
Justin Johnson March 30, 2022Lecture 20 -

Lecture 20:
Generative Models, Part 2

1

Justin Johnson March 30, 2022Lecture 20 -

Admin: A4
A4 due yesterday, many people still working

2

Justin Johnson March 30, 2022Lecture 20 -

Admin: A5
A5 Released last night

Recurrent networks, image captioning, Transformers

Due Tuesday April 12th at 11:59pm ET

3

Justin Johnson March 30, 2022Lecture 20 -

Admin: Project Proposal
If you want to propose your own project:

Need to submit a project proposal by tomorrow, 4/1 on Piazza

4

Justin Johnson March 30, 2022Lecture 20 -

Last Time: Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
5

Justin Johnson March 30, 2022Lecture 20 -

Last Time: Discriminative vs Generative Models

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Data: x

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density Function
p(x) assigns a positive number
to each possible x; higher
numbers mean x is more likely

Density functions
are normalized:

Different values of x
compete for density

P(cat|.)

P(dog|.)

6

Justin Johnson March 30, 2022Lecture 20 -

Last Time: Discriminative vs Generative Models

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

P(cat|)
P(dog|)

Discriminative model: No way for the model
to handle unreasonable inputs; it must give
label distributions for all images

Monkey image is CC0 Public Domain

P(cat|)

P(dog|)

7

https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321

Justin Johnson March 30, 2022Lecture 20 -

Last Time: Discriminative vs Generative Models

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Generative model: All possible images compete
with each other for probability mass

Requires deep image understanding! Is a dog more likely to
sit or stand? How about 3-legged dog vs 3-armed monkey?

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P()

P()

P()
P()

…

8

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson March 30, 2022Lecture 20 -

Last Time: Discriminative vs Generative Models

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

We can build a conditional generative
model from other components!

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

Conditional
Generative Model

Discriminative Model

Prior over labels

(Unconditional)
Generative Model

9

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson March 30, 2022Lecture 20 -

Last Time: Taxonomy of Generative Models

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow
- Ffjord

Model does not explicitly
compute p(x), but can
sample from p(x)

Model can
compute p(x)

Can compute
approximation to p(x)

We will talk
about these

10

Justin Johnson March 30, 2022Lecture 20 -

Last Time: Autoregressive Models

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Explicit Density Function
𝑝 𝑥 = 𝑝 𝑥", 𝑥#, 𝑥$, … , 𝑥%

= 𝑝 𝑥" 𝑝 𝑥# 𝑥")𝑝 𝑥$ 𝑥", 𝑥#)…
= ∏&'"

% 𝑝 𝑥& 𝑥", … , 𝑥&(")

Train by maximizing
log-likelihood of
training data

PixelRNN

PixelCNN

11

Justin Johnson March 30, 2022Lecture 20 -

Last Time: Variational Autoencoders

log 𝑝) 𝑥 ≥𝐸*~,!(*|/)[log 𝑝)(𝑥|𝑧)] − 𝐷12 𝑞3 𝑧 𝑥 , 𝑝 𝑧

Jointly train encoder q and decoder p to maximize
the variational lower bound on the data likelihood

𝑝! 𝑥 | 𝑧 = 𝑁(𝜇"|$, Σ"|$)𝑞% 𝑧 | 𝑥 = 𝑁(𝜇$|" , Σ$|")
Encoder Network Decoder Network

12

Justin Johnson March 30, 2022Lecture 20 -

Example: Fully-Connected VAE
x: 28x28 image, flattened to 784-dim vector
z: 20-dim vector

x: 784

𝑝! 𝑥 | 𝑧 = 𝑁(𝜇"|$, Σ"|$)𝑞% 𝑧 | 𝑥 = 𝑁(𝜇$|" , Σ$|")
Encoder Network Decoder Network

Linear(784->400)

Linear(400->20) Linear(400->20)

μz|x: 20 ∑z|x: 20

z: 20

Linear(20->400)

Linear(400->768) Linear(400->768)

μx|z: 768 ∑x|z: 768

13

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Input
Data

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

14

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Input
Data

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

15

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Input
Data

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!

16

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Input
Data

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!

−𝐷!" 𝑞# 𝑧 𝑥 , 𝑝 𝑧 = .
$
𝑞# 𝑧 𝑥 log

𝑝 𝑧
𝑞# 𝑧 𝑥

𝑑𝑧

= .
$
𝑁 𝑧; 𝜇%|', Σ%|' log

𝑁 𝑧; 0, 𝐼
𝑁 𝑧; 𝜇%|', Σ%|'

𝑑𝑧

=
1
2
;

()*

+
1 + log Σ%|' (

,
− 𝜇%|' (

,
− Σ%|' (

,

Closed form solution when
𝑞! is diagonal Gaussian and
p is unit Gaussian!
(Assume z has dimension J)

17

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Input
Data

Latent
code

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output

18

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Input
Data

Decoder

Latent
code

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a

distribution over data samples

19

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Input
Data

Decoder

Latent
code

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a

distribution over data samples
5. Original input data should be likely under

the distribution output from (4)!

20

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Sample x from

Input
Data

Decoder

Latent
code

Reconstructed
data

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the
variational lower bound

1. Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a

distribution over data samples
5. Original input data should be likely under

the distribution output from (4)!
6. Can sample a reconstruction from (4)

21

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders: Generating Data

Sample z from
prior p(z)

Latent
code

After training we can
generate new data!

1. Sample z from prior p(z)

22

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders: Generating Data

Sample z from
prior p(z)

Decoder

Latent
code

After training we can
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to

get distribution over data x

23

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders: Generating Data

Sample z from
prior p(z)

Sample x from
Decoder

Latent
code

Sampled
data

After training we can
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to

get distribution over data x
3. Sample from distribution in (2) to

generate data

24

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders: Generating Data
32x32 CIFAR-10 Labeled Faces in the Wild

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017.

25

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Vary z1

Vary z2

The diagonal prior on p(z) causes
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

26

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Input
Data

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

27

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Input
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output

28

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Input
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code

Modified code

29

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Input
Data

Decoder

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a

distribution over data sample

Modified code

30

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Sample x from

Input
Data

Decoder

Latent code

Edited
data

Encoder

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a

distribution over data samples
5. Sample new data from (4)

Modified code

31

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Vary z1

Degree of smile

Vary z2

Head pose

The diagonal prior on p(z) causes
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

32

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders: Image Editing

Kulkarni et al, “Deep Convolutional Inverse Graphics Networks”, NeurIPS 2014

33

Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoder: Summary
Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal

Gaussian, e.g., Gaussian Mixture Models (GMMs)
- Incorporating structure in latent variables, e.g., Categorical Distributions

34

Justin Johnson March 30, 2022Lecture 20 -

So far: Two types of generative models

Variational models
- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Autoregressive models
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

35

Justin Johnson March 30, 2022Lecture 20 -

So far: Two types of generative models

Variational models
- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Autoregressive models
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

Can we combine them and get the best of both worlds?

36

Justin Johnson March 30, 2022Lecture 20 -

Combining VAE + Autoregressive:
Vector-Quantized Variational Autoencoder (VQ-VAE2)
Train a VAE-like model to generate
multiscale grids of latent codes

Use a multiscale PixelCNN to
sample in latent code space

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

37

Justin Johnson March 30, 2022Lecture 20 -

Combining VAE + Autoregressive: VQ-VAE2

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

256 x 256 class-conditional samples, trained on ImageNet

38

Justin Johnson March 30, 2022Lecture 20 -

Combining VAE + Autoregressive: VQ-VAE2

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

256 x 256 class-conditional samples, trained on ImageNet

Spotted Salamander

Drake

Papillon

Pekinese

Redshank

39

Justin Johnson March 30, 2022Lecture 20 -

Combining VAE + Autoregressive: VQ-VAE2

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

1024 x 1024 generated faces, trained on FFHQ

40

Justin Johnson March 30, 2022Lecture 20 -

Combining VAE + Autoregressive: VQ-VAE2

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

1024 x 1024 generated faces, trained on FFHQ

41

Justin Johnson March 30, 2022Lecture 20 -

Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

𝑝" 𝑥 =%
#$%

&

𝑝"(𝑥#|𝑥%, … , 𝑥#'%)

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝" 𝑥 = +
(
𝑝" 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸)~+! 𝑧 𝑥 [log 𝑝"(𝑥|𝑧)] − 𝐷,- 𝑞! 𝑧 𝑥 , 𝑝 𝑧

Generative Adversarial Networks give up on modeling p(x), but allow us to
draw samples from p(x)

42

Justin Johnson March 30, 2022Lecture 20 -

Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

𝑝" 𝑥 =%
#$%

&

𝑝"(𝑥#|𝑥%, … , 𝑥#'%)

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝" 𝑥 = +
(
𝑝" 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸)~+! 𝑧 𝑥 [log 𝑝"(𝑥|𝑧)] − 𝐷,- 𝑞! 𝑧 𝑥 , 𝑝 𝑧

Generative Adversarial Networks give up on modeling p(x), but allow us to
draw samples from p(x)

43

Justin Johnson March 30, 2022Lecture 20 -

Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

𝑝" 𝑥 =%
#$%

&

𝑝"(𝑥#|𝑥%, … , 𝑥#'%)

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝" 𝑥 = +
(
𝑝" 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸)~+! 𝑧 𝑥 [log 𝑝"(𝑥|𝑧)] − 𝐷,- 𝑞! 𝑧 𝑥 , 𝑝 𝑧

Generative Adversarial Networks give up on modeling p(x), but allow us to
draw samples from p(x)

44

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

45

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).
Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pG. Want pG = pdata!

46

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).
Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample
z from pz

z

Generator
Network

G

Generated
Sample

Train Generator Network G to convert
z into fake data x sampled from pG

47

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).
Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample
z from pz

z

Generator
Network

G

Generated
Sample

D

Discriminator
Network

Fake

Real Sample

Real
Train Discriminator Network D to
classify data as real or fake (1/0)

Train Generator Network G to convert
z into fake data x sampled from pG
by ”fooling” the discriminator D

48

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).
Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample
z from pz

z

Generator
Network

G

Generated
Sample

D

Discriminator
Network

Fake

Real Sample

Real
Train Discriminator Network D to
classify data as real or fake (1/0)

Train Generator Network G to convert
z into fake data x sampled from pG
by ”fooling” the discriminator D

Jointly train G and
D. Hopefully pG
converges to pdata!

49

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

50

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Sample
z from pz

z

Generator
Network

G

Generated
Sample

D

Discriminator
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game

51

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Discriminator wants
D(x) = 1 for real data

Sample
z from pz

z

Generator
Network

G

Generated
Sample

D

Discriminator
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game

52

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Discriminator wants
D(x) = 1 for real data

Discriminator wants
D(x) = 0 for fake data

Sample
z from pz

z

Generator
Network

G

Generated
Sample

D

Discriminator
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game

53

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Discriminator wants
D(x) = 1 for real data

Discriminator wants
D(x) = 0 for fake data

Generator wants
D(x) = 1 for fake dataSample

z from pz
z

Generator
Network

G

Generated
Sample

D

Discriminator
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game

54

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

55

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

= min
𝑮
max
𝑫

𝑽(𝑮,𝑫)

Train G and D using alternating gradient updates

56

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

= min
𝑮
max
𝑫

𝑽(𝑮,𝑫) For t in 1, … T:
1. (Update D) 𝑫 = 𝑫+ 𝛼𝑫

:𝑽
:𝑫

2. (Update G) 𝑮 = 𝑮 − 𝛼𝑮
:𝑽
:𝑮

Train G and D using alternating gradient updates

57

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

= min
𝑮
max
𝑫

𝑽(𝑮,𝑫) For t in 1, … T:
1. (Update D) 𝑫 = 𝑫+ 𝛼𝑫

:𝑽
:𝑫

2. (Update G) 𝑮 = 𝑮 − 𝛼𝑮
:𝑽
:𝑮

Train G and D using alternating gradient updates

We are not minimizing any overall
loss! No training curves to look at!

58

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

At start of training, generator is very bad
and discriminator can easily tell apart
real/fake, so D(G(z)) close to 0

59

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

At start of training, generator is very bad
and discriminator can easily tell apart
real/fake, so D(G(z)) close to 0
Problem: Vanishing gradients for G

60

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

At start of training, generator is very bad
and discriminator can easily tell apart
real/fake, so D(G(z)) close to 0
Problem: Vanishing gradients for G
Solution: Right now G is trained to
minimize log(1-D(G(z)). Instead, train G to
minimize –log(D(G(z)). Then G gets strong
gradients at start of training!

61

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

This minimax game achieves its global minimum when pG = pdata!

Why is this particular objective a good idea?

62

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

(Our objective so far)

63

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~60 log 1 − 𝐷 𝑥

(Change of variables on second term)

64

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~60 log 1 − 𝐷 𝑥

= min
4
max
5

!
!

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

(Definition of expectation)

65

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~60 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

(Push maxD inside integral)

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

𝑓 𝑦 = 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦

(Side computation to compute max)

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

𝑓 𝑦 = 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦

𝑓>(𝑦) =
𝑎
𝑦
−

𝑏
1 − 𝑦

68

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

𝑓 𝑦 = 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦

𝑓>(𝑦) =
𝑎
𝑦
−

𝑏
1 − 𝑦

𝑓> 𝑦 = 0 ⟺ 𝑦 = =
=?@

(local max)

69

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

𝑓 𝑦 = 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦

Optimal Discriminator: 𝐷4∗ 𝑥 = 6-./.(/)
6-./. / ?60(/)

𝑓>(𝑦) =
𝑎
𝑦
−

𝑏
1 − 𝑦

𝑓> 𝑦 = 0 ⟺ 𝑦 = =
=?@

(local max)

70

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

Optimal Discriminator: 𝐷4∗ 𝑥 = 6-./.(/)
6-./. / ?60(/)

71

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!

𝑝<=&= 𝑥 log𝐷4∗ 𝑥 + 𝑝4 𝑥 log 1 − 𝐷4∗ 𝑥 𝑑𝑥

Optimal Discriminator: 𝐷4∗ 𝑥 = 6-./.(/)
6-./. / ?60(/)

72

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!

𝑝<=&= 𝑥 log𝐷4∗ 𝑥 + 𝑝4 𝑥 log 1 − 𝐷4∗ 𝑥 𝑑𝑥

Optimal Discriminator: 𝐷4∗ 𝑥 = 6-./.(/)
6-./. / ?60(/)

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥

73

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥

74

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥

= min
=

𝐸"~C!"#" log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

(Definition of expectation)

75

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥

= min
=

𝐸"~C!"#" log
2
2

𝑝?@A@(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

+ 𝐸"~C$ log
2
2

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

(Multiply by a constant)

76

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

𝐸"~C!"#" log
2
2

𝑝?@A@(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

+ 𝐸"~C$ log
2
2

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

77

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

78

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

Kullback-Leibler Divergence:

𝐾𝐿 𝑝, 𝑞 = 𝐸"~C log
𝑝(𝑥)
𝑞(𝑥)

79

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

Kullback-Leibler Divergence:

𝐾𝐿 𝑝, 𝑞 = 𝐸"~C log
𝑝(𝑥)
𝑞(𝑥)

80

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

Kullback-Leibler Divergence:

𝐾𝐿 𝑝, 𝑞 = 𝐸"~C log
𝑝(𝑥)
𝑞(𝑥)

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

81

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

82

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

Jensen-Shannon Divergence:

𝐽𝑆𝐷 𝑝, 𝑞 =
1
2
𝐾𝐿 𝑝,

𝑝 + 𝑞
2

+
1
2
𝐾𝐿 𝑞,

𝑝 + 𝑞
2

83

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

Jensen-Shannon Divergence:

𝐽𝑆𝐷 𝑝, 𝑞 =
1
2
𝐾𝐿 𝑝,

𝑝 + 𝑞
2

+
1
2
𝐾𝐿 𝑞,

𝑝 + 𝑞
2

84

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

Jensen-Shannon Divergence:

𝐽𝑆𝐷 𝑝, 𝑞 =
1
2
𝐾𝐿 𝑝,

𝑝 + 𝑞
2

+
1
2
𝐾𝐿 𝑞,

𝑝 + 𝑞
2

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

85

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

Jensen-Shannon Divergence:

𝐽𝑆𝐷 𝑝, 𝑞 =
1
2
𝐾𝐿 𝑝,

𝑝 + 𝑞
2

+
1
2
𝐾𝐿 𝑞,

𝑝 + 𝑞
2

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

JSD is always nonnegative, and zero only
when the two distributions are equal!
Thus pdata = pG is the global min, QED

86

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

87

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

Summary: The global minimum of the minimax game happens when:
1. 𝐷=∗ 𝑥 = C!"#" "

C!"#" " EC$(")
(Optimal discriminator for any G)

2. 𝑝= 𝑥 = 𝑝?@A@(𝑥) (Optimal generator for optimal D)

88

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

Summary: The global minimum of the minimax game happens when:
1. 𝐷=∗ 𝑥 = C!"#" "

C!"#" " EC$(")
(Optimal discriminator for any G)

2. 𝑝= 𝑥 = 𝑝?@A@(𝑥) (Optimal generator for optimal D)

Caveats:
1. G and D are neural nets with fixed architecture. We don’t know

whether they can actually represent the optimal D and G.
2. This tells us nothing about convergence to the optimal solution

89

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Results

Nearest neighbor from training set

Generated samples

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

90

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: DC-GAN

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator

91

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: DC-GAN

Radford et al,
ICLR 2016

Samples
from the
model
look
much
better!

92

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Interpolation

Radford et al,
ICLR 2016

Interpolating
between
points in
latent z
space

93

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Smiling
woman

Neutral
woman

Neutral
man

Samples
from the
model

94

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Smiling
woman

Neutral
woman

Neutral
man

Samples
from the
model

Average Z
vectors, do
arithmetic

95

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Smiling
woman

Neutral
woman

Neutral
man

Smiling ManSamples
from the
model

Average Z
vectors, do
arithmetic

96

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Man with
glasses

Man w/o
glasses

Woman
w/o glasses

Samples
from the
model

Average Z
vectors, do
arithmetic

97

Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Man with
glasses

Man w/o
glasses

Woman
w/o glasses

Woman with
glassesSamples

from the
model

Average Z
vectors, do
arithmetic

98

Justin Johnson March 30, 2022Lecture 20 -

2017 to present: Explosion of GANs

https://github.com/hindupuravinash/the-gan-zoo

99

https://github.com/hindupuravinash/the-gan-zoo

Justin Johnson March 30, 2022Lecture 20 -

GAN Improvements: Improved Loss Functions

Arjovsky, Chintala, and Bouttou, “Wasserstein GAN”, 2017

Wasserstein GAN (WGAN) WGAN with Gradient Penalty
(WGAN-GP)

Gulrajani et al, “Improved Training of
Wasserstein GANs”, NeurIPS 2017

100

Justin Johnson March 30, 2022Lecture 20 -

GAN Improvements: Higher Resolution
256 x 256 bedrooms 1024 x 1024 faces

Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

101

Justin Johnson March 30, 2022Lecture 20 -

GAN Improvements: Higher Resolution
512 x 384 cars 1024 x 1024 faces

Karras et al, “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019 Images are licensed under CC BY-NC 4.0

102

https://github.com/NVlabs/stylegan
https://creativecommons.org/licenses/by-nc/4.0/

Justin Johnson March 30, 2022Lecture 20 -

Karras et al, “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019
Video is licensed under CC BY-NC 4.0.
Source: https://drive.google.com/drive/folders/1NFO7_vH0t98J13ckJYFd7kuaTkyeRJ86

103

https://creativecommons.org/licenses/by-nc/4.0/
https://drive.google.com/drive/folders/1NFO7_vH0t98J13ckJYFd7kuaTkyeRJ86

Justin Johnson March 30, 2022Lecture 20 -

StyleGAN2

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020

104

Justin Johnson March 30, 2022Lecture 20 -

Conditional GANs
Recall: Conditional Generative Models learn p(x|y) instead of p(x)
Make generator and discriminator both take label y as an additional input!

z

y

Figure credit: Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

105

Justin Johnson March 30, 2022Lecture 20 -

Conditional GANs: Conditional Batch Normalization

Dumoulin et al, “A learned representation for artistic style”, ICLR 2017

Batch Normalization

𝜇. =
1
𝑁
A
#$%

&

𝑥#,.

𝜎.0 =
1
𝑁
A
#$%

&

𝑥#,. − 𝜇.
0

C𝑥#,. =
𝑥#,. − 𝜇.

𝜎.0 + 𝜖

𝑦#,. = 𝛾. C𝑥#,. + 𝛽.

Conditional Batch Normalization

𝜇. =
1
𝑁
A
#$%

&

𝑥#,.

𝜎.0 =
1
𝑁
A
#$%

&

𝑥#,. − 𝜇.
0

C𝑥#,. =
𝑥#,. − 𝜇.

𝜎.0 + 𝜖

𝑦#,. = 𝜸𝒋
𝒚 C𝑥#,. + 𝜷𝒋

𝒚

Learn a separate
scale and shift
for each
different label y

106

Justin Johnson March 30, 2022Lecture 20 -

Conditional GANs: Spectral Normalization

Miyato et al, “Spectral Normalization for Generative Adversarial Networks”, ICLR 2018 128x128 images on ImageNet

107

Justin Johnson March 30, 2022Lecture 20 -

Conditional GANs: Self-Attention

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2019 128x128 images on ImageNet

Goldfish

Indigo
bunting

Redshank

Saint
Bernard

108

Justin Johnson March 30, 2022Lecture 20 -

Conditional GANs: BigGAN

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019 512x512 images on ImageNet

109

Justin Johnson March 30, 2022Lecture 20 -

Generating Videos with GANs

128x128 images, 12 frames
https://drive.google.com/file/d/165Yxuvvu3viOy-39LhhSDGtczbWphj_i/view

64x64 images, 48 frames
https://drive.google.com/file/d/1FjOQYdUuxPXvS8yeOhXdPQMapUQaklLi/view

Clark et al, “Adversarial Video
Generation on Complex
Datasets”, arXiv 2019

110

https://drive.google.com/file/d/165Yxuvvu3viOy-39LhhSDGtczbWphj_i/view
https://drive.google.com/file/d/1FjOQYdUuxPXvS8yeOhXdPQMapUQaklLi/view

Justin Johnson March 30, 2022Lecture 20 -

Label Map to Image Input: Label Map

Input:
Style
Image

Park et al, “Semantic Image Synthesis with Spatially-Adaptive Normalization”, CVPR 2019

111

Justin Johnson March 30, 2022Lecture 20 -

Label Map to Image Input: Label Map

Input:
Style
Image

Park et al, “Semantic Image Synthesis with Spatially-Adaptive Normalization”, CVPR 2019

112

Justin Johnson March 30, 2022Lecture 20 -

Conditioning on more than labels! Text to Image

Zhang et al, “StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.”, TPAMI 2018
Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks.”, ICCV 2017
Reed et al, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016

113

Justin Johnson March 30, 2022Lecture 20 -

Text to Image: DALL-E

Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021

114

Step 1: Train VQ-VAE (discrete
grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt,
sample new image codes; pass
through VQ-VAE decoder to
generate images

Justin Johnson March 30, 2022Lecture 20 -

Text to Image: DALL-E

Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021

115

Step 1: Train VQ-VAE (discrete
grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt,
sample new image codes; pass
through VQ-VAE decoder to
generate images an illustration of a baby hedgehog in

a christmas sweater walking a dog

Justin Johnson March 30, 2022Lecture 20 -

Text to Image: DALL-E

Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021

116

Step 1: Train VQ-VAE (discrete
grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt,
sample new image codes; pass
through VQ-VAE decoder to
generate images a neon sign that reads “backprop”. a neon sign

that reads “backprop”. backprop neon sign

Justin Johnson March 30, 2022Lecture 20 -

VQ-GAN

117

Esser et al, “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021

Justin Johnson March 30, 2022Lecture 20 -

VQ-GAN (Semantic Segmentation to Image)

118

Esser et al, “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021

Justin Johnson March 30, 2022Lecture 20 -

Image Super-Resolution: Low-Res to High-Res

Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2017

119

Justin Johnson March 30, 2022Lecture 20 -

Image-to-Image Translation: Pix2Pix

Isola et al, “Image-to-Image Translation with Conditional Adversarial Nets”, CVPR 2017

120

Justin Johnson March 30, 2022Lecture 20 -

Unpaired Image-to-Image Translation: CycleGAN

Zhu et al, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017

121

Justin Johnson March 30, 2022Lecture 20 -

Unpaired Image-to-Image Translation: CycleGAN

Zhu et al, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017

https://www.youtube.com/watch?v=9reHvktowLY

Input Video: Horse Output Video: Zebra

122

https://www.youtube.com/watch?v=9reHvktowLY

Justin Johnson March 30, 2022Lecture 20 -

GANs: Not just for images! Trajectory Prediction

Gupta, Johnson, Li, Savarese, Alahi, “Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks”, CVPR 2018

123

Justin Johnson March 30, 2022Lecture 20 -

GAN Summary

Jointly train two networks:
Discriminator: Classify data as real or fake
Generator: Generate data that fools the discriminator

Sample
z from pz

z

Generator
Network

G

Generated
Sample

D

Discriminator
Network

Fake

Real

Under some assumptions, generator converges to true data distribution
Many applications! Very active area of research!

124

Justin Johnson March 30, 2022Lecture 20 -

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow
- Ffjord

Model does not explicitly
compute p(x), but can
sample from p(x)

Model can
compute p(x)

Can compute
approximation to p(x)

We will talk
about these

125

Justin Johnson March 30, 2022Lecture 20 -

Generative Models Summary
Autoregressive Models directly maximize likelihood of training data:

𝑝" 𝑥 =%
#$%

&

𝑝"(𝑥#|𝑥%, … , 𝑥#'%)

Good image quality, can evaluate with perplexity. Slow to generate data, needs
tricks to scale up.

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝" 𝑥 = +
(
𝑝" 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸)~+! 𝑧 𝑥 [log 𝑝"(𝑥|𝑧)] − 𝐷,- 𝑞! 𝑧 𝑥 , 𝑝 𝑧

Latent z allows for powerful interpolation and editing applications.

Generative Adversarial Networks give up on modeling p(x), but allow us to
draw samples from p(x). Difficult to evaluate, but best qualitative results today

126

Justin Johnson March 30, 2022Lecture 20 -

Next Time:
Visualizing Models and

Generating Images

127

