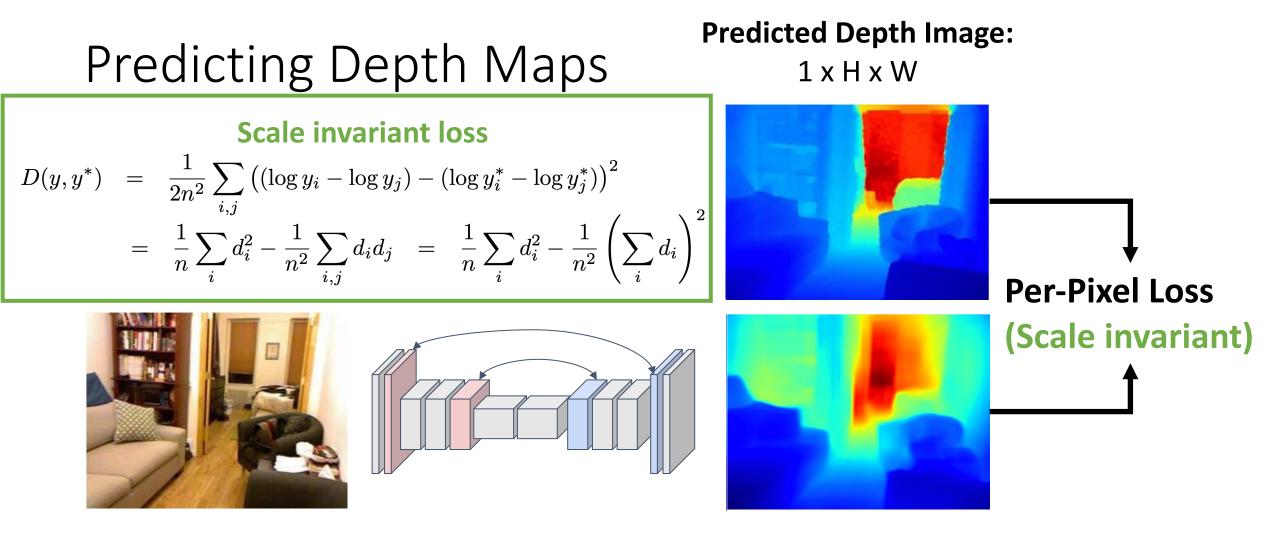
Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson



Justin Johnson

Lecture 23 - 13



RGB Input Image: 3 x H x W

Fully ConvolutionalPredicted Depth Image:network1 x H x W

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

3D Shape Representations: Surface Normals

For each pixel, **surface normals** give a vector giving the normal vector to the object in the world for that pixel

RGB Image: 3 x H x W Norma

Normals: 3 x H x W

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

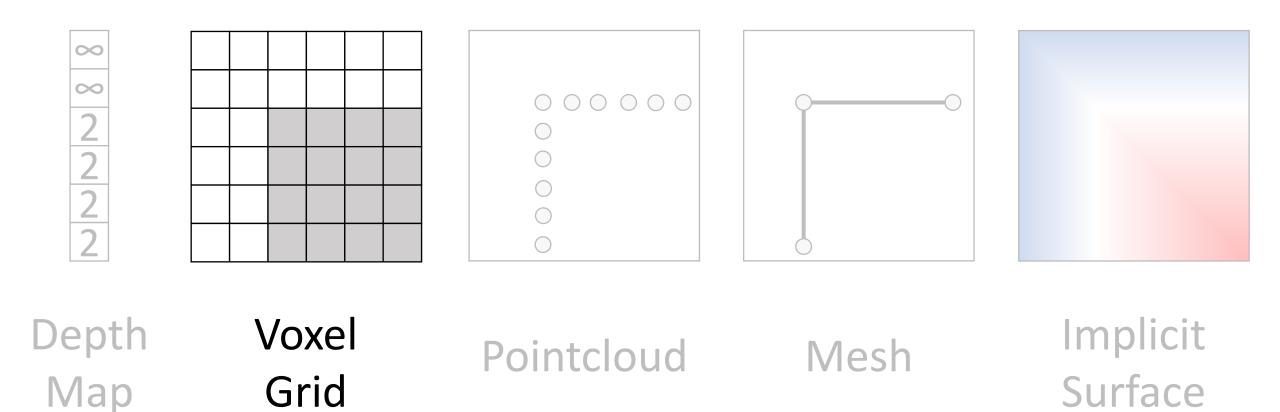
Lecture 23 - 15

Ground-truth Normals: Predicting Normals 3 x H x W **Per-Pixel Loss:** $(x \cdot y) / (|x||y|)$ Recall: **Fully Convolutional Predicted Normals: RGB Input Image:** x·y 3 x H x W network $= |\mathbf{x}| |\mathbf{y}| \cos \theta$ 3 x H x W

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

3D Shape Representations

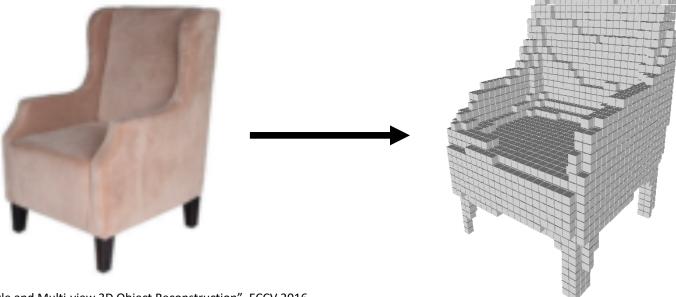


Justin Johnson

Lecture 23 - 17

3D Shape Representations: Voxels

- Represent a shape with a V x V x V grid of occupancies
- Just like segmentation masks in Mask R-CNN, but in 3D!
- (+) Conceptually simple: just a 3D grid!
- (-) Need high spatial resolution to capture fine structures
- (-) Scaling to high resolutions is nontrivial!

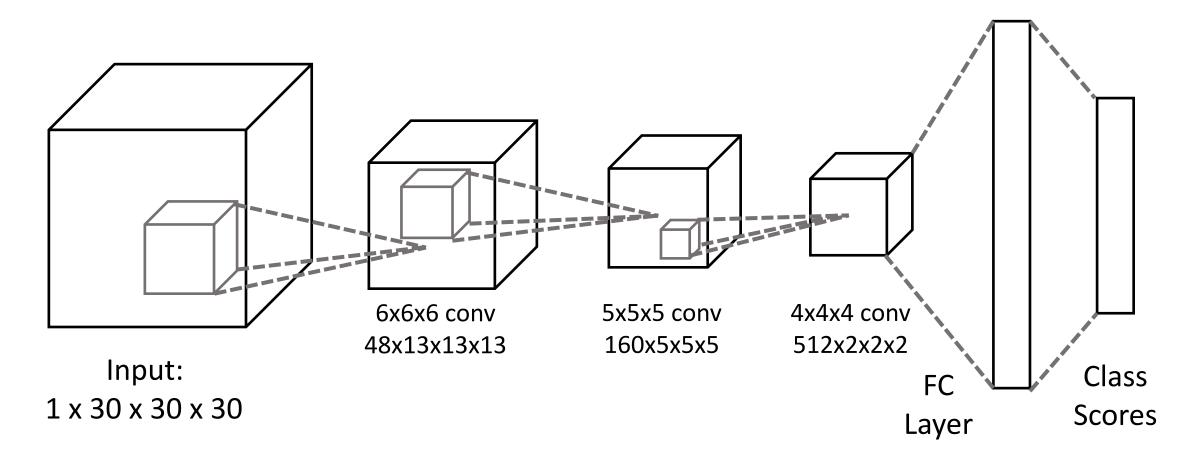


Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Justin Johnson

Lecture 23 - 18

Processing Voxel Inputs: 3D Convolution



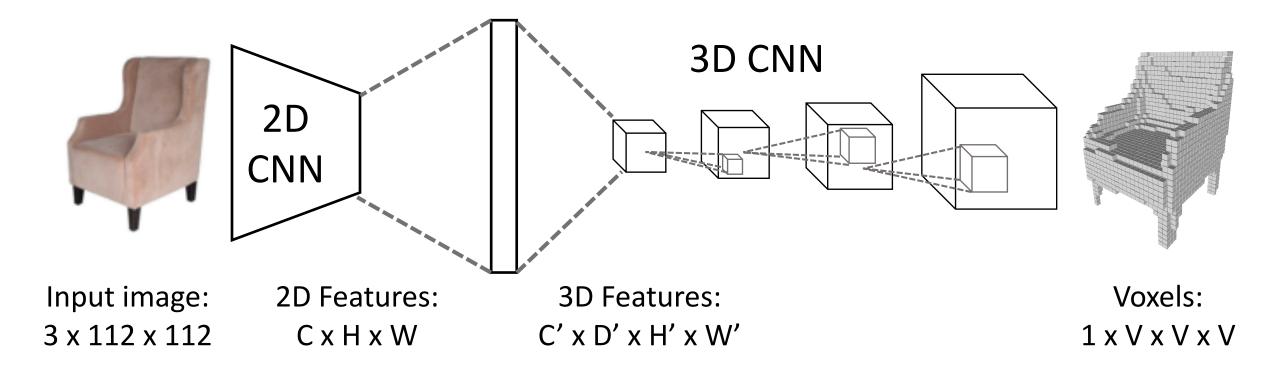
Train with classification loss

Wu et al, "3D ShapeNets: A Deep Representation for Volumetric Shapes", CVPR 2015

Justin Johnson

Lecture 23 - 19

Generating Voxel Shapes: 3D Convolution



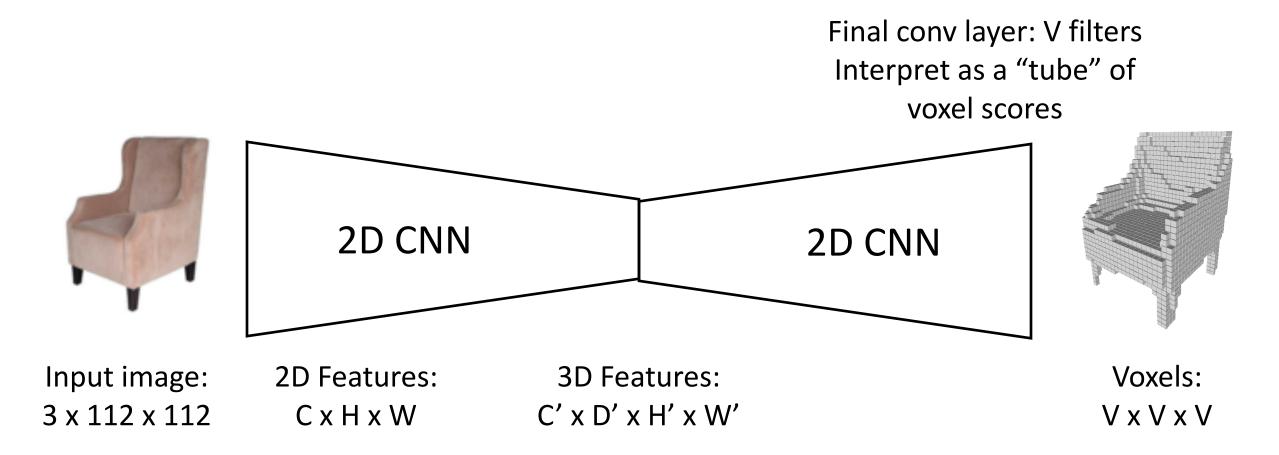
Train with per-voxel cross-entropy loss

Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Justin Johnson

Lecture 23 - 20

Generating Voxel Shapes: "Voxel Tubes"



Train with per-voxel cross-entropy loss

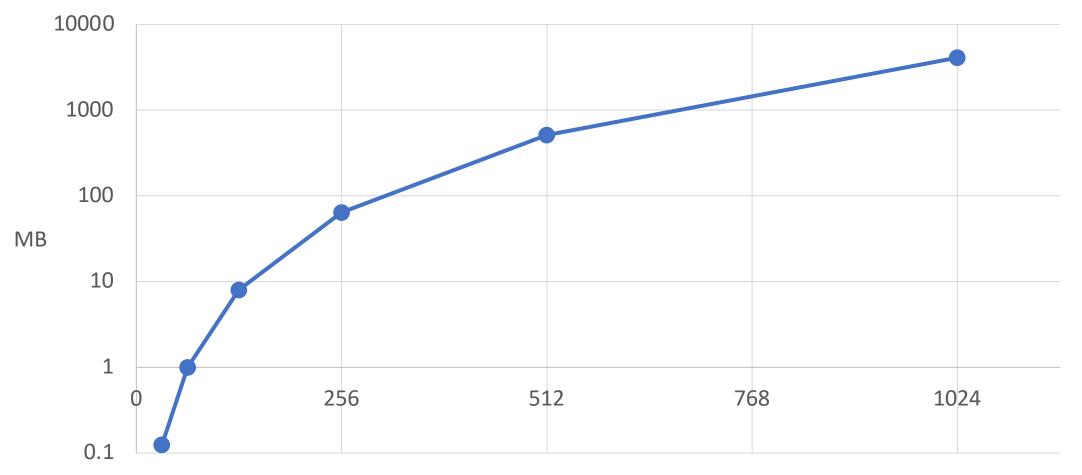
Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Justin Johnson

Lecture 23 - 21

Voxel Problems: Memory Usage

Storing 1024³ voxel grid takes 4GB of memory!

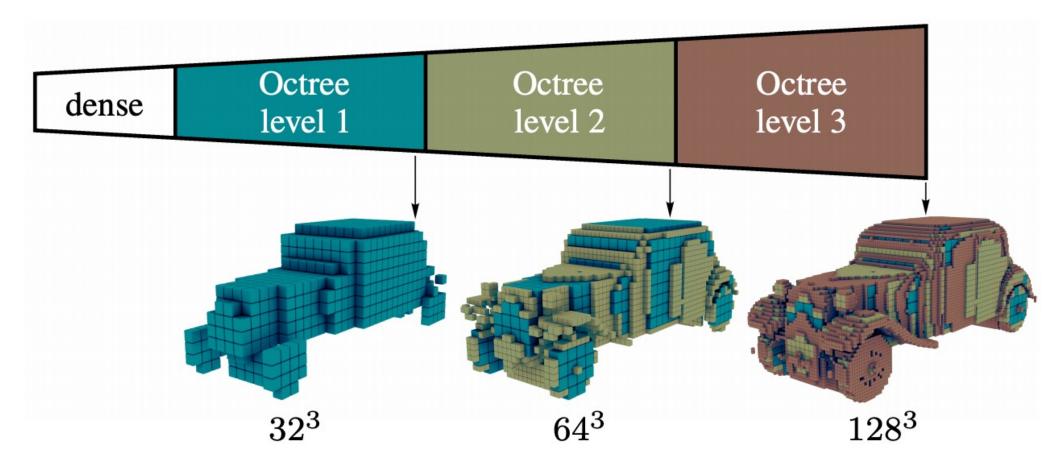


Justin Johnson

Lecture 23 - 22

Scaling Voxels: Oct-Trees

Use voxel grids with heterogenous resolution!

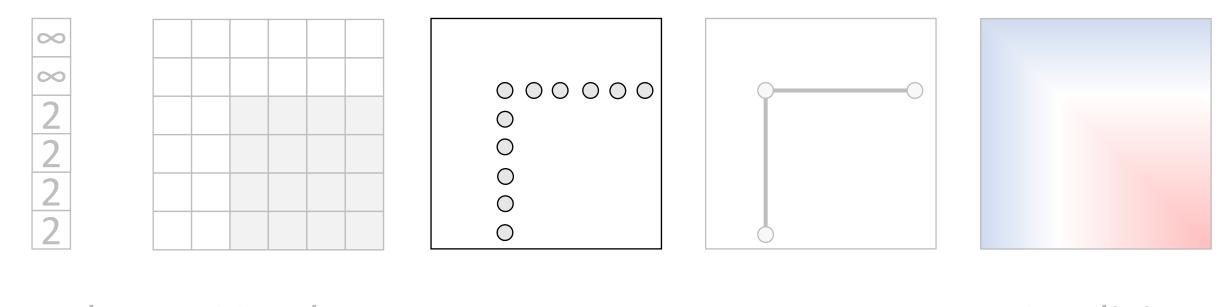


Tatarchenko et al, "Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs", ICCV 2017

Justin Johnson

Lecture 23 - 23

3D Shape Representations



DepthVoxelPointcloudMeshImplicitMapGridFointcloudSurface

Justin Johnson

Lecture 23 - 24

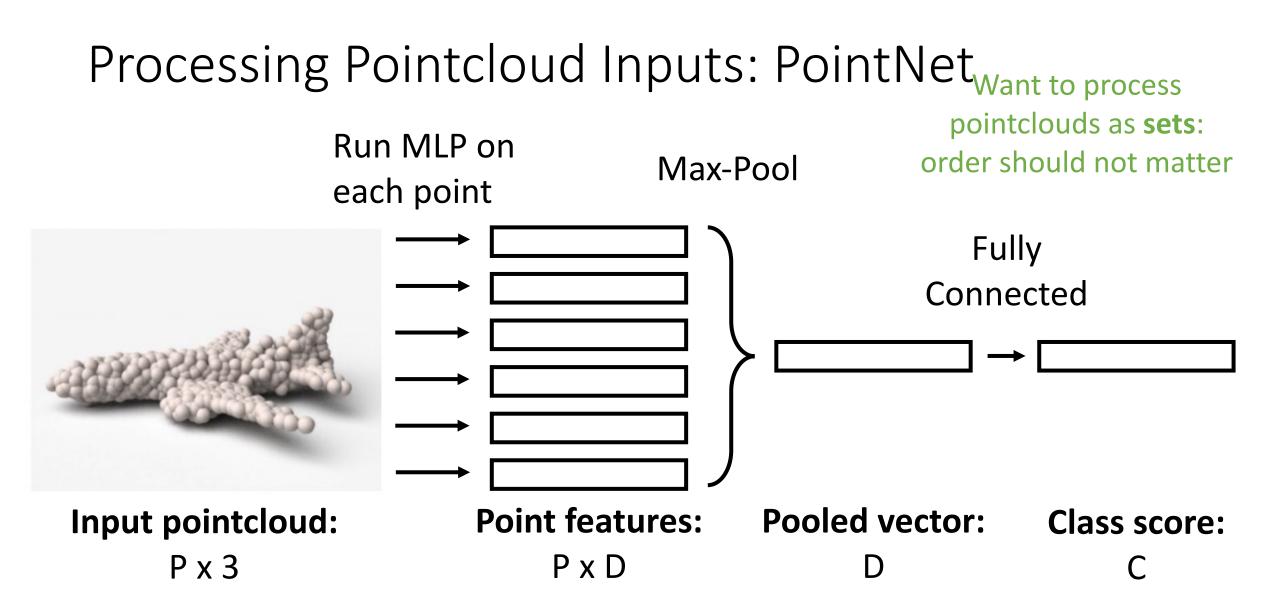
3D Shape Representations: Point Cloud

- Represent shape as a set of P points in 3D space
- (+) Can represent fine structures without huge numbers of points
- () Requires new architecture, losses, etc
- (-) Doesn't explicitly represent the surface of the shape: extracting a mesh for rendering or other applications requires post-processing

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson

Lecture 23 - 25



Qi et al, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", CVPR 2017

Qi et al, "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space", NeurIPS 2017

Justin Johnson

Generating Pointcloud Outputs **Fully connected** branch **Points**: P₁ x 3 2D **CNN** 2D Image **Points: CNN** Input Image: **Pointcloud**: Features: $(P_2 x 3) x H' x W'$ 3 x H x W $(P_1 + H'W'P_2) \times 3$ $C \times H' \times W'$ Convolutional branch Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson

Lecture 23 - 27

We need a (differentiable) way to compare pointclouds as sets!

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

We need a (differentiable) way to compare pointclouds as sets!

Lecture 23 - 29

Chamfer distance is the sum of L2 distance to each point's nearest neighbor in the other set

Justin Johnson

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

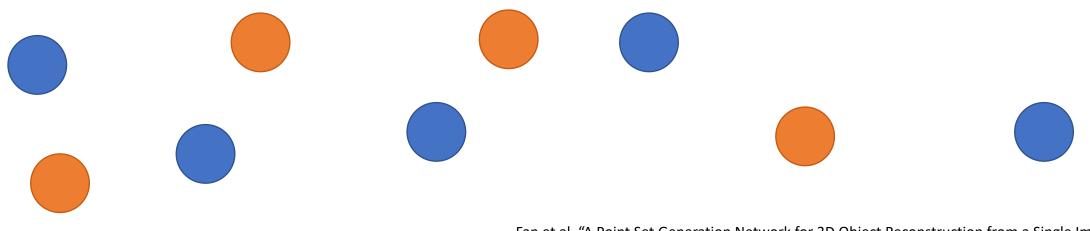
Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's nearest neighbor in the other set

Justin Johnson

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$



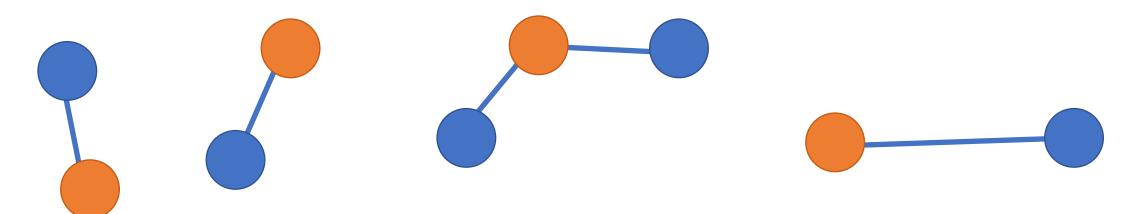
Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

April 11, 2022

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's nearest d neighbor in the other set

$$l_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$



Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

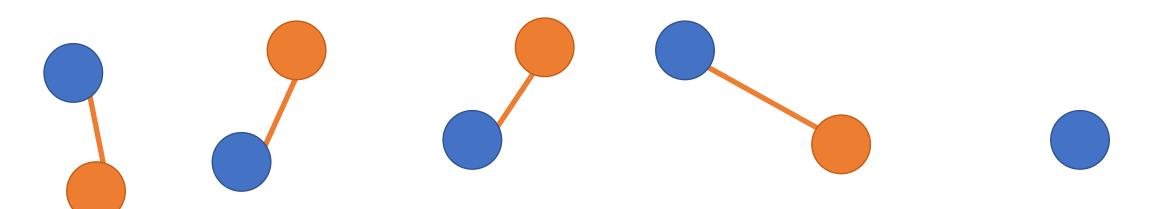
April 11, 2022

Justin Johnson

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's nearest neighbor in the other set

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

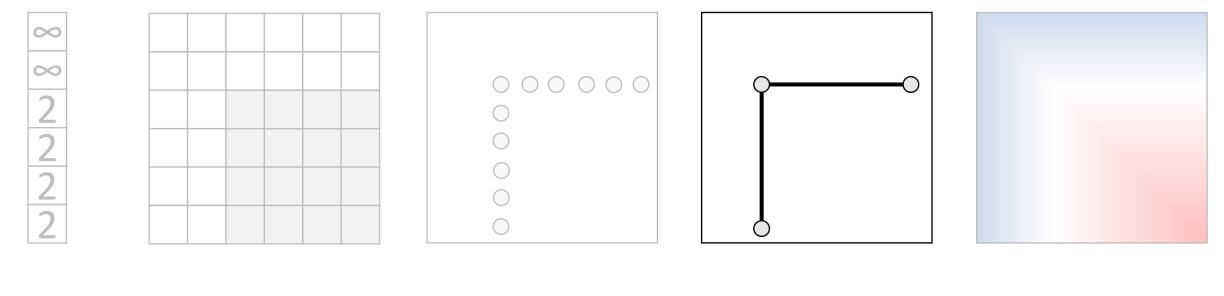


Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

April 11, 2022

Justin Johnson

3D Shape Representations



Depth Map Voxel Grid

Pointcloud Mesh

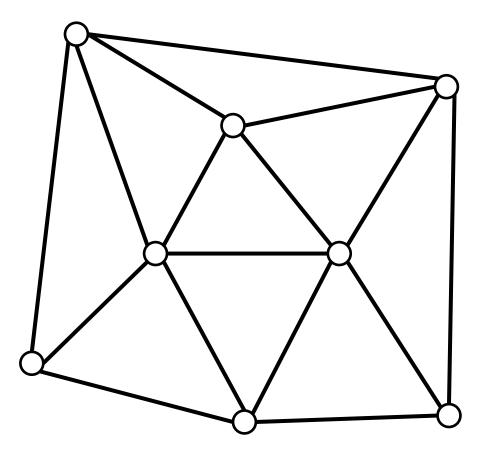
Implicit Surface

J	ust	in J	0	hn	son	
<u> </u>						

Lecture 23 - 33

3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes



Justin Johnson

3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

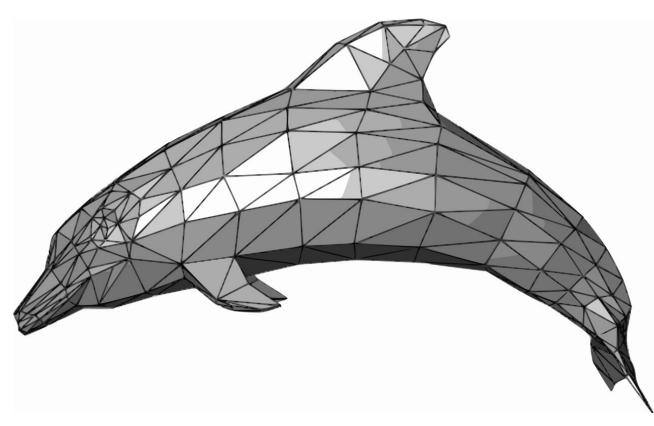
Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

(+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail



Dolphin image is in the public domain

April 11, 2022

3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

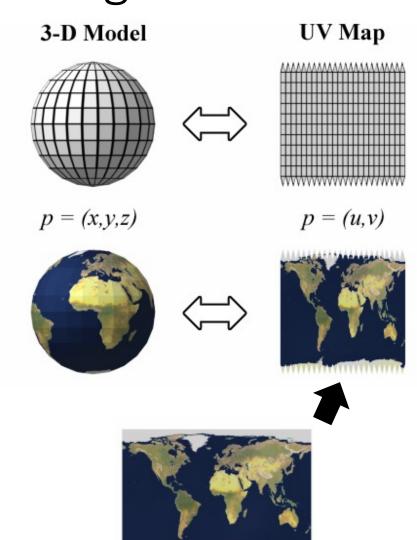
Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

(+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

(+) Can attach data on verts and interpolate over the whole surface: RGB colors, texture coordinates, normal vectors, etc.



UV mapping figure is licensed under <u>CC BY-SA 3.0</u>. Figure slightly reorganized.

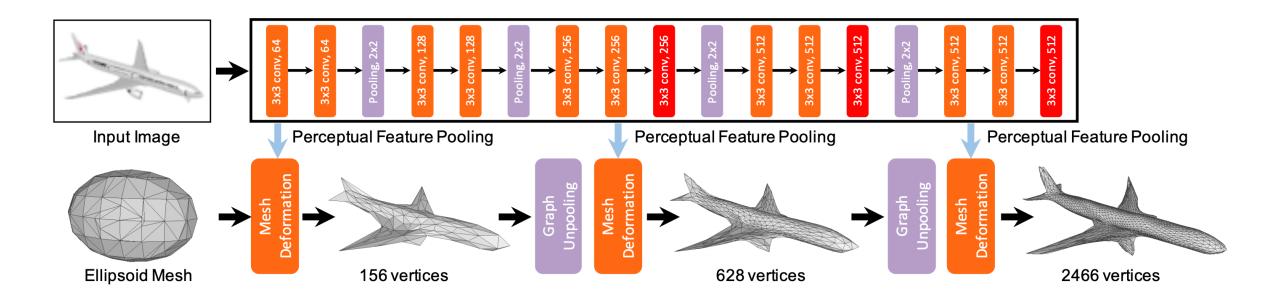
April 11, 2022

Justin Johnson

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Output: Triangle mesh for the object



Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

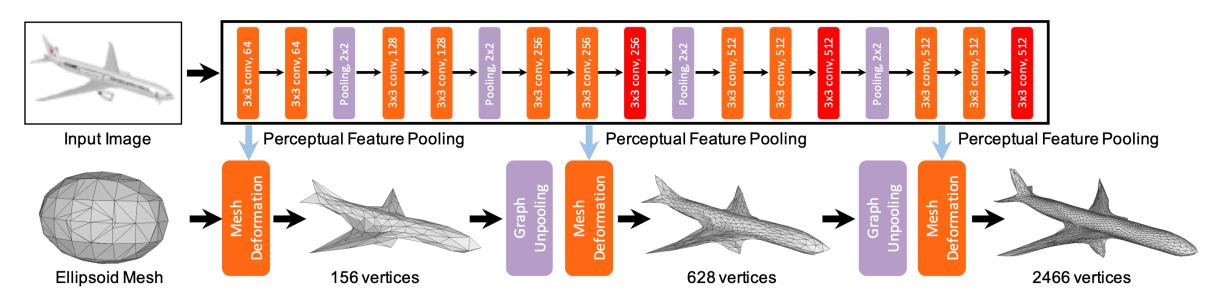
Lecture 23 - 37

Predicting Meshes: Pixel2Mesh

Key ideas:

Input: Single RGB Image of an object Iterative Refinement Graph Convolution Vertex Aligned-Features Chamfer Loss Function

Output: Triangle mesh for the object



Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

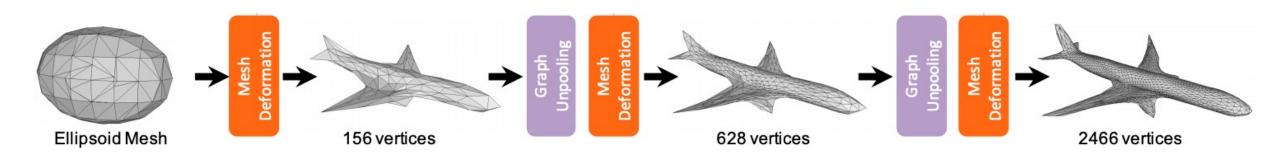
Justin Johnson

Lecture 23 - 38

Predicting Triangle Meshes: Iterative Refinement

Idea #1: Iterative mesh refinement

Start from initial ellipsoid mesh Network predicts offsets for each vertex Repeat.



Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 23 - 39

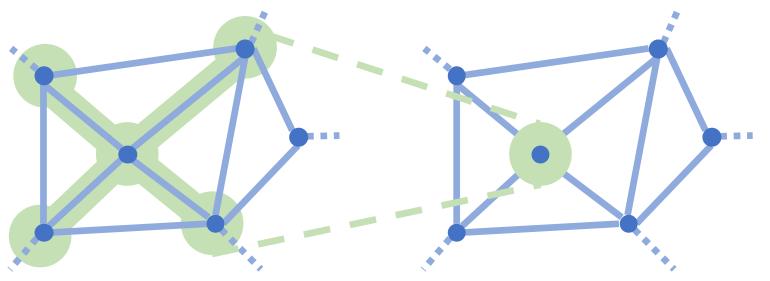
Predicting Triangle Meshes: Graph Convolution

$$f_i' = W_0 f_i + \sum_{j \in N(i)} W_1 f_j$$

Vertex v_i has feature f_i

New feature f'_i for vertex v_i depends on feature of neighboring vertices N(i)

Use same weights W_0 and W_1 to compute all outputs

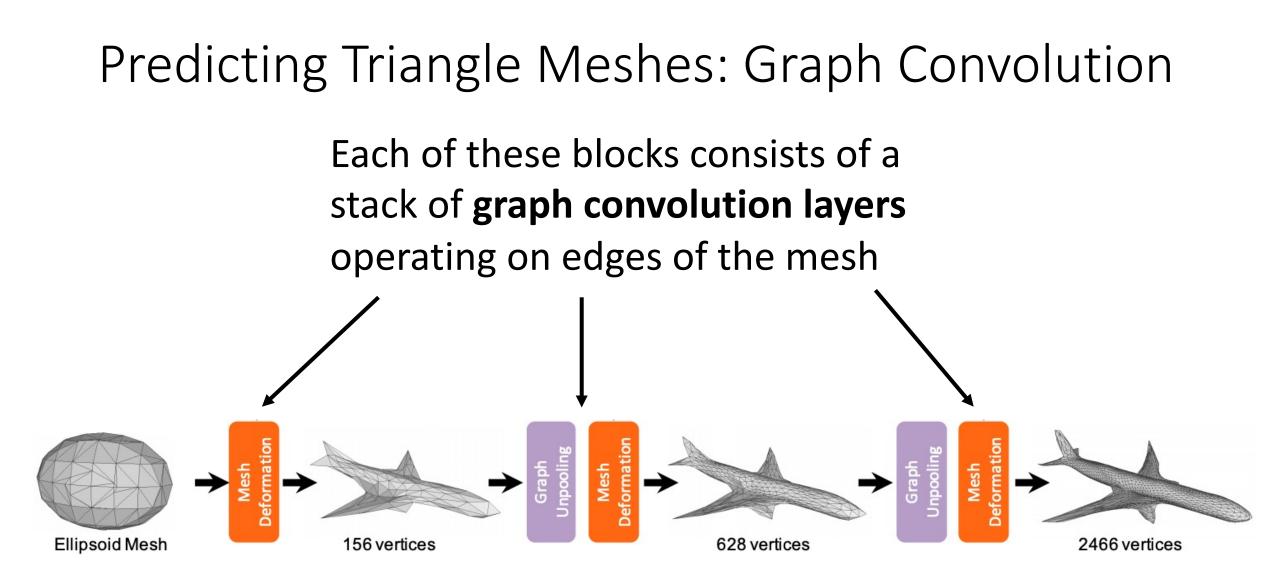


Input: Graph with a feature vector at each vertex

Output: New feature vector for each vertex

Justin Johnson

Lecture 23 - 40

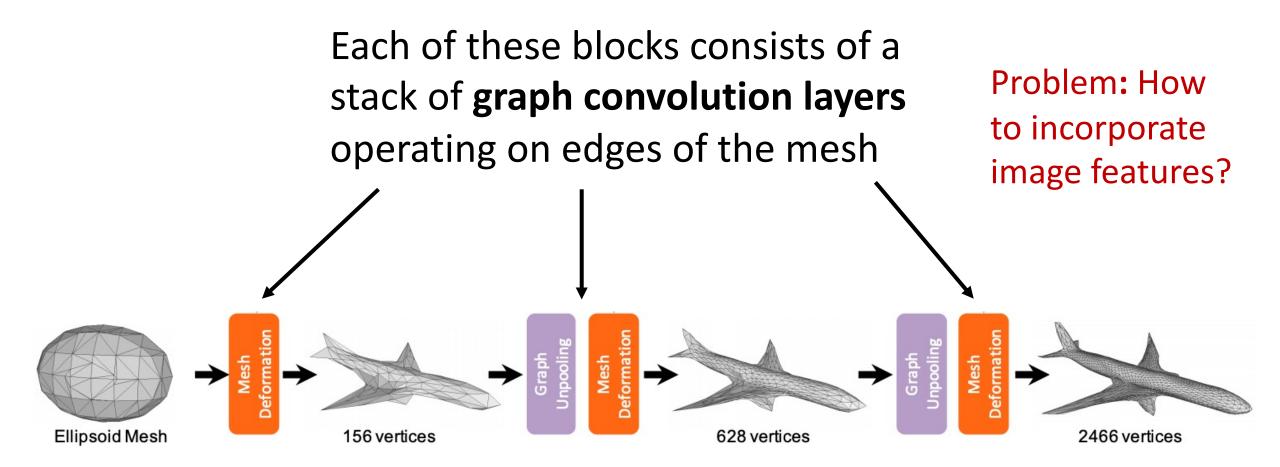


Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 23 - 41

Predicting Triangle Meshes: Graph Convolution



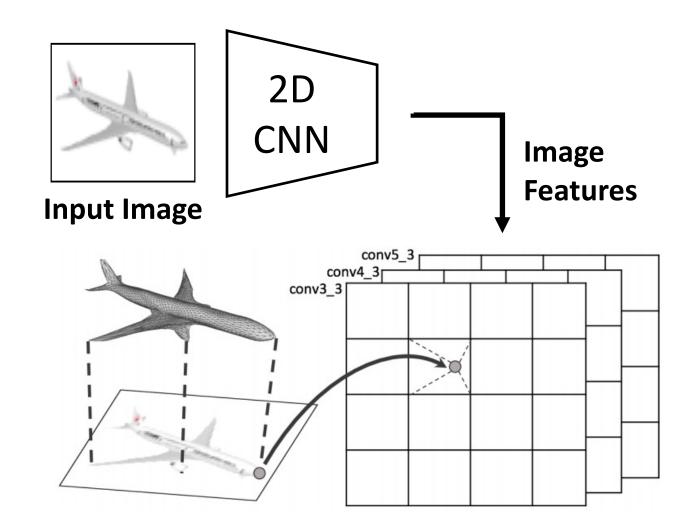
Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 23 - 42

Predicting Triangle Meshes: Vertex-Aligned Features

- Idea #2: Aligned vertex features For each vertex of the mesh:
- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

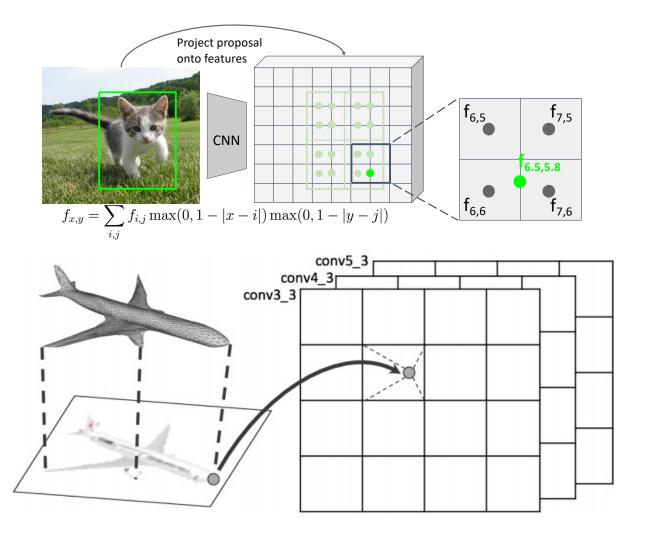


Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Predicting Triangle Meshes: Vertex-Aligned Features

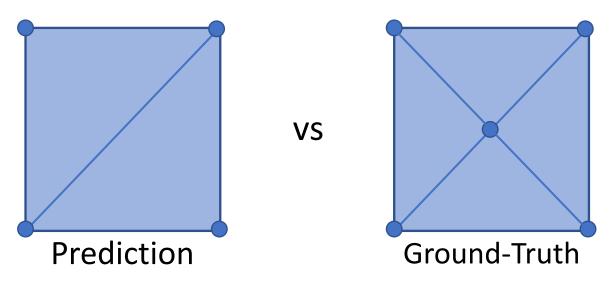
- Idea #2: Aligned vertex features For each vertex of the mesh:
- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

Similar to Rol-Align operation from detection: maintains alignment between input image and feature vectors



Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?



Lecture 23 - 45

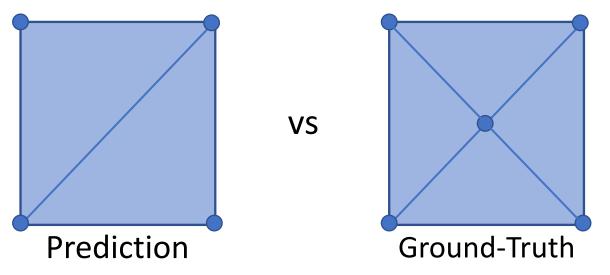
Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Δr	oril	11	, 2022
		╶┻┻╷	, 2022

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss



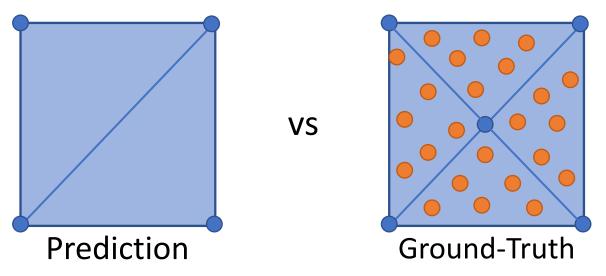
Lecture 23 - 46

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss



Lecture 23 - 47

Sample points from the surface of the ground-truth mesh (offline)

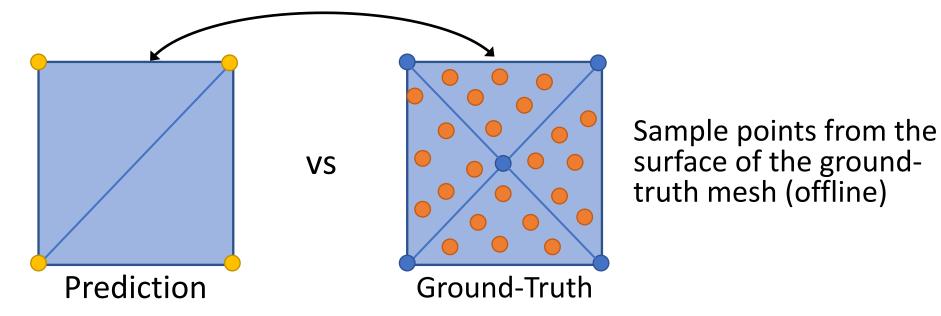
Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

Lecture 23 - 48

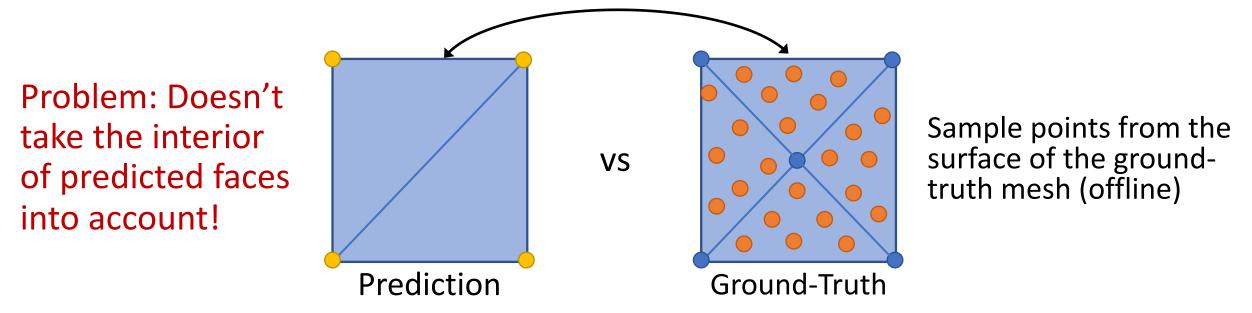


Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

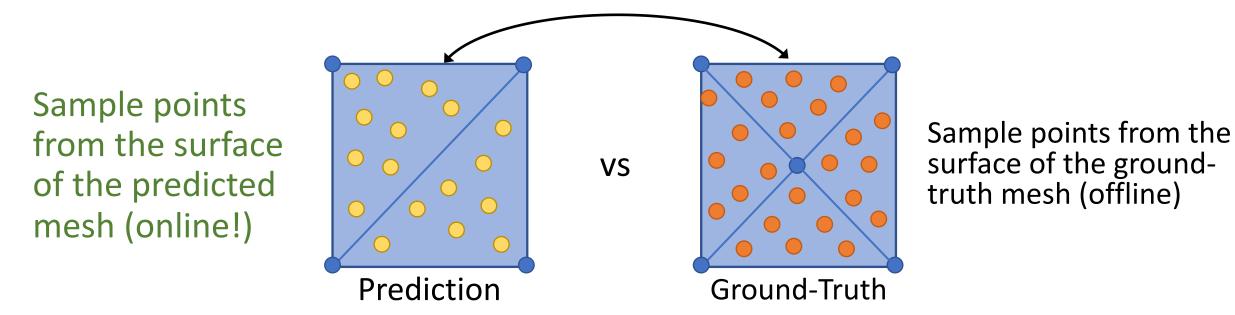


Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted samples and ground-truth samples

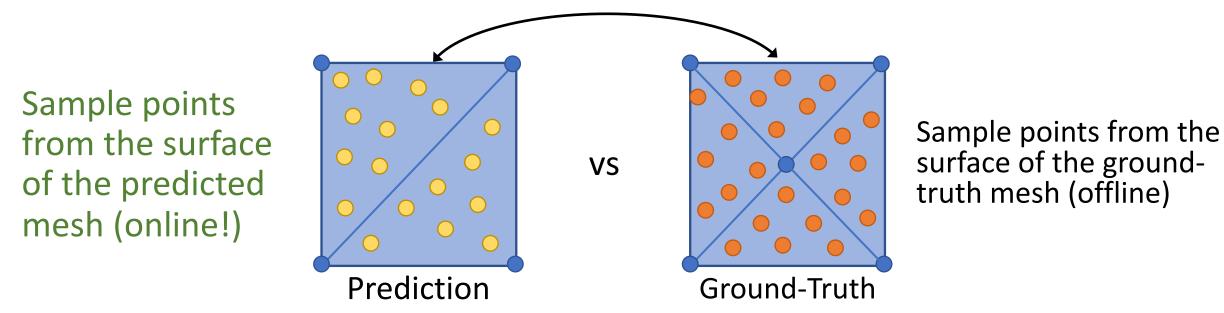


Smith et al, "GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects", ICML 2019

	luct	in	hnson
J	usi		

Problem: Need to sample online! Must be efficient! Problem: Need to backprop through sampling!

Loss = Chamfer distance between predicted samples and ground-truth samples



Smith et al, "GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects", ICML 2019

Apri	11.	2022
	/	

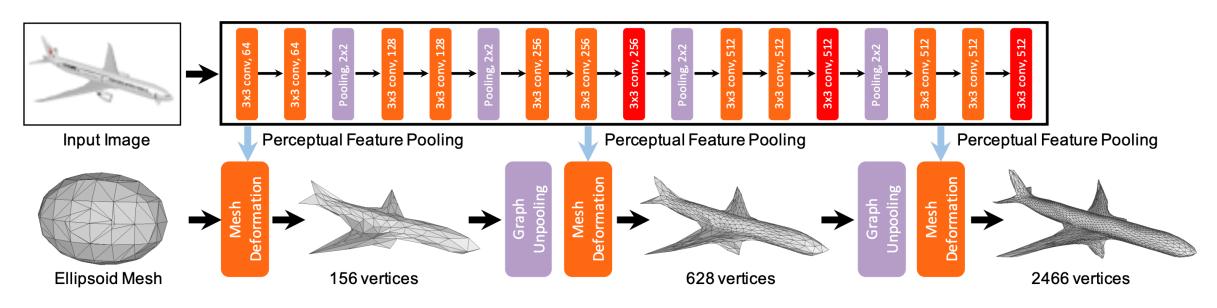
Justin Johnson

Predicting Meshes: Pixel2Mesh

Key ideas:

Input: Single RGB Image of an object Iterative Refinement Graph Convolution Vertex Aligned-Features Chamfer Loss Function

Output: Triangle mesh for the object



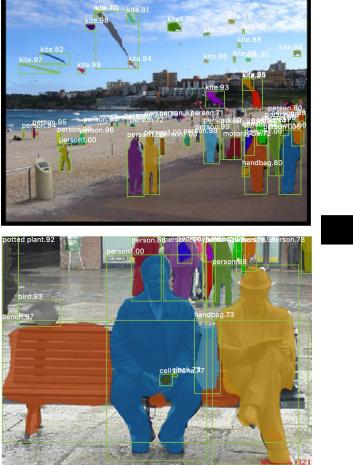
Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 23 - 52

3D Shape Prediction: Mesh R-CNN

Mask R-CNN: 2D Image -> 2D shapes



Mesh R-CNN:

2D Image -> Triangle Meshes

bookcase chair chair

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN",

Justin Johnson

ICCV 2017

Lecture 23 - 53

Mesh R-CNN: Task

Input: Single RGB image

Output:

- A set of detected objects For each object:
 - Bounding box
 - Category label
 - Instance segmentation
 - 3D triangle mesh

bookcase chair chair

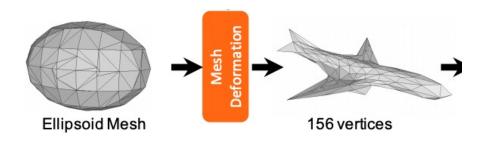
Mask R-CNN

Mesh head

Justin Johnson

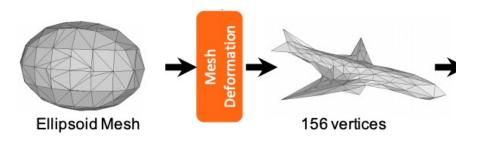
Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh

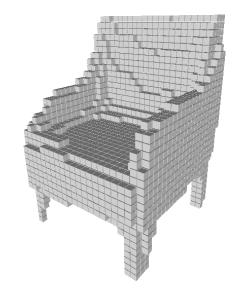


Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh



Our approach: Use voxel predictions to create initial mesh prediction!



Justin Johnson

Lecture 23 - 56

Input image

Justin Johnson

Input image

2D object recognition

Justin Johnson

Input image

Justin Johnson

2D object recognition

 \mathbf{v}

3D object voxels

April 11, 2022

Input image

3D object meshes

2D object recognition

┛

3D object voxels

Justin Johnson

Lecture 23 - 60

Mesh R-CNN: ShapeNet Results

Justin Johnson

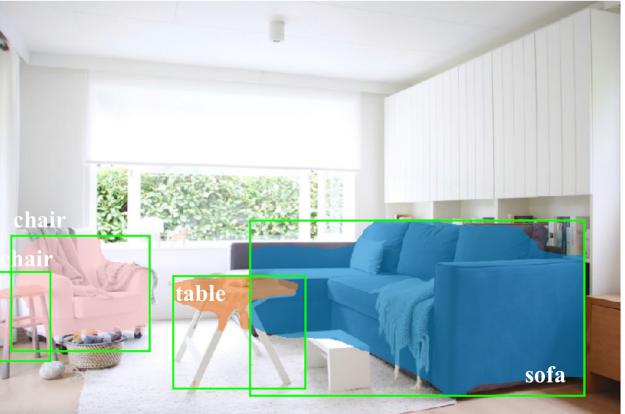
Lecture 23 - 61



Justin Johnson

Lecture 23 - 62

Predicting many objects per scene



Box & Mask Predictions

Mesh Predictions

Justin Johnson

Lecture 23 - 63

Amodal completion: predict occluded parts of objects

Box & Mask Predictions

Mesh Predictions

April 11, 2022

Justin Johnson

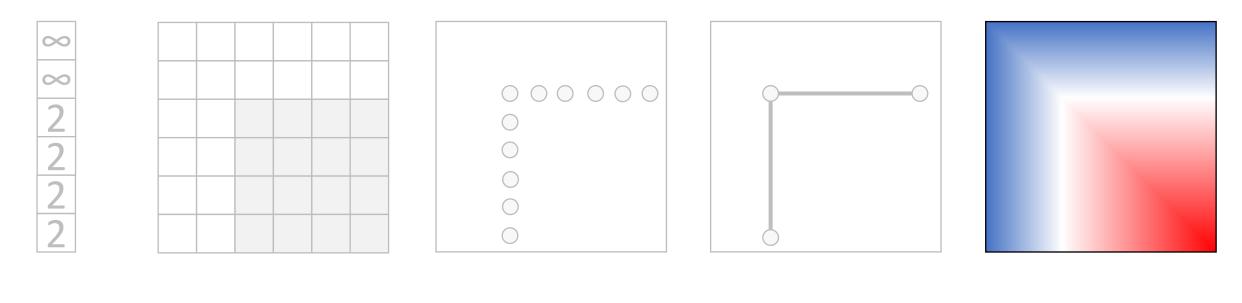
Segmentation failures propagate to meshes

Box & Mask Predictions

Mesh Predictions

Justin Johnson

3D Shape Representations



Depth Map Voxel Grid

Pointcloud Mesh

Implicit Surface

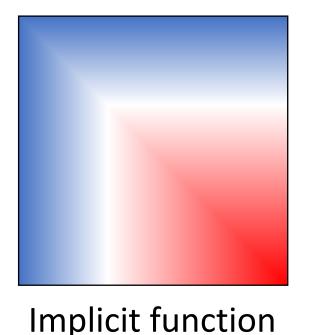
Justi	n Jo	hnson

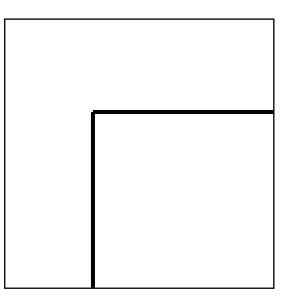
Lecture 23 - 66

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set





 $\{x: o(x) = \frac{1}{2}\}$

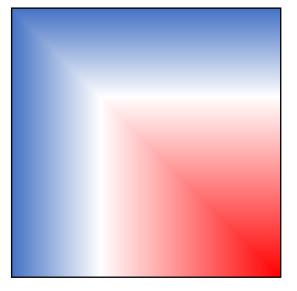
Explicit Shape

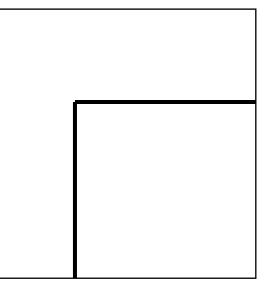
	ustir		hn	con -
J	usui	JO		3011

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set $\{x : O(x) = \frac{1}{2}\}$





Same idea: **signed distance function (SDF)** gives the Euclidean distance to the surface of the shape; sign gives inside / outside

Implicit function

Explicit Shape

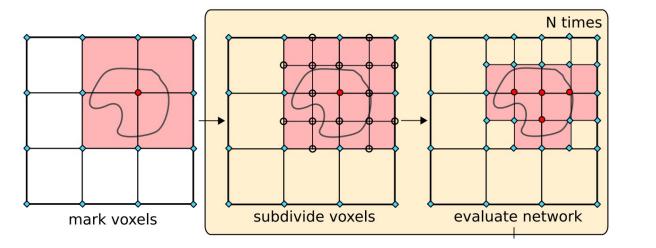
Justin Johnson

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

 ${x : o(x) = \frac{1}{2}}$



Allows for multiscale outputs like Oct-Trees

Mescheder et al, "Occupancy Networks: Learning 3D Reconstruction in Function Space", CVPR 2019

Justin Johnson

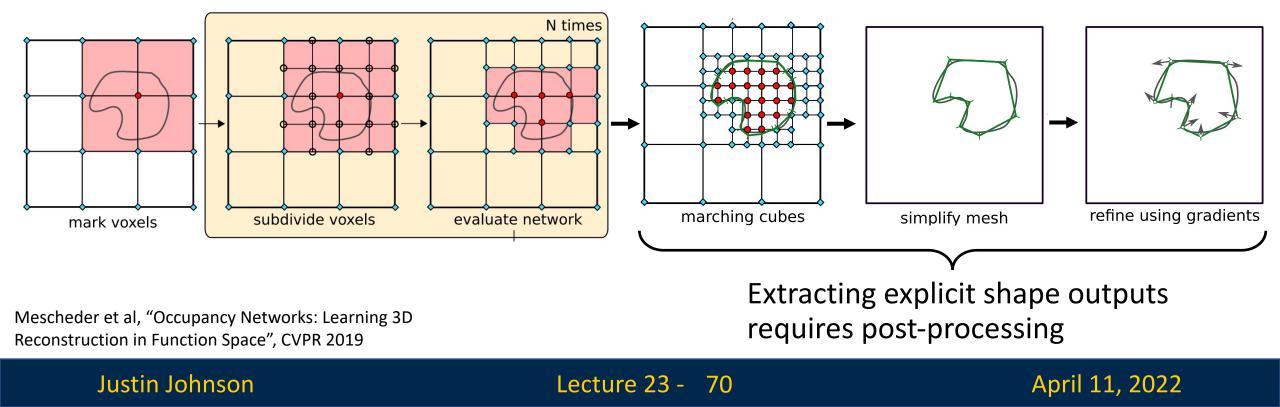
Lecture 23 - 69

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

et $\{x: o(x) = \frac{1}{2}\}$



Neural Radiance Fields (NeRF) for View Synthesis

Justin Johnson

Lecture 23 - 71

View Synthesis

Input: Many images of the same scene (with known camera parameters)

Image source: Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Justin Johnson

View Synthesis

Input: Many images of the same scene (with known camera parameters)

Output: Images showing the scene from novel viewpoints

Image source: Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Justin Johnson

Lecture 23 - 73

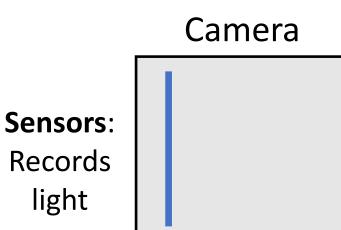
Stepping Back: Pinhole Camera Model

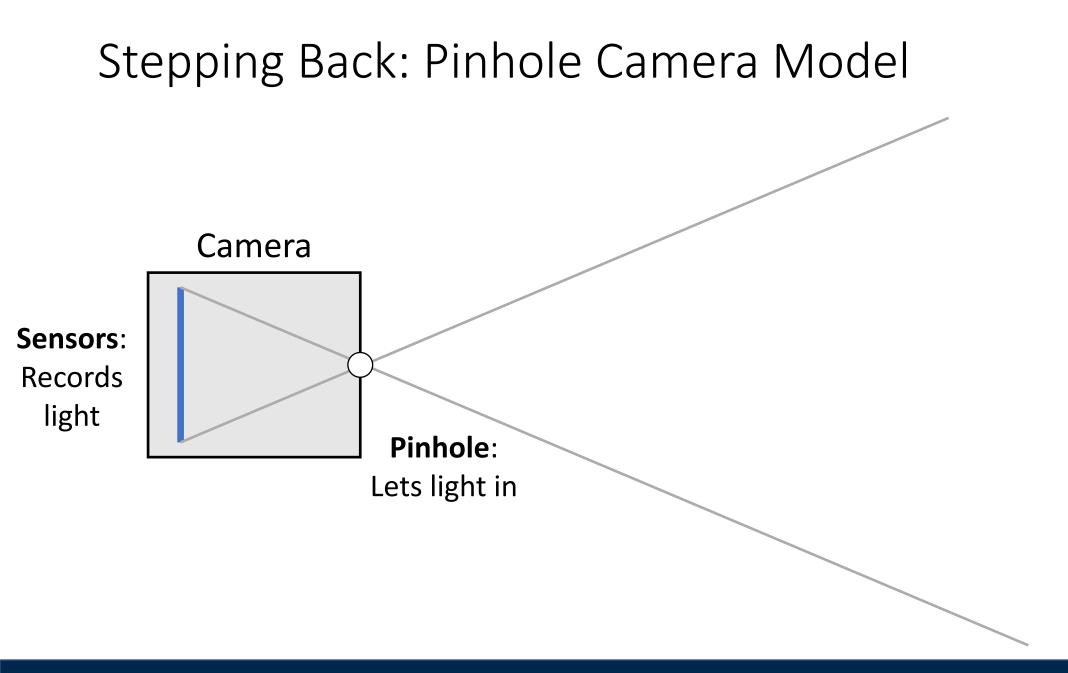
Camera

Justin Johnson

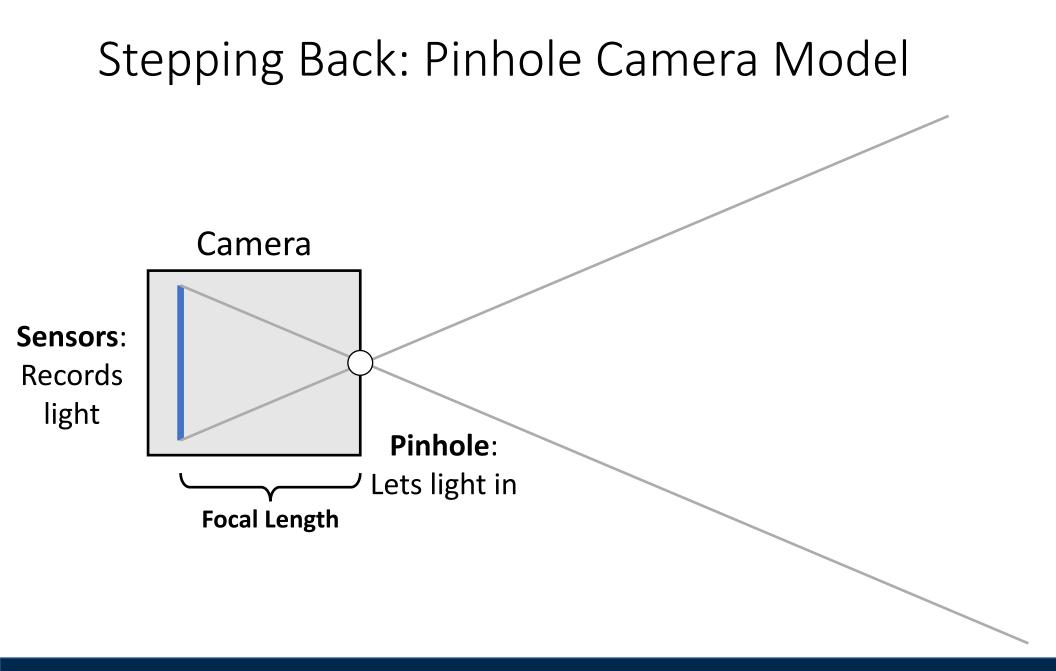
Lecture 23 - 74

Stepping Back: Pinhole Camera Model

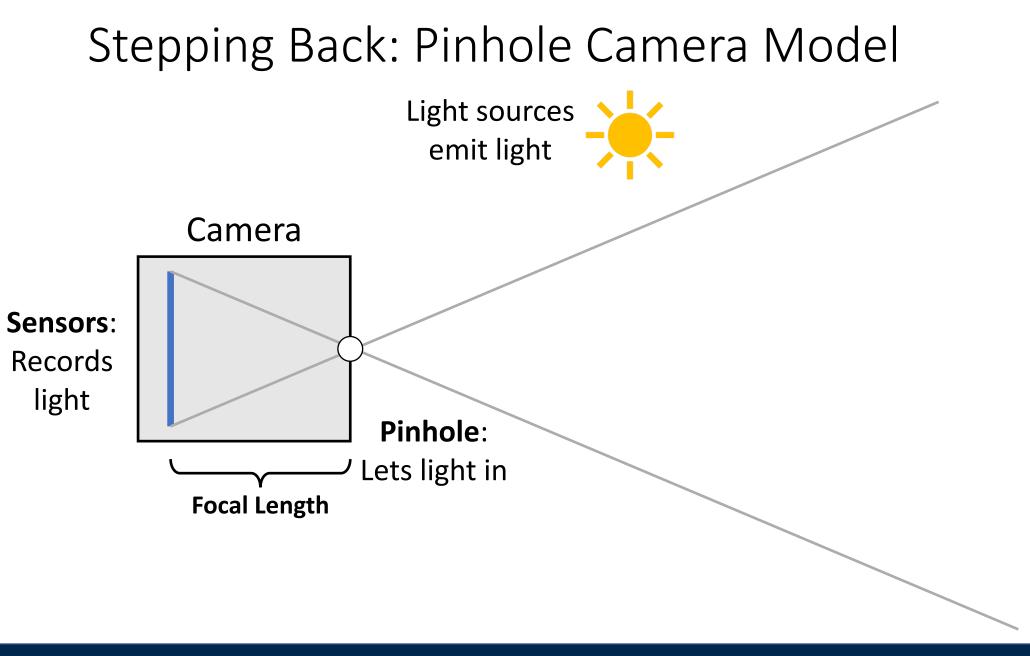




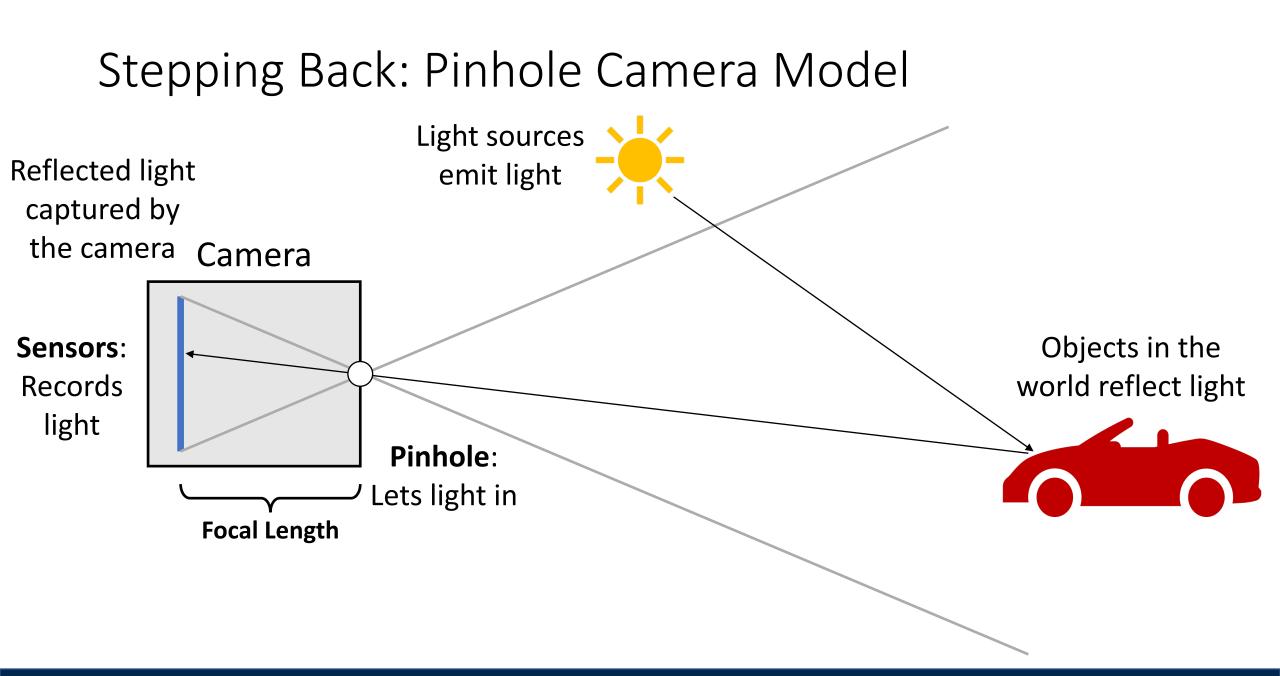
Lecture 23 - 76



Lecture 23 - 77



Lecture 23 - 78



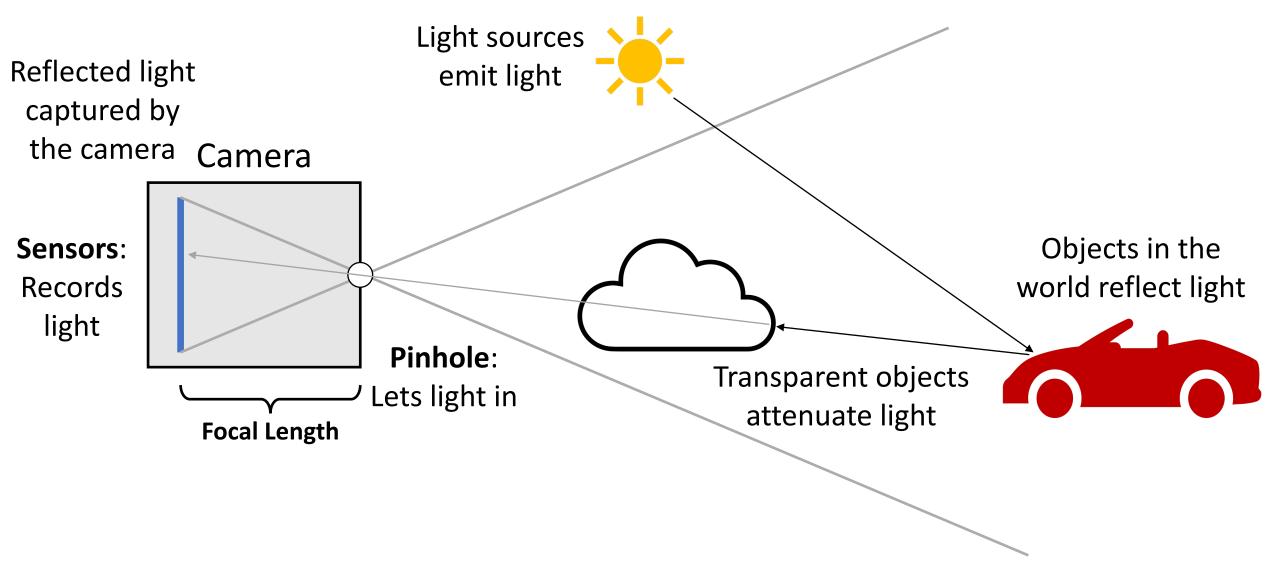
Lecture 23 - 79

Stepping Back: Pinhole Camera Model Light sources **Reflected** light emit light captured by the camera Camera **Opaque objects** Objects in the Sensors: block light world reflect light Records light **Pinhole**: Lets light in **Focal Length**

Justin Johnson

Lecture 23 - 80

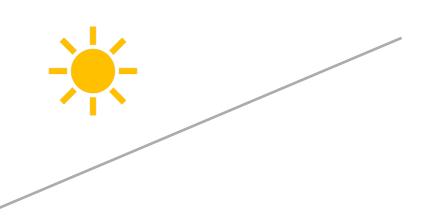
Stepping Back: Pinhole Camera Model

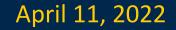


Justin Johnson

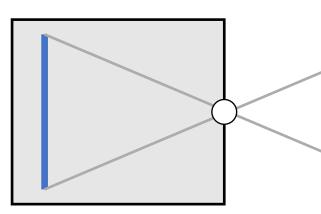
Lecture 23 - 81

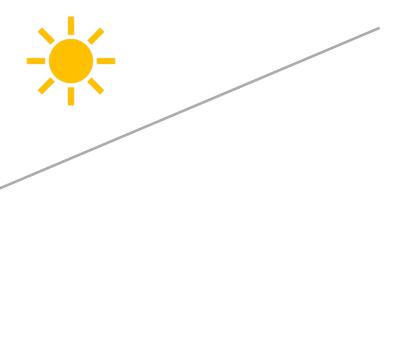
Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$





Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$





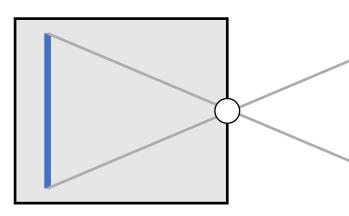
Point on car:
(1) Emits red light in hemisphere
(2) Complete opaque

 $\sigma = 1$

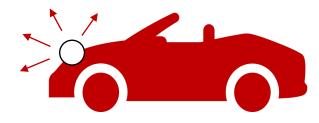
April 11, 2022

Justin Johnson

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$



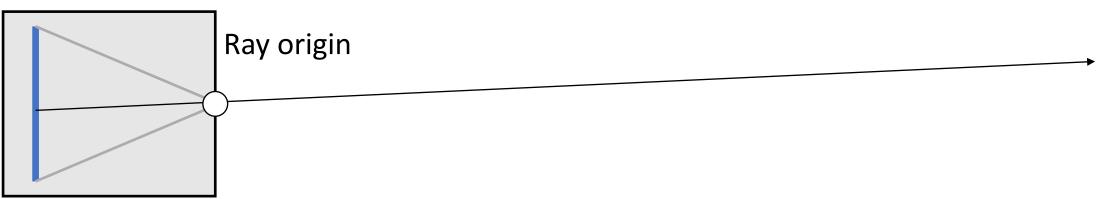
 \bigcirc Point in empty space: (1) Emits no light (black) (2) Completely transparent $\sigma = 0$ Point on car: (1) Emits red light in hemisphere (2) Complete opaque $\sigma = 1$



Justin Johnson

Lecture 23 - 84

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$

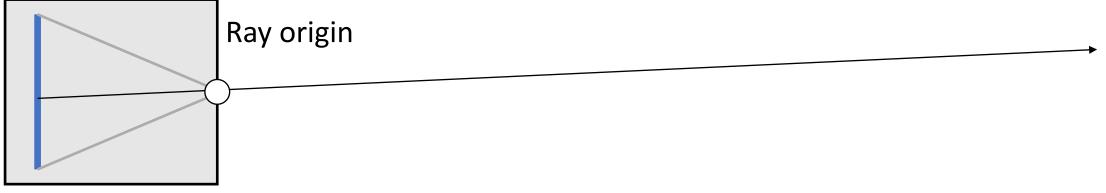


Parameterize each ray as origin plus direction: r(t) = o + tdVolume Density is $\sigma(p) \in [0,1]$ Color that a point **p** emits in direction **d** is $c(p,d) \in [0,1]^3$

Justin Johnson

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$ Color observed by the camera given by **volume rendering equation**:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})dt$$

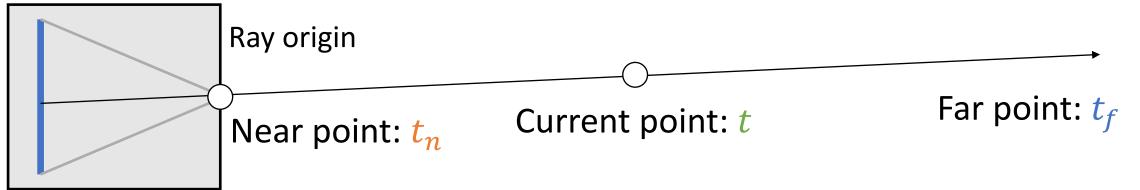


Parameterize each ray as origin plus direction: r(t) = o + tdVolume Density is $\sigma(p) \in [0,1]$ Color that a point **p** emits in direction **d** is $c(p,d) \in [0,1]^3$

Justin Johnson

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$ Color observed by the camera given by **volume rendering equation**:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})dt$$



Parameterize each ray as origin plus direction: r(t) = o + tdVolume Density is $\sigma(p) \in [0,1]$ Color that a point **p** emits in direction **d** is $c(p,d) \in [0,1]^3$

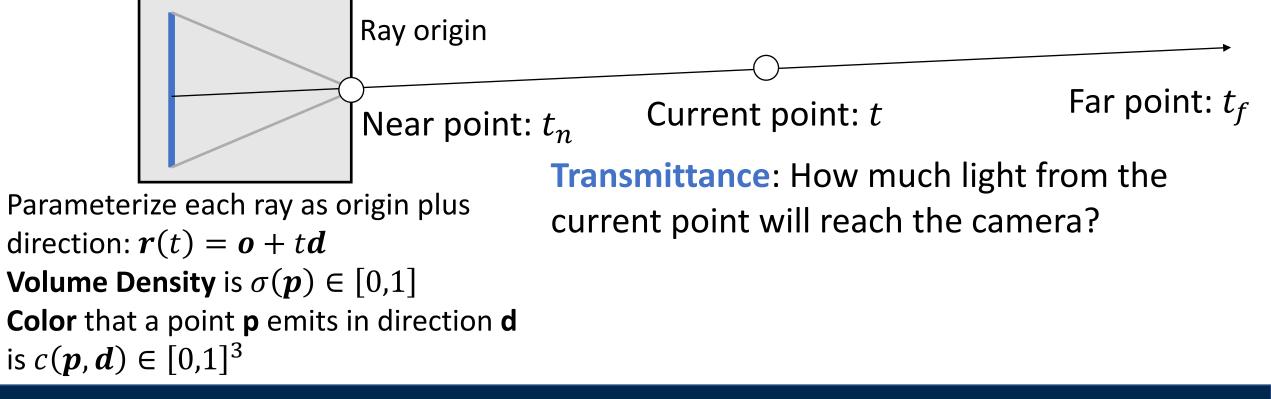
Justin Johnson

Lecture 23 - 87

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$ Color observed by the camera given by **volume rendering equation**:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt$$

April 11, 2022



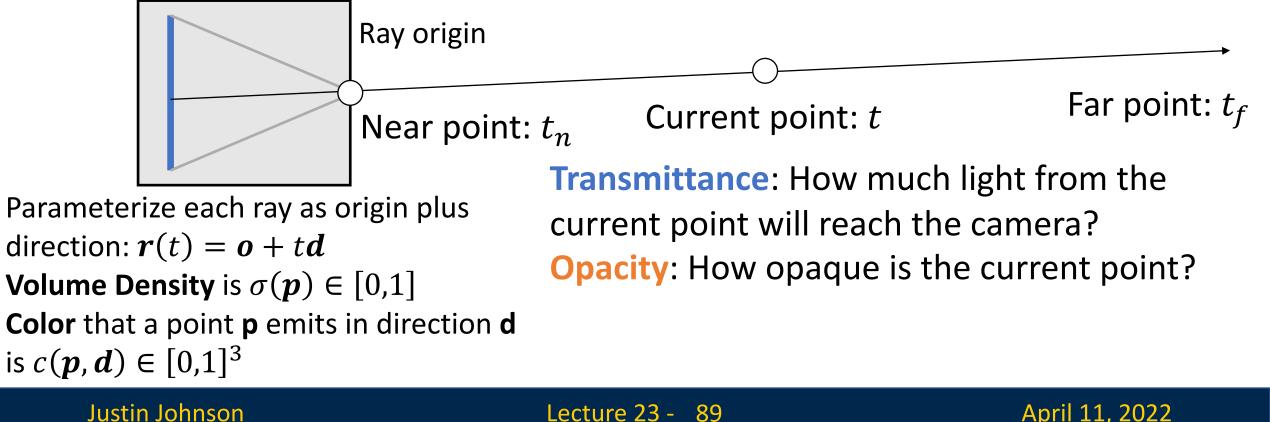
Justin Johnson

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$

Color observed by the camera given by volume rendering equation:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) c(\mathbf{r}(t), \mathbf{d}) dt$$

April 11, 2022

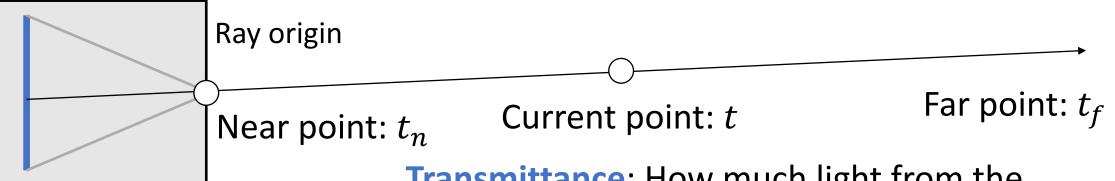


- 89

Justin Johnson

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$ Color observed by the camera given by **volume rendering equation**:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) c(\mathbf{r}(t), \mathbf{d}) dt$$



Parameterize each ray as origin plus direction: r(t) = o + tdVolume Density is $\sigma(p) \in [0,1]$ Color that a point **p** emits in direction **d** is $c(p, d) \in [0,1]^3$ Transmittance: How much light from the current point will reach the camera?
Opacity: How opaque is the current point?
Color: What color does the current point emit along the direction toward the camera?

Justin Johnson

Abstract away lig For each point in (1) How much lig (2) How opaque

Color observed by the camera given by volume rendering equation:

ght sources, objects.
a space, need to know:
ght does it emit?
is it?
$$\sigma \in [0,1]$$

Ray origin
Near point: t_n
th ray as origin plus
 $C(r) = \int_{t_n}^{t_f} T(t)\sigma(r(t))c(r(t),d)dt$
 $T(t) = \exp\left(-\int_{t_n}^t \sigma(r(s))ds\right)$
Current point: t
Transmittance: How much light from the
current point will reach the camera?

Parameterize eac direction: $\boldsymbol{r}(t) = \boldsymbol{o} + t\boldsymbol{d}$ **Volume Density** is $\sigma(\mathbf{p}) \in [0,1]$ **Color** that a point **p** emits in direction **d** is $c(p, d) \in [0, 1]^3$

Compute transmittance by accumulating volume density up to current point

Justin Johnson

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$ Color observed by the camera given by **volume rendering equation**:

, objects.
ed to know:
emit?
0,1]
Ray origin

$$T(t) = \exp\left(-\int_{t_n}^t \sigma(r(s))ds\right)$$

 $T(t) = \exp\left(-\int_{t_n}^t \sigma(r(s))ds\right)$
 $T_1 \qquad \delta_1 \qquad t_2 \qquad \delta_2 \qquad t_3 \qquad \delta_3 \qquad t_4$
Approximate integrals with a set of samples:

Parameterize each ray as origin plus direction: r(t) = o + tdVolume Density is $\sigma(p) \in [0,1]$ Color that a point **p** emits in direction **d** is $c(p,d) \in [0,1]^3$

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$

Ray origin

Color observed by the camera given by volume rendering equation:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))c(\mathbf{r}(t), d)dt$$

$$T(t) = \exp\left(-\int_{t_n}^{t}\sigma(\mathbf{r}(s))ds\right)$$

$$\overbrace{\delta_1}^{\bullet} t_2 \qquad \overbrace{\delta_2}^{\bullet} t_3 \qquad \overbrace{\delta_3}^{\bullet} t_4$$
Approximate integrals with a set of samples:
$$C(\mathbf{r}) \approx \sum_{i=1}^{N} T_i(1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$

$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$
Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECV 2020

Volume Density is $\sigma(\mathbf{p}) \in [0,1]$ **Color** that a point **p** emits in direction **d** is $c(p, d) \in [0, 1]^3$

Parameterize each ray as origin plus

direction: $\boldsymbol{r}(t) = \boldsymbol{o} + t\boldsymbol{d}$

Justin Johnson

Lecture 23 - 93

 $T_i = \exp($

April 11, 2022

Scenes as Neural Radiance Fields

for View Synthesis", ECCV 2020

Neural Radiance Fields (NeRF)

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit? (2) How opaque is it? $\sigma \in [0,1]$ Train a neural network to input position **p** and direction **d**, output $\sigma(\mathbf{p})$ and $c(\mathbf{p}, \mathbf{d})$

Ray origin t_2 Approximate integrals with a set of samples: Parameterize each ray as origin plus $C(\mathbf{r}) \approx \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$ direction: $\boldsymbol{r}(t) = \boldsymbol{o} + t\boldsymbol{d}$ **Volume Density** is $\sigma(\mathbf{p}) \in [0,1]$ $\sum_{j=1}^{i-1} \sigma_j \delta_j$ $T_i = \exp(i \theta)$ Mildenhall et al, "Representing **Color** that a point **p** emits in direction **d** Scenes as Neural Radiance Fields is $c(p, d) \in [0, 1]^3$ for View Synthesis", ECCV 2020

Justin Johnson

Lecture 23 - 94

Neural Radiance Fields (NeRF)

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit?

(2) How opaque is it? $\sigma \in [0,1]$

Train a neural network to input position **p** and direction **d**, output $\sigma(\mathbf{p})$ and $c(\mathbf{p}, \mathbf{d})$

Training loss: Estimated pixel colors $C(\mathbf{r})$ should match actual pixel colors from images Ray origin \mathcal{L}_{3} t_2 t_1 Approximate integrals with a set of samples: Parameterize each ray as origin plus $C(\mathbf{r}) \approx \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$ direction: $\boldsymbol{r}(t) = \boldsymbol{o} + t\boldsymbol{d}$ **Volume Density** is $\sigma(\mathbf{p}) \in [0,1]$ $T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$ Mildenhall et al, "Representing **Color** that a point **p** emits in direction **d** Scenes as Neural Radiance Fields is $c(p, d) \in [0, 1]^3$ for View Synthesis", ECCV 2020

Justin Johnson

Lecture 23 - 95

Neural Radiance Fields (NeRF)

Abstract away light sources, objects. For each point in space, need to know: (1) How much light does it emit?

(2) How opaque is it? $\sigma \in [0,1]$

Train a neural network to input position **p** and direction **d**, output $\sigma(\mathbf{p})$ and $c(\mathbf{p}, \mathbf{d})$

Training loss: Estimated pixel colors $C(\mathbf{r})$ should match actual pixel colors from images Ray origin t_3 t_2 δ_1 t_1

Parameterize each ray as origin plus direction: $\boldsymbol{r}(t) = \boldsymbol{o} + t\boldsymbol{d}$ **Volume Density** is $\sigma(\mathbf{p}) \in [0,1]$ **Color** that a point **p** emits in direction **d** is $c(p, d) \in [0, 1]^3$

After training, can generate novel views of the scene by integrating along rays corresponding to new pixels

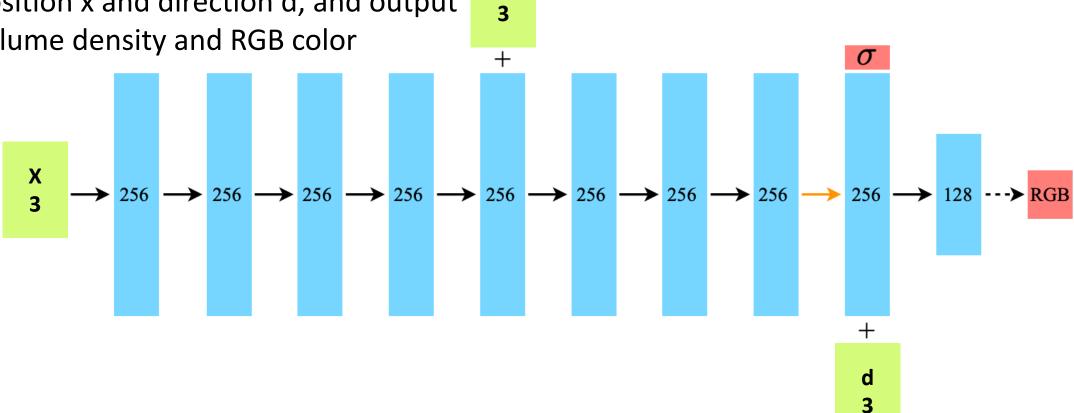
> Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

April 11, 2022

Justin Johnson

Neural Radiance Fields (NeRF): Network Architecture

Fully-connected network: Input position x and direction d, and output volume density and RGB color



Χ

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Justin Johnson

Lecture 23 - 97

Neural Radiance Fields (NeRF): Network Architecture

256

 \rightarrow

256

256

256

+

 $\frac{\gamma(\mathbf{d})}{24}$

128

 $\gamma(\mathbf{x})$

60

+

256

Fully-connected network: Input position x and direction d, and output volume density and RGB color

256

Rather than pass raw xyz values to network, instead use **positional encodings**:

256

 $\gamma(p) = (\sin(2^0 \pi p), \cos(2^0 \pi p), \dots, \sin(2^{L-1} \pi p), \cos(2^{L-1} \pi p))$

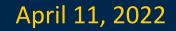
Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

256

Justin Johnson

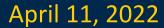
 $\gamma(\mathbf{x})$

60



Neural Radiance Fields: Very Strong Results!

Justin Johnson



Neural Radiance Fields: Very Strong Results!

Justin Johnson

Lecture 23 - 100

Neural Radiance Fields: Very Strong Results!

Justin Johnson

Lecture 23 - 101

Neural Radiance Fields: Can extract 3D geometry!

Justin Johnson

Lecture 23 - 102

Neural Radiance Fields

Main Problem: Very slow!

Training: 1-2 days on a V100 GPU, for just a single scene!

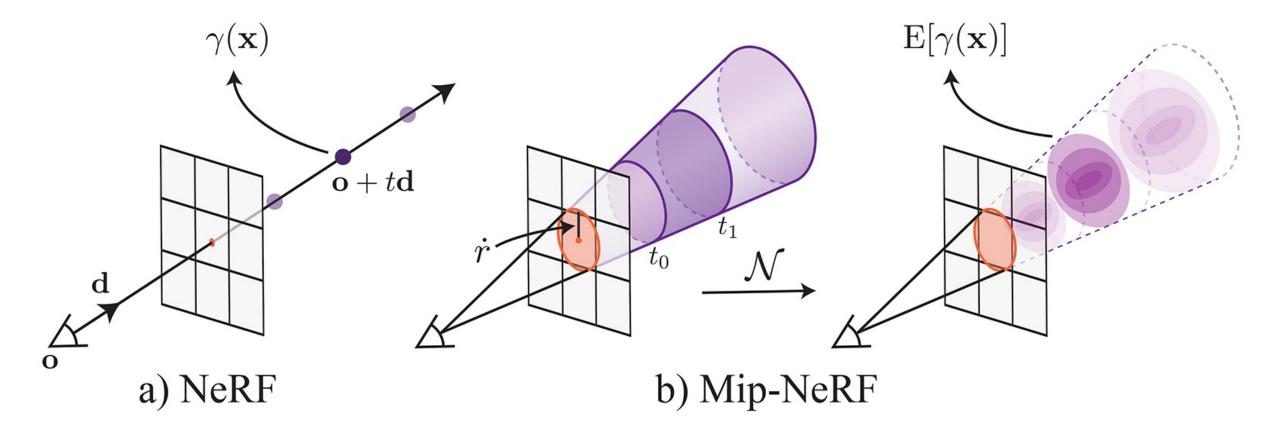
Inference: Sampling an image from a trained model: (256 x 256 pixels) x (224 samples per pixel) = 14.6M forward passes through MLP

Tons of follow-up work!

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Justin Johnson

Mip-NeRF: Model cones rather than rays



Barron et al, "Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields", ICCV 2021

Justin Johnson

Dynamic NeRF: Deformable Scenes

(a) Capture Process

(b) Input

(c) Nerfie

(d) Nerfie Depth

Park et al, "Nerfies: Deformable Neural Radiance Fields", ICCV 2021

Justin Johnson

Lecture 23 - 105

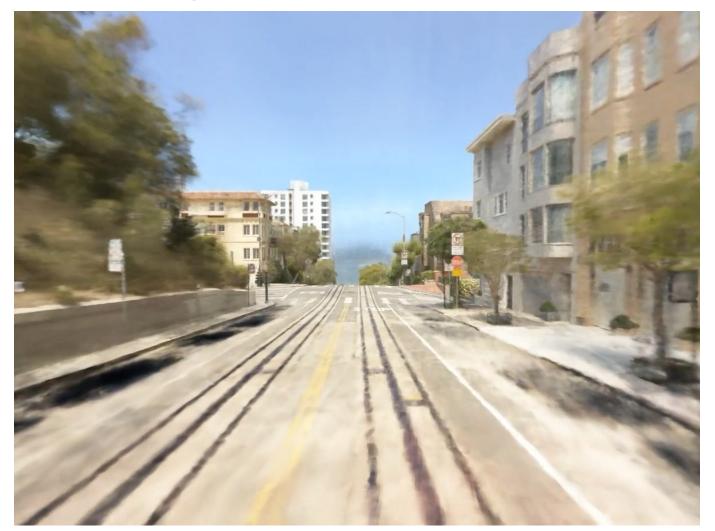
RawNeRF: High-Dynamic Range Imagery

Mildenhall et al, "NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images", CVPR 2022

Justin Johnson

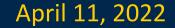
Lecture 23 - 106

BlockNeRF: A Neighborhood of San Francisco

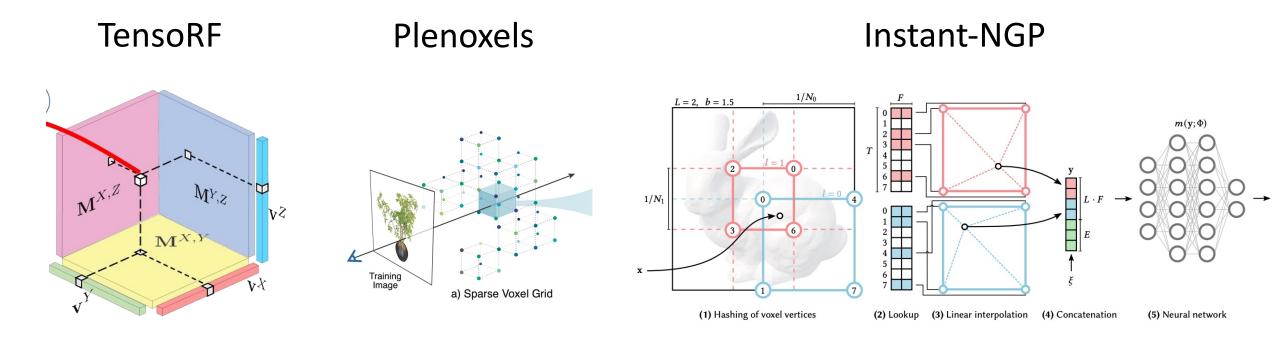


Tancik et al, "Block-NeRF: Scalable Large Scene Neural View Synthesis", arXiv 2022

Justin Johnson



Training NeRF models in minutes!

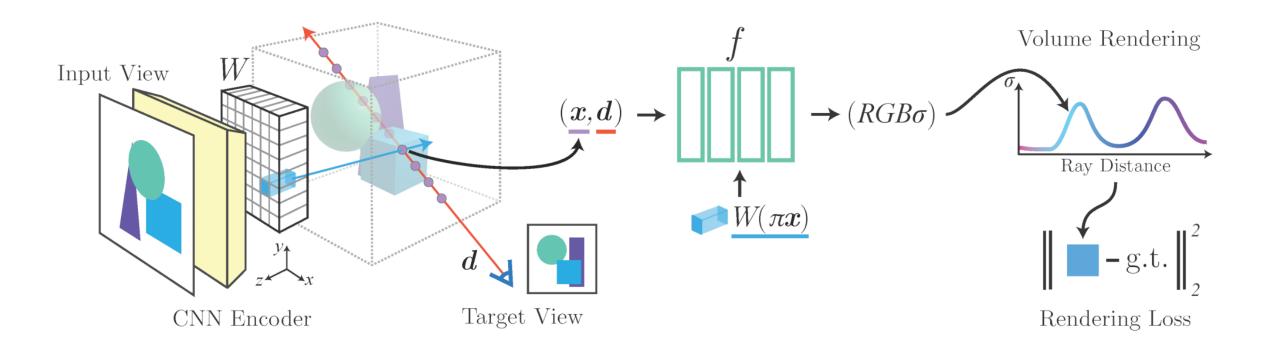


Yu et al, "Plenoxels: Radiance Fields without Neural Networks", CVPR 2022 Muller et al, "Instant Neural Graphics Primitives with a Multiresolution Hash Encoding", arXiv 2022 Chen et al, "TensoRF: Tensorial Radiance Fields", arXiv 2022

Justin Johnson

Lecture 23 - 108

Generalizable NeRF: Same model for many scenes

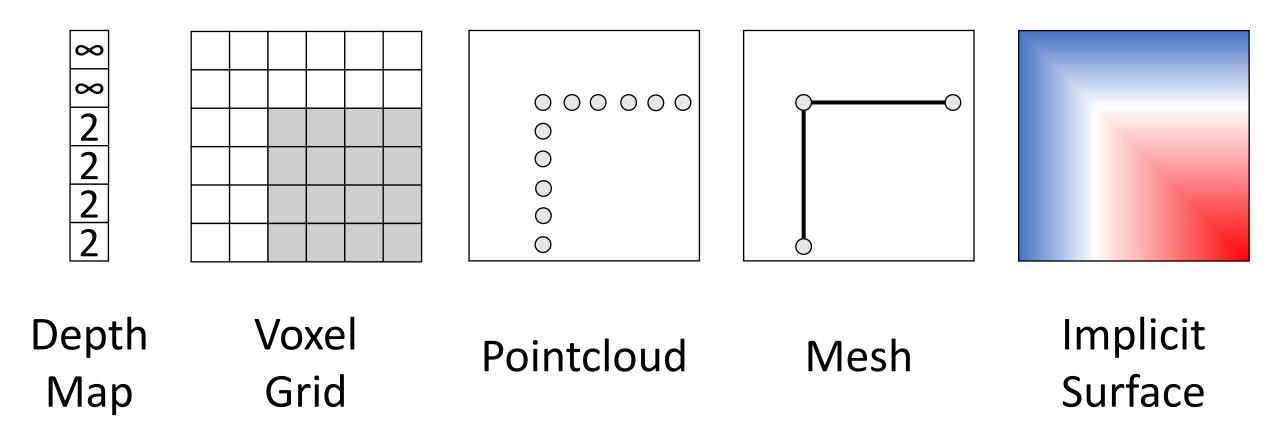


Yu et al, "pixelNeRF: Neural Radiance Fields from One or Few Images", CVPR 2021 Wang et al, "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021

Justin Johnson

Lecture 23 - 109

Summary: 3D Shape Representations



Justin Johnson

Lecture 23 - 110

Summary: Neural Radiance Fields

Represent neural radiance fields with neural networks

Train using posed RGB images of a scene

Render novel views, extract 3D scene representations

One of the hottest topics in computer vision for past few years

Next Time: Videos

Justin Johnson

Lecture 23 - 112