
Justin Johnson April 4, 2022Lecture 21 -

Lecture 21:
Visualizing Models

and Generating Images
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Reminder: A5
Recurrent networks, attention, Transformers

We released a minor revision to the starter code today; 
only fixes typos, no functional changes

Autograder will be up today

Due on Tuesday 4/12, 11:59pm ET
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A3 Grades
Released last night

Post regrade requests on Piazza until Monday 4/11
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Last Time: Generative Models

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial 
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)
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Today: Visualizing Networks
and Generating Images
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What’s going on inside Convolutional Networks?

This image is CC0 public domain

Class Scores: 
1000 numbers

Input Image:
3 x 224 x 224

What are the intermediate features looking for?

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NeurIPS 2012.
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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Higher Layers: Visualize Filters
First layer weights: 16 x 3 x 7 x 7

Second layer weights: 
20 x 16 x 7 x 7

Third layer weights:
20 x 20 x 7 x 7

We can visualize 
filters at higher 
layers, but not 
that interesting

Source: ConvNetJS
CIFAR-10 example
https://cs.stanford.edu/people/karpathy
/convnetjs/demo/cifar10.html

9

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NeurIPS 2012.
Figures reproduced with permission.

Last Layer
FC7 layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the 
feature vectors
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Last Layer: Nearest Neighbors
Test 
image L2 Nearest neighbors in feature space

Recall: Nearest 
neighbors in pixel space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NeurIPS 2012.
Figures reproduced with permission.
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Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 
feature vectors by reducing 
dimensionality of vectors from 
4096 to 2 dimensions

Simple algorithm: Principal 
Component Analysis (PCA)

More complex: t-SNE
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Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

See high-resolution versions at  
http://cs.stanford.edu/people/karpathy/cnnembed/
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http://cs.stanford.edu/people/karpathy/cnnembed/


Justin Johnson April 4, 2022Lecture 21 -

Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is 
128x13x13; visualize as 
128 13x13 grayscale 
images
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Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

Run many images through the network, 
record values of chosen channel

Visualize image patches that correspond to 
maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced 
with permission.
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Which Pixels Matter?  
Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, 
check how much predicted probabilities change
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Which pixels matter? Saliency via Backprop

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Which pixels matter? Saliency via Backprop

Dog

Forward pass: Compute probabilities

Compute gradient of (unnormalized) 
class score with respect to image 
pixels, take absolute value and max 
over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Which pixels matter? Saliency via Backprop

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps: Segmentation without Supervision

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Use GrabCut on 
saliency map
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Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. 
one value in 128 x 13 x 13 conv5 
feature map

Compute gradient of neuron value with 
respect to image pixels

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

22



Justin Johnson April 4, 2022Lecture 21 -

Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. 
one value in 128 x 13 x 13 conv5 
feature map

Compute gradient of neuron value with 
respect to image pixels

Images come out nicer if you only 
backprop positive gradients through 
each ReLU (guided backprop)

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
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Intermediate Features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop
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Intermediate Features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Last layer CNN features:
𝑓 ∈ ℝ!×#×$

Pooled features:
𝐹 ∈ ℝ$

Class Scores:
𝑆 ∈ ℝ%

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ$×%
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Last layer CNN features:
𝑓 ∈ ℝ!×#×$

Pooled features:
𝐹 ∈ ℝ$

Class Scores:
𝑆 ∈ ℝ%

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ$×%

𝐹! =
1
𝐻𝑊

&
",$
𝑓",$,! 𝑆% =&

!
𝑤!,%𝐹! =

1
𝐻𝑊

&
!
𝑤!,%&

",$
𝑓",$,!

=
1
𝐻𝑊&

",$
&

!
𝑤!,%𝑓",$,!

30



Justin Johnson April 4, 2022Lecture 21 -

Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Maps:
𝑴 ∈ ℝ𝑪,𝑯,𝑾
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Problem: Can only 
apply to last conv layer
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

1. Pick any layer, with activations 𝐴 ∈ ℝ!×#×$
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

1. Pick any layer, with activations 𝐴 ∈ ℝ!×#×$

2. Compute gradient of class score 𝑆% with respect to A:
𝜕𝑆%
𝜕𝐴

∈ ℝ!×#×$
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

1. Pick any layer, with activations 𝐴 ∈ ℝ!×#×$

2. Compute gradient of class score 𝑆% with respect to A:
𝜕𝑆%
𝜕𝐴

∈ ℝ!×#×$

3. Global Average Pool the gradients to get weights 𝛼 ∈ ℝ$:

𝛼& =
1
𝐻𝑊

+
',)

𝜕𝑆%
𝜕𝐴',),&
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

1. Pick any layer, with activations 𝐴 ∈ ℝ!×#×$

2. Compute gradient of class score 𝑆% with respect to A:
𝜕𝑆%
𝜕𝐴

∈ ℝ!×#×$

3. Global Average Pool the gradients to get weights 𝛼 ∈ ℝ$:

𝛼& =
1
𝐻𝑊

+
',)

𝜕𝑆%
𝜕𝐴',),&

4. Compute activation map 𝑀% ∈ ℝ!,#:

𝑀',)
% = 𝑅𝑒𝐿𝑈 +

&
𝛼&𝐴',),&
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

Can also be applied beyond classification models, e.g. image captioning
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Visualizing CNN Features: Gradient Ascent

(Guided) backprop:
Find the part of an 
image that a neuron 
responds to

Gradient ascent:
Generate a synthetic 
image that maximally 
activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer

41
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Visualizing CNN Features: Gradient Ascent

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image

42
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argmax
!
𝑆" 𝐼 − 𝜆 𝐼 #

#

Visualizing CNN Features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 
L2 norm of generated image
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argmax
!
𝑆" 𝐼 − 𝜆 𝐼 #

#

Visualizing CNN Features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 
L2 norm of generated image

44



Justin Johnson April 4, 2022Lecture 21 -

Visualizing CNN Features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 
L2 norm of generated image

argmax
!
𝑆" 𝐼 − 𝜆 𝐼 #

#
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argmax
!
𝑆" 𝐼 − 𝜆 𝐼 #

#

Visualizing CNN Features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

1. Gaussian blur image
2. Clip pixels with small values to 0
3. Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
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Visualizing CNN Features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

1. Gaussian blur image
2. Clip pixels with small values to 0
3. Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

argmax
!
𝑆" 𝐼 − 𝜆 𝐼 #

#
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Visualizing CNN Features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

1. Gaussian blur image
2. Clip pixels with small values to 0
3. Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

argmax
!
𝑆" 𝐼 − 𝜆 𝐼 #

#
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Visualizing CNN Features: Gradient Ascent
Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

49



Justin Johnson April 4, 2022Lecture 21 -

Visualizing CNN Features: Gradient Ascent
Adding “multi-faceted” visualization gives even nicer results:
(Plus more careful regularization, center-bias)

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 
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Visualizing CNN Features: Gradient Ascent

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 
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Visualizing CNN Features: Gradient Ascent

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
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Adversarial Examples

1.Start from an arbitrary image
2.Pick an arbitrary category
3.Modify the image (via gradient ascent) 

to maximize the class score
4.Stop when the network is fooled

Szegedy et al, “Intriguing properties of neural networks”, 2013
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Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain

54

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Adversarial Attacks and Defense

55

Adversarial Attack: Method for generating adversarial 
examples for a network

Adversarial Defense: Change to network architecture, 
training, etc that make it harder to attack
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Adversarial Attacks and Defense

56

Adversarial Attack: Method for generating adversarial 
examples for a network – Easy

Adversarial Defense: Change to network architecture, 
training, etc that make it harder to attack – Hard 
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Adversarial Attacks

57

White-box attack: We have access 
to the network architecture and 
weights. Can get outputs, gradients 
for arbitrary input images. 

P(elephant) = 0.9
P(cat) = 0.05
…
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Adversarial Attacks

58

White-box attack: We have access 
to the network architecture and 
weights. Can get outputs, gradients 
for arbitrary input images. 

Black-box attack: We don’t know 
network architecture or weights; 
can only get network predictions 
for arbitrary input images

P(elephant) = 0.9
P(cat) = 0.05
…

P(elephant) = 0.9
P(cat) = 0.05
…

Papernot et al, “Transferability in machine learning: from phenomena to black-box attacks using adversarial samples”, 2016
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Adversarial Examples

59

Huge area of research!

Security concern for networks deployed in the wild
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Feature Inversion
Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- “looks natural” (image prior regularization) 

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature 
vector

Features of new 
image

Total Variation 
regularizer (encourages 
spatial smoothness)
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Feature Inversion

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016.
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DeepDream: Amplify Existing Features
Rather than synthesizing an image to maximize a specific neuron, instead 
try to amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 

Networks”, Google Research Blog. Images are licensed under CC-BY 4.0
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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DeepDream: Amplify Existing Features
Rather than synthesizing an image to maximize a specific neuron, instead 
try to amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image
4. Update image Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 

Networks”, Google Research Blog. Images are licensed under CC-BY 4.0

Equivalent to:

𝐼∗ = argmax
'
.
(

𝑓( 𝐼 )
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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Sky image is licensed under CC-BY SA 3.0
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https://commons.wikimedia.org/wiki/File:Appearance_of_sky_for_weather_forecast,_Dhaka,_Bangladesh.JPG
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Image is licensed under CC-BY 3.0
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https://github.com/google/deepdream/blob/master/dream.ipynb
https://creativecommons.org/licenses/by/3.0/us/
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Image is licensed under CC-BY 4.0
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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Image is licensed under CC-BY 4.0
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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Image is licensed under CC-BY 3.0
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https://github.com/google/deepdream/blob/master/dream.ipynb
https://creativecommons.org/licenses/by/3.0/us/
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Image is licensed under CC-BY 4.0
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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Texture Synthesis

Given a sample patch of some texture, can we 
generate a bigger image of the same texture?

Input

Output
Output image is licensed under the MIT license

70

https://github.com/jcjohnson/texture-synthesis
https://github.com/jcjohnson/texture-synthesis/blob/master/LICENSE
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Texture Synthesis: Nearest Neighbor

Output image is licensed under the MIT license

Generate pixels one at a time in scanline order; 
form neighborhood of already generated pixels 
and copy nearest neighbor from input

Wei and Levoy, “Fast Texture Synthesis using Tree-structured Vector Quantization”, SIGGRAPH 2000
Efros and Leung, “Texture Synthesis by Non-parametric Sampling”, ICCV 1999
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https://github.com/jcjohnson/texture-synthesis
https://github.com/jcjohnson/texture-synthesis/blob/master/LICENSE
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Texture Synthesis: Nearest Neighbor

Images licensed under the MIT license
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https://github.com/jcjohnson/texture-synthesis/blob/master/examples.md
https://github.com/jcjohnson/texture-synthesis/blob/master/LICENSE
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Texture Synthesis with Neural Networks: Gram Matrix

Each layer of CNN gives C x H x W tensor of 
features; H x W grid of C-dimensional vectors

This image is in the public domain.
w

H

C

𝐹ℓ ∈ ℝ+×!×#
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https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg
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Texture Synthesis with Neural Networks: Gram Matrix

Each layer of CNN gives C x H x W tensor of 
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 
gives C x C matrix of elementwise products

This image is in the public domain.
w

H C

C

𝐹ℓ ∈ ℝ+×!×#
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https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg
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Texture Synthesis with Neural Networks: Gram Matrix

Each layer of CNN gives C x H x W tensor of 
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 
gives C x C matrix of elementwise products

Average over all HW pairs gives Gram Matrix
of shape C x C  giving unnormalized covariance

This image is in the public domain.
w

H C

C

𝐹ℓ ∈ ℝ+×!×#

𝐺ℓ ∈ ℝ+×+

𝐺%,%!
ℓ =+

',)
𝐹%,',)ℓ 𝐹%!,',)

ℓ
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https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg
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Texture Synthesis with Neural Networks: Gram Matrix

Each layer of CNN gives C x H x W tensor of 
features; H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors 
gives C x C matrix of elementwise products

Average over all HW pairs gives Gram Matrix
of shape C x C  giving unnormalized covariance

This image is in the public domain.
w

H C

Efficient to compute; 
reshape features from

C x H x W to  F = C x HW

then compute G = FFT

C
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https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg
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Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run texture forward through CNN, 

record activations on every layer; layer i
gives features 𝐹ℓ ∈ ℝ"!×$!×%!

3. At each layer compute the Gram matrix
giving outer product of features:

𝐺&,&"
ℓ =1

(,)
𝐹&,(,)ℓ 𝐹&",(,)

ℓ ∈ ℝ"ℓ×"ℓ

4. Initialize generated image from 
random noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5
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distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run texture forward through CNN, 

record activations on every layer; layer i
gives features 𝐹ℓ ∈ ℝ"!×$!×%!

3. At each layer compute the Gram matrix
giving outer product of features:
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4. Initialize generated image from 
random noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run texture forward through CNN, 

record activations on every layer; layer i
gives features 𝐹ℓ ∈ ℝ"!×$!×%!

3. At each layer compute the Gram matrix
giving outer product of features:

𝐺&,&"
ℓ =1

(,)
𝐹&,(,)ℓ 𝐹&",(,)
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4. Initialize generated image from 
random noise

5. Pass generated image through CNN, 
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6. Compute loss: weighted sum of L2 
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run texture forward through CNN, 

record activations on every layer; layer i
gives features 𝐹ℓ ∈ ℝ"!×$!×%!

3. At each layer compute the Gram matrix
giving outer product of features:

𝐺&,&"
ℓ =1

(,)
𝐹&,(,)ℓ 𝐹&",(,)

ℓ ∈ ℝ"ℓ×"ℓ

4. Initialize generated image from 
random noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

𝐸ℓ =
1

4𝑁ℓ"𝑀ℓ
"0
#,#

𝐺#,#!
ℓ − 3𝐺#,#!

ℓ " 𝐿 =0
ℓ%&

'

𝑤ℓ𝐸ℓ
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Neural Texture Synthesis
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#,#
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Neural Texture 
Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015

Reconstructing texture 
from higher layers 
recovers larger features 
from the input texture
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Neural Texture Synthesis: Texture = Artwork

Texture 
synthesis (Gram 
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. 
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Neural Style Transfer: Feature + Gram Reconstruction

Texture 
synthesis (Gram 
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. 

Feature 
reconstruction
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Neural Style Transfer

Content Image Style Image

+

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

=

Output Image

Match features 
from content 

image and Gram 
matrices from 

style image
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https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
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Neural Style Transfer

Content Image Style Image

+

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain

=

This image copyright Justin Johnson, 2015. Reproduced with 
permission.

Output Image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
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https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://github.com/jcjohnson/neural-style
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Style 
image

Output 
image

(Start with 
noise)

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. 

Content 
image

88



Justin Johnson April 4, 2022Lecture 21 -

Style 
image

Output 
image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. 

Content 
image

89
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Neural Style Transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.

Example outputs 
from my 
implementation
(in Lua Torch)

91

https://github.com/jcjohnson/neural-style
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Neural Style Transfer

More weight to
content loss

More weight to
style loss
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Neural Style Transfer

Larger style image Smaller style image

Resizing style image before running style transfer 
algorithm can transfer different types of features

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.
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Neural Style Transfer: 
Multiple Style Images

Mix style from 
multiple images by 
taking a weighted 
average of Gram 
matrices

Gatys, Ecker, and Bethge, “Image style transfer using 
convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.
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Neural Style Transfer

Problem: Style transfer requires 
many forward / backward 
passes through VGG; very slow!
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Neural Style Transfer

Problem: Style transfer requires 
many forward / backward 
passes through VGG; very slow!

Solution: Train another neural 
network to perform style 
transfer for us!
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Fast Neural Style Transfer

10
1

(1) Train a feedforward network for each style
(2) Use pretrained CNN to compute same losses as before
(3) After training, stylize images using a single forward pass

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016
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Fast Neural Style Transfer

Slow SlowFast Fast

https://github.com/jcjohnson/fast-neural-style
Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016
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https://github.com/jcjohnson/fast-neural-style
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Ulyanov et al, “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images”, ICML 2016
Ulyanov et al, “Instance Normalization: The Missing Ingredient for Fast Stylization”, arXiv 2016

Replacing batch 
normalization with 
Instance Normalization 
improves results

Fast Neural Style Transfer
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One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017. 
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One Network, Many Styles

Dumoulin, Shlens, and Kudlur, “A Learned Representation for Artistic Style”, ICLR 2017. 

Use the same network for multiple 
styles using conditional instance 
normalization: learn separate scale 
and shift parameters per style

Single network can blend styles after training
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Summary

Many methods for understanding CNN representations

Activations: Nearest neighbors, Dimensionality reduction, 
maximal patches, occlusion, CAM
Gradients: Grad-CAM, Saliency maps, class visualization, 
adversarial examples, feature inversion
Fun: DeepDream, Style Transfer.
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Next Time:
Self-Supervised Learning


