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Lecture 22:
Self-Supervised Learning
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Reminder: A5
Recurrent networks, attention, Transformers

Due on Tuesday 4/12, 11:59pm ET
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Last Time: Visualizing and Understanding CNNs
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Nearest Neighbor

Maximally Activating Patches

(Guided) Backprop Feature Inversion

Synthetic Images via 
Gradient Ascent
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Last Time: Making Art with CNNs
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DeepDream

Style Transfer
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Today: Self-Supervised Learning

5



Justin Johnson April 6, 2022Lecture 22 -

Recall: Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

6
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Problem: Supervised Learning is Expensive!
Assume you want to label 1M images. How much will it cost?
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Problem: Supervised Learning is Expensive!
Assume you want to label 1M images. How much will it cost?

(1,000,000 images) (Small to medium sized dataset) 
⨉ (10 seconds/image) (Fast annotation)
⨉ (1/3600 hours/second)
⨉ ($15 / hour) (Low wage paid to annotator)

8
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Problem: Supervised Learning is Expensive!
Assume you want to label 1M images. How much will it cost?

(1,000,000 images) (Small to medium sized dataset) 
⨉ (10 seconds/image) (Fast annotation)
⨉ (1/3600 hours/second)
⨉ ($15 / hour) (Low wage paid to annotator)
= $41,667

(Other assumptions: one annotator per image, no benefits / payroll tax / crowdsourcing fee 
for annotators; not accounting for time to set up tasks for annotators, etc. Real costs could 
easily be 3x this or more)
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Problem: Supervised Learning is Expensive!
Assume you want to label 1B images. How much will it cost?

(1,000,000,000 images) (Large dataset) 
⨉ (10 seconds/image) (Fast annotation)
⨉ (1/3600 hours/second)
⨉ ($15 / hour) (Low wage paid to annotator)
= $41,666,667

(Other assumptions: one annotator per image, no benefits / payroll tax / crowdsourcing fee 
for annotators; not accounting for time to set up tasks for annotators, etc. Real costs could 
easily be 3x this or more)

10
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Problem: Supervised Learning is Not How We Learn

11

Baby image is CC0 public domain

Babies don’t get supervision 
for everything they see!

https://publicdomainvectors.org/en/free-clipart/Baby-Boy-In-Yellow-Clothing/36767.html
https://creativecommons.org/publicdomain/zero/1.0/
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Solution: Self-Supervised Learning

12

Lets build methods that learn from ”raw” data – no annotations required

Unsupervised Learning: Model isn’t told what to predict. Older 
terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally-
occurring signal in the raw data rather than human annotations.
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Solution: Self-Supervised Learning

13

Lets build methods that learn from ”raw” data – no annotations required

Unsupervised Learning: Model isn’t told what to predict. Older 
terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some naturally-
occurring signal in the raw data rather than human annotations.

Semi-Supervised Learning: Train jointly with some labeled data and (a lot)
of unlabeled data.
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Encoder:
𝜙

Decoder:
𝜓

Input Image: 𝑥 Features: 𝜙 𝑥 Prediction: %𝑦

Loss: 
𝐿 %𝑦, 𝑦

Self-Supervised Learning: Pretext then Transfer
Step 1: Pretrain a 
network on a 
pretext task that 
doesn’t require 
supervision
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Encoder:
𝜙

Decoder:
𝜓

Input Image: 𝑥 Features: 𝜙 𝑥 Prediction: %𝑦

Loss: 
𝐿 %𝑦, 𝑦

Step 2: Transfer 
encoder to 
downstream 
tasks via linear 
classifiers, KNN, 
finetuning

Self-Supervised Learning: Pretext then Transfer

Encoder:
𝜙

Input Image: 𝑥 Features: 𝜙 𝑥

Downstream tasks:
Image classification,
object detection,
semantic segmentation

Step 1: Pretrain a 
network on a 
pretext task that 
doesn’t require 
supervision
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Encoder:
𝜙

Decoder:
𝜓

Input Image: 𝑥 Features: 𝜙 𝑥 Prediction: %𝑦

Loss: 
𝐿 %𝑦, 𝑦

Step 1: Pretrain a 
network on a 
pretext task that 
doesn’t require 
supervision

Step 2: Transfer 
encoder to 
downstream 
tasks via linear 
classifiers, KNN, 
finetuning

Self-Supervised Learning: Pretext then Transfer

Encoder:
𝜙

Input Image: 𝑥 Features: 𝜙 𝑥

Goal: Pretrain + Transfer 
does better than 
supervised pretraining, 
and better than directly 
training on downstream
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Self-Supervised Learning: Pretext Tasks

17

Generative: Predict
part of the input signal
• Autoencoders 

(sparse, denoising, 
masked)

• Autoregressive
• GANs
• Colorization
• Inpainting

Discriminative: Predict
something about the 
input signal
• Context prediction
• Rotation
• Clustering
• Contrastive

Multimodal: Use some 
additional signal in 
addition to RGB images
• Video
• 3D
• Sound
• Language
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Recall: Autoencoder

18

Input Image:
𝑥 ∈ ℝ!

Hidden Layer:
h ∈ ℝ"

Reconstructed
Image:
%𝑥 ∈ ℝ!

𝑊! ∈ ℝ"×$ 𝑊% ∈ ℝ$×"

Autoencoder tries to reconstruct inputs. Hidden 
layer (hopefully) learns good representations.
Generative pretraining task!

Lee et al, “Efficient Sparse Coding Algorithms”, NeurIPS 2006; Ranzato et al, “Efficient Learning of Sparse Representations with an Energy-Based Model”, NeurIPS 2006;
Lee et al, “Sparse deep belief net models for visual area V2”, NeurIPS 2007; Ng, “Sparse Autoencoder”, CS294A Lecture Notes

𝐿 𝑥 = 𝑅 𝑥, &𝑥
= 𝑥 − &𝑥 !

!
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Recall: Autoencoder

19

Input Image:
𝑥 ∈ ℝ!

Hidden Layer:
h ∈ ℝ"

Reconstructed
Image:
%𝑥 ∈ ℝ!

𝑊! ∈ ℝ"×$ 𝑊% ∈ ℝ$×"

Autoencoder tries to reconstruct 
inputs. Hidden layer (hopefully) 
learns good representations

Lee et al, “Efficient Sparse Coding Algorithms”, NeurIPS 2006; Ranzato et al, “Efficient Learning of Sparse Representations with an Energy-Based Model”, NeurIPS 2006;
Lee et al, “Sparse deep belief net models for visual area V2”, NeurIPS 2007; Ng, “Sparse Autoencoder”, CS294A Lecture Notes

H < D is the only 
thing forcing non-
trivial hidden 
representations…

𝐿 𝑥 = 𝑅 𝑥, &𝑥
= 𝑥 − &𝑥 !

!
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Sparse Autoencoder

20

Input Image:
𝑥 ∈ ℝ!

0
0
1
0
0
0
1
0

Hidden Layer:
h ∈ ℝ"

Reconstructed
Image:
%𝑥 ∈ ℝ!

𝑊! ∈ ℝ"×$ 𝑊% ∈ ℝ$×"

Train an autoencoder to reconstruct inputs
with sparse activations (mostly 0). Many 
ways to implement sparsity penalties!

Lee et al, “Efficient Sparse Coding Algorithms”, NeurIPS 2006; Ranzato et al, “Efficient Learning of Sparse Representations with an Energy-Based Model”, NeurIPS 2006; Lee et al, “Sparse deep
belief net models for visual area V2”, NeurIPS 2007; Ng, “Sparse Autoencoder”, CS294A Lecture Notes; Le et al, “Building high-level features using large-scale unsupervised learning, ICML 2012

𝐿 𝑥 = 𝑅 𝑥, &𝑥 + 𝜆𝑆 ℎ
= 𝑥 − &𝑥 !

! + 𝜆 ℎ "
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Denoising Autoencoder

21

Input Image:
𝑥 ∈ ℝ!

Hidden Layer:
h ∈ ℝ"

Reconstructed
Image:
%𝑥 ∈ ℝ!

𝑊! ∈ ℝ"×$ 𝑊% ∈ ℝ$×"

𝐿 𝑥 = 𝑅 𝑥, &𝑥
= 𝑥 − &𝑥 !

!

Train an autoencoder to 
reconstruct noisy inputs 
(pixels randomly set to zero)

Corrupted Image:
𝑥 ∈ ℝ!

Vincent et al, “Extracting and Composing Robust Features with Denoising Autoencoders”, ICML 2008
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Context Prediction

22

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Model predicts relative location of 
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding 
objects and their parts
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Context Prediction

23

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

CNN CNNShared 
Weights

Concatenate

Classification over 8 positions

Model predicts relative location of 
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding 
objects and their parts



Justin Johnson April 6, 2022Lecture 22 -

Context Prediction

24

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

CNN CNNShared 
Weights

Concatenate

Classification over 8 positions

Two networks with shared 
weights sometimes called a 
”Siamese network” – but I 
don’t really like this term

Model predicts relative location of 
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding 
objects and their parts
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Context Prediction

25

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

CNN CNNShared 
Weights

Concatenate

Classification over 8 positions

“For experiments, we use a 
ConvNet trained on a K40 GPU 
for approximately four weeks.”

Model predicts relative location of 
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding 
objects and their parts
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Context Prediction: Nearest Neighbors in Feature Space

26

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Input Patch



Justin Johnson April 6, 2022Lecture 22 -

Context Prediction: Nearest Neighbors in Feature Space

27

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Input Patch Random Init
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Context Prediction: Nearest Neighbors in Feature Space

28

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Input Patch Random Init Supervised AlexNet
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Context Prediction: Nearest Neighbors in Feature Space

29

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Input Patch Random Init Supervised AlexNet Their Features

Works
well!
Similar to
AlexNet
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Context Prediction: Nearest Neighbors in Feature Space

30

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Input Patch Random Init Supervised AlexNet Their Features

Works
well!
Similar to
AlexNet

Failure 
modes



Justin Johnson April 6, 2022Lecture 22 -

Extension: Solving Jigsaw Puzzles

31

Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016

Rather than predict relative position of two patches, instead 
predict permutation to “unscramble” 9 shuffled patches
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Extension: Solving Jigsaw Puzzles

32

Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016

Rather than predict relative position of two patches, instead 
predict permutation to “unscramble” 9 shuffled patches

Problem: These methods 
only work on patches, 
not whole images!
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Context Encoders: Learning by Inpainting

33

Input Image

Encoder:
𝜙

Decoder:
𝜓

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Context Encoders: Learning by Inpainting

34

Input Image Predict Missing Pixels

Encoder:
𝜙

Decoder:
𝜓

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Human Artist
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Context Encoders: Learning by Inpainting

35

Input Image Predict Missing Pixels

Encoder:
𝜙

Decoder:
𝜓

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

L2 Loss
(Best for feature learning)
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Context Encoders: Learning by Inpainting

36

Input Image Predict Missing Pixels

Encoder:
𝜙

Decoder:
𝜓

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

L2 + Adversarial Loss
(Best for nice images)
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Colorization

37

Zhang et al, “Colorful Image Colorization”, ECCV 2016

Input: Grayscale Image Output: Color Image

Intuition: A model must be able to identify objects to be able to colorize them
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Colorization

38

Zhang et al, “Colorful Image Colorization”, ECCV 2016
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Colorization Extension: Split-Brain Autoencoder

39

Zhang et al, “Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction”, CVPR 2017
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Colorization Extension: Split-Brain Autoencoder

40

Zhang et al, “Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction”, CVPR 2017
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Colorization Extension: Split-Brain Autoencoder

41

Zhang et al, “Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction”, CVPR 2017

Concern: Generative pretexts 
encourage spending model 
capacity on details unimportant 
for downstream tasks (e.g.
regressing exact right shade of 
orange)



Justin Johnson April 6, 2022Lecture 22 -

Colorization Extension: Split-Brain Autoencoder

42

Zhang et al, “Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction”, CVPR 2017

Concern: Generative pretexts 
encourage spending model 
capacity on details unimportant 
for downstream tasks (e.g.
regressing exact right shade of 
orange)

Solution: Discriminative 
pretext tasks that require 
classification, not generation
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Deep Clustering

43

CNN

(1) Randomly initialize a CNN

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018
Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019
Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020
Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments“, NeurIPS 2020
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Deep Clustering

44

(1) Randomly initialize a CNN

(2) Run many images through 
CNN, get their final-layer features

CNN

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018
Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019
Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020
Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments“, NeurIPS 2020
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Deep Clustering

45

(1) Randomly initialize a CNN

(2) Run many images through 
CNN, get their final-layer features

(3) Cluster the features with K-Means; 
record cluster for each feature

Cluster 0

Cluster 0

Cluster 1

Cluster 1

CNN

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018
Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019
Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020
Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments“, NeurIPS 2020
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Deep Clustering

46

(1) Randomly initialize a CNN

(2) Run many images through 
CNN, get their final-layer features

(3) Cluster the features with K-Means; 
record cluster for each feature

Cluster 0

Cluster 0

Cluster 1

Cluster 1
(4) Use cluster assignments as pseudo-
labels for each image; train the CNN to 
predict cluster assignments

CNN

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018
Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019
Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020
Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments“, NeurIPS 2020
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Deep Clustering

47

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018
Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019
Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020
Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments“, NeurIPS 2020

(1) Randomly initialize a CNN

(2) Run many images through 
CNN, get their final-layer features

(3) Cluster the features with K-Means; 
record cluster for each feature

Cluster 0

Cluster 0

Cluster 1

Cluster 1
(4) Use cluster assignments as pseudo-
labels for each image; train the CNN to 
predict cluster assignments

(5) Repeat: GOTO (2)

CNN
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RotNet: Predict Rotation

48

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)
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RotNet: Predict Rotation

49

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

90



Justin Johnson April 6, 2022Lecture 22 -

RotNet: Predict Rotation

50

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

90 270



Justin Johnson April 6, 2022Lecture 22 -

RotNet: Predict Rotation

51

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

90 270 180
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RotNet: Predict Rotation

52

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

90 270 180 0
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RotNet: Predict Rotation

53

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

90 270 180 0 270
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Which SSL Method is best?

54

Fair evaluation of SSL methods is very hard! No theory, so we need to rely on experiment

Many choices in experimental setup, huge variations from paper to paper:
- CNN architecture? AlexNet, ResNet50, something else?
- Pretraining dataset? ImageNet, or something else?
- Downstream task? ImageNet classification, detection, something else?
- Pretraining hyperparameters? Learning rates, training iterations, data augmentation?
- Transfer learning protocol?

- Linear probe? From which layer? How to train linear models? SGD, something else?
Transfer learning hyperparameters? Data augmentation or BatchNorm during 
transfer learning?

- Fine-tune? From which layer? Architecture of “head” you attach? Linear or 
nonlinear? Fine-tuning hyperparameters?

- KNN? What value of K? Normalization on features?



Justin Johnson April 6, 2022Lecture 22 -

Which SSL Method is best?

55

16.6

38
44.8

30.9 29.7 32.5 33.7 32.2 31.9 30.3

0
5

10
15
20
25
30
35
40
45
50

Random Init ImageNet
Supervised

Places205
Supervised

Jigsaw Colorization SplitBrain Rotation DeepCluster Jigsaw
(Reimpl.)

Colorization
(Reimpl.)

Ac
cu

ra
cy

Places205 Linear Classification from AlexNet conv5

Goyal et al, “Scaling and Benchmarking Self-Supervised Visual Representation Learning”, ICCV 2019

Some papers have tried to do fair comparisons of many SSL methods

Reimplementing 
existing methods can 
slightly change results…

Overall, as of 2019 SSL gave worse 
features than supervised pretraining
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Which SSL Method is best?

56

16.6

38
44.8

30.9 29.7 32.5 33.7 32.2 31.9 30.3

0
5

10
15
20
25
30
35
40
45
50

Random Init ImageNet
Supervised

Places205
Supervised

Jigsaw Colorization SplitBrain Rotation DeepCluster Jigsaw
(Reimpl.)

Colorization
(Reimpl.)

Ac
cu

ra
cy

Places205 Linear Classification from AlexNet conv5

Goyal et al, “Scaling and Benchmarking Self-Supervised Visual Representation Learning”, ICCV 2019

Some papers have tried to do fair comparisons of many SSL methods
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Which SSL Method is best?

57

16.6

38
44.8

30.9 29.7 32.5 33.7 32.2 31.9 30.3

0
5

10
15
20
25
30
35
40
45
50

Random Init ImageNet
Supervised

Places205
Supervised

Jigsaw Colorization SplitBrain Rotation DeepCluster Jigsaw
(Reimpl.)

Colorization
(Reimpl.)

Ac
cu

ra
cy

Places205 Linear Classification from AlexNet conv5

Goyal et al, “Scaling and Benchmarking Self-Supervised Visual Representation Learning”, ICCV 2019

Some papers have tried to do fair comparisons of many SSL methods

Reimplementing 
existing methods can 
slightly change results…
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Which SSL Method is best?

58

16.6

38
44.8

30.9 29.7 32.5 33.7 32.2 31.9 30.3

0
5

10
15
20
25
30
35
40
45
50

Random Init ImageNet
Supervised

Places205
Supervised

Jigsaw Colorization SplitBrain Rotation DeepCluster Jigsaw
(Reimpl.)

Colorization
(Reimpl.)

Ac
cu

ra
cy

Places205 Linear Classification from AlexNet conv5

Goyal et al, “Scaling and Benchmarking Self-Supervised Visual Representation Learning”, ICCV 2019

Some papers have tried to do fair comparisons of many SSL methods

Reimplementing 
existing methods can 
slightly change results…

Overall, as of 2019 SSL gave worse 
features than supervised pretraining
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Self-Supervised Learning for Natural Language

59

Image Features:
H x W x C

Input Image

Computer Vision Natural Language Processing

Input Sentence (L words)

A white and gray
cat standing outside
on the grass

Word Features
L x C
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[START] A   white   and    gray    cat     on   some  green grass

Self-Supervised Learning for Natural Language

A     white   and   gray   cat      on  some  green grass  [END]

RNN language models train on raw text – no human labels required!
Their hidden states give features that transfer to many downstream tasks!

Peters et al, “Deep contextualized word representations”, NAACL 2018
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Transformer-based language models work even better! Can scale up to very large 
datasets, and give extremely powerful features that transfer to downstream tasks

Wildly successful: larger models, larger datasets give better features that improve 
performance on many downstream NLP tasks. The dream of SSL made real!

61

[START] A   white   and    gray    cat     on   some  green grass

Self-Supervised Learning for Natural Language

A     white   and   gray   cat      on  some  green grass  [END]

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Radford et al, "Language models are unsupervised multitask learners", 2019
Brown et al, "Language Models are Few-Shot Learners", arXiv 2020
Rae et al, “Scaling Language Models: Methods, Analysis, & Insights from Training Gopher”, arXiv 2021
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This Week: Pathways Language Model (PaLM)

62

Transformer with 118 layers, 48 heads, d_model=18,432, 540B parameters
Dataset: 780 billion tokens; trained on 6144 TPU-v4 chips

NLU = Natural Language 
Understanding (21 benchmarks)

NLG = Natural Language 
Generation (8 benchmarks)

Bigger models 
trained on more data 
tend to give better 
downstream task 
performance

Chowhery et al, “PaLM: Scaling Language Models with Pathways”, 2022



Justin Johnson April 6, 2022Lecture 22 -

This Week: Pathways Language Model (PaLM)

63

Transformer with 118 layers, 48 heads, d_model=18,432, 540B parameters
Dataset: 780 billion tokens; trained on 6144 TPU-v4 chips

NLU = Natural Language 
Understanding (21 benchmarks)

NLG = Natural Language 
Generation (8 benchmarks)

Bigger models 
trained on more data 
tend to give better 
downstream task 
performance

Chowhery et al, “PaLM: Scaling Language Models with Pathways”, 2022

How can we achieve this success in vision? 
Intensified interest in SSL since ~2018
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Exemplar CNN: Invariance to Data Augmentation

64

Quiz: What is this?

Dosovitskiy et al, “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks”
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Exemplar CNN: Invariance to Data Augmentation
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Quiz: What is this?

Dosovitskiy et al, “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks”

Answer: Deer!
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Exemplar CNN: Invariance to Data Augmentation
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Quiz: What is this?

Dosovitskiy et al, “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks”

Answer: Deer!

Different data 
augmentations 
(scale, shift, color 
jitter) of the same 
initial image patch
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Exemplar CNN: Invariance to Data Augmentation
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Dosovitskiy et al, “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks”

Given an initial 
dataset of N 
image patches
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Exemplar CNN: Invariance to Data Augmentation
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Dosovitskiy et al, “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks”

Given an initial 
dataset of N 
image patches

Sample K different 
augmentations for 
each; now have 
K*N total patches



Justin Johnson April 6, 2022Lecture 22 -

Exemplar CNN: Invariance to Data Augmentation
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Dosovitskiy et al, “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks”

Given an initial 
dataset of N 
image patches

Sample K different 
augmentations for 
each; now have 
K*N total patches

CNN

CNN inputs an 
augmented patch
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Exemplar CNN: Invariance to Data Augmentation
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Dosovitskiy et al, “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks”

Given an initial 
dataset of N 
image patches

Sample K different 
augmentations for 
each; now have 
K*N total patches

CNN

CNN inputs an 
augmented patch

Predicts which of the N 
original images it came 
from (N-way classification)
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Exemplar CNN: Invariance to Data Augmentation
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Dosovitskiy et al, “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks”

Given an initial 
dataset of N 
image patches

Sample K different 
augmentations for 
each; now have 
K*N total patches

CNN

CNN inputs an 
augmented patch

Predicts which of the N 
original images it came 
from (N-way classification)

Problem: number 
of parameters in 
final layer depends 
on N; hard to scale
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Contrastive Learning

72

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Assume we don’t have labels for images, but we know 
whether some pairs of images are similar or dissimilar

White kitten image is free for commercial use under the Pixabay license

https://pixabay.com/photos/cat-kitten-pet-kitty-young-cat-551554/
https://pixabay.com/service/license/
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Contrastive Learning
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Assume we don’t have labels for images, but we know 
whether some pairs of images are similar or dissimilar

CNN

White kitten image is free for commercial use under the Pixabay license

CNN

Similar images should have similar features

https://pixabay.com/photos/cat-kitten-pet-kitty-young-cat-551554/
https://pixabay.com/service/license/
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Contrastive Learning
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Assume we don’t have labels for images, but we know 
whether some pairs of images are similar or dissimilar

CNN

White kitten image is free for commercial use under the Pixabay license

CNN

Similar images should have similar features

CNN

CNN

Dissimilar images should have dissimilar features

https://pixabay.com/photos/cat-kitten-pet-kitty-young-cat-551554/
https://pixabay.com/service/license/
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Contrastive Learning
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Assume we don’t have labels for images, but we know 
whether some pairs of images are similar or dissimilar

CNN

White kitten image is free for commercial use under the Pixabay license

CNN

Similar images should have similar features

CNN

CNN

Dissimilar images should have dissimilar features

Let d = 𝜙 𝑥# − 𝜙 𝑥$ $ be the Euclidean distance between features for two images 

https://pixabay.com/photos/cat-kitten-pet-kitty-young-cat-551554/
https://pixabay.com/service/license/
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Contrastive Learning
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Assume we don’t have labels for images, but we know 
whether some pairs of images are similar or dissimilar

CNN

White kitten image is free for commercial use under the Pixabay license

CNN

Similar images should have similar features

CNN

CNN

Dissimilar images should have dissimilar features

Let d = 𝜙 𝑥# − 𝜙 𝑥$ $ be the Euclidean distance between features for two images 

𝐿𝑺 𝑥#, 𝑥$ = 𝑑$
Pull features together

https://pixabay.com/photos/cat-kitten-pet-kitty-young-cat-551554/
https://pixabay.com/service/license/
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Contrastive Learning
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Assume we don’t have labels for images, but we know 
whether some pairs of images are similar or dissimilar

CNN

White kitten image is free for commercial use under the Pixabay license

CNN

Similar images should have similar features

CNN

CNN

Dissimilar images should have dissimilar features

Let d = 𝜙 𝑥# − 𝜙 𝑥$ $ be the Euclidean distance between features for two images 

𝐿𝑺 𝑥#, 𝑥$ = 𝑑$
Pull features together

𝐿𝑫 𝑥#, 𝑥$
= max 0,𝑚 − 𝑑 $

Push features apart
(up to margin m)

https://pixabay.com/photos/cat-kitten-pet-kitty-young-cat-551554/
https://pixabay.com/service/license/
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Contrastive Learning

78

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Assume we don’t have labels for images, but we know 
whether some pairs of images are similar or dissimilar

CNN

White kitten image is free for commercial use under the Pixabay license

CNN

Similar images should have similar features

CNN

CNN

Dissimilar images should have dissimilar features

Let d = 𝜙 𝑥# − 𝜙 𝑥$ $ be the Euclidean distance between features for two images 

𝐿𝑺 𝑥#, 𝑥$ = 𝑑$
Pull features together

𝐿𝑫 𝑥#, 𝑥$
= max 0,𝑚 − 𝑑 $

Push features apart
(up to margin m)

Problem: Where to get 
positive and negative pairs?

https://pixabay.com/photos/cat-kitten-pet-kitty-young-cat-551554/
https://pixabay.com/service/license/
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Contrastive Learning with Data Augmentation
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Tian et al, “Contrastive Multiview Coding”, ECCV 2020
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Batch of 
N images

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020
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Contrastive Learning with Data Augmentation
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Tian et al, “Contrastive Multiview Coding”, ECCV 2020
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Batch of 
N images

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Two augmentations 
for each image

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&
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Contrastive Learning with Data Augmentation
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Tian et al, “Contrastive Multiview Coding”, ECCV 2020
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Batch of 
N images

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Two augmentations 
for each image

Extract 
features

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&
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Contrastive Learning with Data Augmentation
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Tian et al, “Contrastive Multiview Coding”, ECCV 2020
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Batch of 
N images

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Two augmentations 
for each image

Extract 
features

Each image tries to predict which 
of the other 2N-1 images came 
from the same original image

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&
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Contrastive Learning with Data Augmentation
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Tian et al, “Contrastive Multiview Coding”, ECCV 2020
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Batch of 
N images

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Two augmentations 
for each image

Extract 
features

Each image tries to predict which 
of the other 2N-1 images came 
from the same original image

Similarity between 𝑥' and 𝑥(:

𝑠',( =
𝜙 𝑥' *𝜙 𝑥(
𝜙 𝑥' ⋅ 𝜙 𝑥'

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&
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Contrastive Learning with Data Augmentation
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Tian et al, “Contrastive Multiview Coding”, ECCV 2020
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Batch of 
N images

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Two augmentations 
for each image

Extract 
features

Each image tries to predict which 
of the other 2N-1 images came 
from the same original image

Similarity between 𝑥' and 𝑥(:

𝑠',( =
𝜙 𝑥' *𝜙 𝑥(
𝜙 𝑥' ⋅ 𝜙 𝑥'

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

If (𝑥' , 𝑥() is a positive pair, 
then loss for 𝑥' is:

𝐿' = − log
exp 𝑠',(/𝜏

∑+,!
+-'

". exp 𝑠',+/𝜏

(𝜏 is a temperature)
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Contrastive Learning with Data Augmentation
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Tian et al, “Contrastive Multiview Coding”, ECCV 2020
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Batch of 
N images

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Two augmentations 
for each image

Extract 
features

Each image tries to predict which 
of the other 2N-1 images came 
from the same original image

Similarity between 𝑥' and 𝑥(:

𝑠',( =
𝜙 𝑥' *𝜙 𝑥(
𝜙 𝑥' ⋅ 𝜙 𝑥'

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

If (𝑥' , 𝑥() is a positive pair, 
then loss for 𝑥' is:

𝐿' = − log
exp 𝑠',(/𝜏

∑+,!
+-'

". exp 𝑠',+/𝜏

(𝜏 is a temperature)

Interpretation: Cross-entropy 
loss over the other 2N-1 
elements in the batch!
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(Lots of caveats here … different architectures, etc)
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, ICCV 2021



Justin Johnson April 6, 2022Lecture 22 -

46
51.4

44.6

55.4

39.6
48.4

60.6
69.3

76.5
81

0

10

20

30

40

50

60

70

80

90

Exemplar Context
Prediction

Jigsaw Rotation Colorization DeepCluster MoCo
(ResNet50)

SimCLR
(ResNet50)

SimCLR
(ResNet50x4)

Moco-v3
(ViT-BN-L/7)

To
p1

 A
cc

ur
ac

y
ImageNet Linear Classification from SSL Features

87

(Lots of caveats here … different architectures, etc)

Contrastive approaches 
give huge improvements!

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, ICCV 2021
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He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, ICCV 2021 (Lots of caveats here … different architectures, etc)

Improved training, and
swapping ResNet for ViT
further improves results
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Features learned from 
SSL methods match 
supervised pretraining 
on ImageNet

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Chen et al, “Improved Baselines with Momentum Contrastive Learning”, arXiv 2020
Chen and He, “Exploring simple Siamese representation learning”, CVPR 2021
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Masked Autoencoders (MAE)

90

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer
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Masked Autoencoders (MAE)
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He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Divide image into 
nonoverlapping patches, 
discard most of them
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Masked Autoencoders (MAE)
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He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Divide image into 
nonoverlapping patches, 
discard most of them

Encode remaining 
patches with a ViT
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Masked Autoencoders (MAE)
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He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Divide image into 
nonoverlapping patches, 
discard most of them

Encode remaining 
patches with a ViT Decoder is a small ViT

that predicts pixel values 
of the masked patches
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Masked Autoencoders (MAE): Reconstructions

94

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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Masked Autoencoders (MAE): Reconstructions
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Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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Masked Autoencoders (MAE): Reconstructions
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Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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SSL Pretraining, then finetuning for ImageNet Classification
ViT-B ViT-L ViT-H ViT-H-448

MAE Pretraining outperforms training from scratch, and allows scaling to larger ViT models

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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A rant about data…

98

The motivation of SSL is scaling to large data 
that can’t be labeled
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A rant about data…
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The motivation of SSL is scaling to large data 
that can’t be labeled

Most papers pretrain on (unlabeled) 
ImageNet, then evaluate on ImageNet!

Unlabeled ImageNet is still curated: single 
object per image, balanced classes
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A rant about data…
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The motivation of SSL is scaling to large data 
that can’t be labeled

Most papers pretrain on (unlabeled) 
ImageNet, then evaluate on ImageNet!

Unlabeled ImageNet is still curated: single 
object per image, balanced classes

Self-Supervised Learning on larger datasets 
hasn’t been as successful as NLP

74
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88

90
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et

 To
p1

Number of training images

Non-ImageNet data ImageNet data

Caron et al, “Unsupervised pre-training of images features on non-curated data”, ICCV 2019
Chen et al, “Big self-supervised models are strong semi-supervised learners”, NeurIPS 2020
Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Goyal et al, “Self-supervised Pretraining of Visual Features in the Wild”, arXiv 2021
He et al, “Masked Autoencoders are Scalable Vision Learners”, arXiv 2021
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A rant about data…
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The motivation of SSL is scaling to large data 
that can’t be labeled

Most papers pretrain on (unlabeled) 
ImageNet, then evaluate on ImageNet!

Unlabeled ImageNet is still curated: single 
object per image, balanced classes

Self-Supervised Learning on larger datasets 
hasn’t been as successful as NLP

Idea: What if we go beyond isolated images?

74
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 To
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Number of training images

Non-ImageNet data ImageNet data

Caron et al, “Unsupervised pre-training of images features on non-curated data”, ICCV 2019
Chen et al, “Big self-supervised models are strong semi-supervised learners”, NeurIPS 2020
Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Goyal et al, “Self-supervised Pretraining of Visual Features in the Wild”, arXiv 2021
He et al, “Masked Autoencoders are Scalable Vision Learners”, arXiv 2021
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Multimodal Self-Supervised Learning

102

Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames
Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017
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Multimodal Self-Supervised Learning
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Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames
Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video
Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017
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Multimodal Self-Supervised Learning
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Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames
Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video
Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud
Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021
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Multimodal Self-Supervised Learning
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Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames
Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video
Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud
Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021

Language: Image with natural-language text
Sariyildiz et al, “Learning Visual Representations with Caption Annotations”, ECCV 2020
Desai and Johnson, “VirTex: Learning Visual Representations from Textual Annotations”, CVPR 2021
Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021
Desai et al, “RedCaps: Web-curated Image-Text data created by the people, for the people”, NeurIPS 2021
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Why Language?
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1. Semantic density: Just a few 
words give rich information

3. Scalability: Non-experts 
can easily caption images;
data can also be collected 
from the web at scale

2. Universality: Language 
can describe any concept

a dog with his 
head out the 
window of the car

a black and orange 
cat is resting on a 
keyboard and yellow 
back scratcher

Large dataset of 
(image, caption)
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Generating Captions
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Desai and Johnson, “Desai and Johnson, “VirTex: Learning Visual Representations from Textual Annotations”, CVPR 2021
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Generating Captions
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Desai and Johnson, “Desai and Johnson, “VirTex: Learning Visual Representations from Textual Annotations”, CVPR 2021
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Matching Images and Text
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Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021

Contrastive loss: Each 
image predicts which 
caption matches
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Matching Images and Text: CLIP
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Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021

Large-scale training on 
400M (image, text) 
pairs from the internet

Contrastive loss: Each 
image predicts which 
caption matches
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Matching Images and Text: CLIP
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Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Performance continues to 
improve with larger models

Very strong performance on many 
downstream vision problems!



Justin Johnson April 6, 2022Lecture 22 -

CLIP: Zero-Shot Classification
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Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Language enables zero-
shot classification: 
Classify images into 
categories without any 
additional training data!
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CLIP: Zero-Shot Classification
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Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Language enables zero-
shot classification: 
Classify images into 
categories without any 
additional training data!

Problem: CLIP training 
dataset is private; can’t 
reproduce results
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RedCaps: Images and Captions from Reddit
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Data from 350 manually-chosen subreddits
12M high-quality (image, caption) pairs

Desai, Kaul, Aysola, and Johnson, NeurIPS Datasets & Benchmarks Track, 2021
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Self-Supervised Learning (SSL) aims to scale up to larger datasets without human annotation

First train for a pretext task, then transfer to downstream tasks

Many pretext tasks: context prediction, jigsaw, colorization, clustering, rotation

SSL has been wildly successful for language

Intense research on SSL in vision; current best are contrastive, masked autoencoding

Multimodal SSL uses images together with additional context

Multimodal SSL with vision + language has been very successful; seems very promising!
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Next Time:
3D Vision


