Lecture 20:
Generative Models, Part 2
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Admin: A4

A4 due yesterday, many people still working
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Admin: A5

A5 Released last night
Recurrent networks, image captioning, Transformers

Due Tuesday April 12th at 11:59pm ET
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Admin: Project Proposal

If you want to propose your own project:

Need to submit a project proposal by tomorrow, 4/1 on Piazza
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Last Time: Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->vy

Examples: Classification, regression,

object detection, semantic

segmentation, image captioning, etc.

Justin Johnson

Lecture 20 -

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Last Time: Discriminative vs Generative I\/Iodels

Discriminative Model:

Learn a probability
distribution p(y|x)

Generative Model: Density functions
Learn a probability are normalized:

distribution p(x) Den5|ty.Funct|on. |
p(x) assigns a positive number

to each possible x; higher

Conditional Generative numbers mean x is more likely X

Model: Learn p(X | y) Different values of x
compete for density

p(x)dx =1
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Last Time: Discriminative vs Generative Models

Discriminative Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Discriminative model: No way for the model
to handle unreasonable inputs; it must give
label distributions for all images

Conditional Generative
Model: Learn p(x|y)
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https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:

Learn a probability
distribution p(x)

Generative model: All possible images compete
with each other for probability mass

Conditional Generative
Model: Learn p(x]|y) Requires deep image understanding! Is a dog more likely to

sit or stand? How about 3-legged dog vs 3-armed monkey?
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Last Time: Discriminative vs Generative Models

’ .
Discriminative Model: Recall Bayes Rule:

Learn a probability

distribution p(ny) (Uncon.ditional)
Generative Model
Py %)
Generative Model: P(X | y) P( ) P(X)
Learn a probability Conditional Y
distribution p(x) Generative Model Prior over labels

We can build a conditional generative
model from other components!

Conditional Generative

Model: Learn p(x|y)
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Last Time: Taxonomy of Generative Models

Model does not explicitly
Model can Generative models compute p(x), but can

compute p(x% \sainple from p(x)

Explicit density Can compute Implicit density

/ wimation to p(x) /\

Tractable density Approximate density Markov Chain Direct
Can_compute p(x) GSN Generative Adversarial
- | Autoregressive Networks (GANS)
- NADE / MADE
- NICE / RealNVP Variational Markov Chain ,
Glow We will talk
Ffiord Variational Autoencoder Boltzmann Machine about these

Figure adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Last Time: Autoregressive Models PixelRNN
O—O—O0—0—0

O—0O0—0—0—0
O—0O0—0—0 O
O—0O0—0 O O

co—e O O O

Explicit Density Function
p(x) — p(x]_, X2, X3, wue, XT )
= p(x)p(xy | x)p(x3 X1, Xx2) ...

= Hle P(xt | x4, ey Xp—1)
PixelCNN

Train by maximizing
log-likelihood of
training data

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurlPS 2016
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Last Time: Variational Autoencoders

Jointly train encoder q and decoder p to maximize
the variational lower bound on the data likelihood

log Po (x) = E;q, (21 [108 e (x12)] — Dys. (44 (212), p(2))

Encoder Network Decoder Network
d¢ (z|x) = N(.uz|x» Z:z|x) po(x | z) = N(.ux|z»2x|z)
Hz|x sz Pz Z:1:|2:
¥ A
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Example: Fully-Connected VAE

X: 28x28 image, flattened to 784-dim vector
z: 20-dim vector

Encoder Network

4 (z]|x) = N(.uz|x»zz|x)

de:zo

ZHX:ZO

Linear(400->20)

Linear(400->20)

Linear(784->400)

X: 784

Justin Johnson
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Decoder Network

Pe (x | z) = N(:ux|z» z:x|z)

uﬂz:768

ZMZ:768

Linear(400->768)

Linear(400->768)

Linear(20->400)

z: 20

13
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Variational Autoencoders

Train by maximizing the
variational lower bound

Ey~qy (21 [108 D6 (x12)] — Dyt (44 (212), p(2))

Input
Data
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Variational Autoencoders

Train by maximizing the
variational lower bound

Ey~qy (21 [108 D6 (x12)] — Dyt (44 (212), p(2))

1. Run input data through encoder to get a
distribution over latent codes

le ~ N(:uz|.ca Zzl:c)

/ \ Encoder
Hz|z Zz|$ >

Input
Data )
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Variational Autoencoders

Train by maximizing the
variational lower bound

Ez~q¢(z|x) [log Pe (x |Z)] o

D1, (CIqb (le),p(z))

1. Run input data through encoder to get a
distribution over latent codes
2. Encoder output should match the prior p(z)!

Input
Data

Z|CB ~ N(:uz|.cv Zz|:z:)

e

\

\ Encoder

Hz|x

Zz|:1: >

Justin Johnson
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Variational Autoencoders

Train by maximizing the
variational lower bound

Eyqy (20 (1086 (x|2)] —| Dy, (4 (212), p(2) )

1. Run input data through encoder to get a
distribution over latent codes
2. Encoder output should match the prior p(z)!

p(2)
q¢(z]x)
N(z;0,1)
= N(z; Uy, Z log
fZ ( 2l le) N(Z; .uz|x»zz|x)

— %Zj=1 (1 + log ((Zzlx)j) — (/iz|x)j - (ZZPC)j)

dz

~Dra (4520, p@) = | gzl log

Z

Closed form solution when
q¢ is diagonal Gaussian and

p is unit Gaussian!

(Assume z has dimension J)

\

le ~ N(:uz|.c7 Zz|:z:)

Encoder

>

/ \
Hz|x Zz|a:
Input v
Data )
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Variational Autoencoders

Train by maximizing the
variational lower bound

Eyqy (20 (1086 (x|2)] —| Dy, (4 (212), p(2) )

Latent

1. Run input data through encoder to get a 2 ~
distribution over latent codes code Sample z from
le ™~ N(,Ufz|.m Zz|:z:)
3. Sample code z from encoder output TN Encoder
MZlIE Zzlaj >
Input Y
Data

Justin Johnson Lecture 20- 18
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Variational Autoencoders
Train by maximizing the
variational lower bound

Eyqy (20 (1086 (x|2)] —| Dy, (4 (212), p(2) )

1. Run input data through encoder to get a
distribution over latent codes

w

Sample code z from encoder output
4. Run sampled code through decoder to get a
distribution over data samples

Latent
code

Input
Data

N

Hz|z

Z:1:|z

~_

A

Sample z from
le ~ N(:U’z|.m Zz|:z:)

e

.

_/
~

Hz|x

Zjzlﬂc

Decoder

Encoder

>

Justin Johnson Lecture 20 -
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Variational Autoencoders

Train by maximizing the
variational lower bound

E;qy (i) (10896 (x|2)]|~| Dy, (4 (21%), p(2) )

Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!

w

Sample code z from encoder output

4. Run sampled code through decoder to get a
distribution over data samples

5. Original input data should be likely under

the distribution output from (4)!

Latent >
code

Input
Data

$|Z ™~ N(:u:c|zv Za:]z)

N

M|z Z$|z

~_

Sample z from

le ~ N(:uz|.c7 Zz|:z:)

PN

_/
~

Hz|z Ez|a:

Decoder

Encoder

>
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Reconstructed = )

Variational Autoencoders  d9ata Samp.‘fxfmm
Train by maximizing the |z ~ N (piz)2: Xz)2) >DeC°der
variational lower bound / \
yay oy 108 9o (21 2)]| =D, (a0 (210, () e o
Run input data through encoder to get a Latent A ~
distribution over latent codes code Sample z from A
2. Encoder output should match the prior p(z)! 2|l ~ N (g 2ale)
3. Sample code z from encoder output N Encoder
4. Run sampled code through decoder to get a L2z > |z >
distribution over data samples
5. Original input data should be likely under v
the distribution output from (4)! Input b
Data )

6. Can sample a reconstruction from (4)
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Variational Autoencoders: Generating Data

After training we can
generate new data!

1. Sample z from prior p(z)

Latent >
code

Sample z from
prior p(z)
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Variational Autoencoders: Generating Data

After training we can ~
generate new data!
1. Sample z from prior p(z) z|z ~ N (g, Ly|,) | Decoder
2. Run sampled z through decoder to / \ >
get distribution over data x TR > |
|2
Latent '\Z/ /
code

Sample z from
prior p(z)

Justin Johnson Lecture 20 - 23 March 30, 2022



Variational Autoencoders:

After training we can
generate new data!

Sample z from prior p(z)

Run sampled z through decoder to
get distribution over data x
Sample from distribution in (2) to
generate data

Generating Data

Sampled A )

data 1
Sample x from

z|z ~ N (g, Ly|,) | Decoder

N[

M|z Z$|z

~_

Latent > _/
code

Sample z from
prior p(z)
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Variational Autoencoders: Generating Data
Labeled Faces in the Wild

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017.
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Vary z,

Variational Autoencoders
The diagonal prior on p(z) causes
dimensions of z to be independent
“Disentangling factors of variation”

Vary z,

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders

After training we can edit images

1. Run input data through encoder to get a
distribution over latent codes

zlz ~ N(:U’z|:m Zz|a:) Encoder

P RN

Input
Data W,
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Variational Autoencoders

After training we can edit images

1. Run input data through encoder to get a

distribution over latent codes

2. Sample code z from encoder output

Latent code

Input
Data

<

Sample z from

zlz ~ N(:U’z|:m Zz|a:) Encoder

S

Hz|x

Zjzlcc

Justin Johnson
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Variational Autoencoders

After training we can edit images

Run input data through encoder to get a
distribution over latent codes

Sample code z from encoder output
Modify some dimensions of sampled code

Justin Johnson Lecture 20 -

Modified code

Latent code
Sample z from

Input
Data

<

<

zlz ~ N(:U’z|:m Zz|a:) Encoder

S

Hz|x

Zjzlcc
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Variational Autoencoders
After training we can edit images 2|z ~ N (pa)z) Yia)2) >DeC°der
MQT'Z Za’;|z
1. Runinput data through encoder to get a __ ~
distribution over latent codes Modified code 2 -
\
2. Sample code z from encoder output Latent code 2
3. Modify some dimensions of sampled code Sample z from
4. Run modified z through decoder to get a zlx ~ N (12, 2212) | Encoder
distribution over data sample / N >~
)U’z|:c Zzla:
Input '\LIJ/
Data Y,
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Edited A )

. X
Variational Autoencoders data = ample x from
After training we can edit images |z ~ N (piz)2: Xz)2) >DeC°der
Hx|z Z:1:|z
1. Runinput data through encoder to get a N ~
distribution over latent codes Modified code £ -
\
2. Sample code z from encoder output Latent code b
3. Modify some dimensions of sampled code Sample z from
4. Run modified z through decoder to get a 2|z ~ N (f12, 2212) | Encoder
distribution over data samples N >
5. Sample new data from (4) Hz|x D
Input Y
Data _/
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Variational Autoencoders F EEEEERES
S S

Degree of smile y qa“qqg.
- \ | R
Gmensomeareso pemsepengen. " “\3 SEAEEE
< ' o= k
“Disentangling factors of variation” Y %%QQQQQ

-

“““““

Head pose

000000

44444444

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014 Vary z,
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Variational Autoencoders: Image Editing
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Variational Autoencoder: Summary

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
Principled approach to generative models
Allows inference of g(z|x), can be useful feature representation for other tasks

Cons:
Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
Samples blurrier and lower quality compared to state-of-the-art (GANSs)

Active areas of research:
More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs)
Incorporating structure in latent variables, e.g., Categorical Distributions

Justin Johnson Lecture 20 - 34 March 30, 2022



So far: Two types of generative models

Autoregressive models Variational models

- Directly maximize p(data) - Maximize lower-bound on p(data)
- High-quality generated images - Generated images often blurry

- Slow to generate images - Very fast to generate images

- No explicit latent codes - Learn rich latent codes

Justin Johnson Lecture 20 - 35 March 30, 2022



So far: Two types of generative models

Autoregressive models Variational models

- Directly maximize p(data) - Maximize lower-bound on p(data)
- High-quality generated images - Generated images often blurry

- Slow to generate images - Very fast to generate images

- No explicit latent codes - Learn rich latent codes

Can we combine them and get the best of both worlds?
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Combining VAE + Autoregressive:
Vector-Quantized Variational Autoencoder (VQ-VAE?2)

Train a VAE-like model to generate Use a multiscale PixelCNN to
multiscale grids of latent codes sample in latent code space
VQ-VAE Encoder and Decoder Training Image Generation

Top D__‘{Q___, S é o, 9

EEEEEEE | - Jomm

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019
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Combining VAE + Autoregressive: VQ-VAE?2

256 x 256 class-conditional samples, trained on ImageNet
\ 'S

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurlPS 2019
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Combining VAE + Autoregressive: VQ-VAE?2

256 x 256 class-conditional samples, trained on Ima

%
Redshank \ 4 ‘ , | -,‘ ’

»

geNet

! S =<
-« . W N

Pekinese

Papillon

Drake

Spotted Salamander

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019
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Combining VAE + Autoregressive: VQ-VAE?2
1024 x 1024 generated faces, trained on FFHQ

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019
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Combining VAE + Autoregressive: VQ-VAE?2
1024 x 1024 generated faces, trained on FFHQ

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019
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Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

N
pg(x) = 1_[ po (Xi|x1, ..., Xi—1)
i=1
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Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

N
pg(x) = 1_[ po (Xi|x1, ..., Xi—1)
i=1

Variational Autoencoders introduce a latent z, and maximize a lower bound:

po(x) = L po(x|2)p(2)dz = E;q,(z)x)[l0g po (¥|2)] — Dy, (qu (ZIx),p(Z))
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Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

N
pg(x) = 1_[ po (Xi|x1, ..., Xi—1)
i=1

Variational Autoencoders introduce a latent z, and maximize a lower bound:

po(x) = L po(x|2)p(2)dz = E;q,(z)x)[l0g po (¥|2)] — Dy, (qu (ZIx),p(Z))

Generative Adversarial Networks give up on modeling p(x), but allow us to
draw samples from p(x)
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Generative Adversarial Networks

Setup: Assume we have data x; drawn from distribution p4.,(x). Want to sample from pg4.t..

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks

Setup: Assume we have data x; drawn from distribution p4.,(x). Want to sample from pg4.t..
Idea: Introduce a latent variable z with simple prior p(z).

Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution p;. Want pg = pyat.!

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks

Setup: Assume we have data x; drawn from distribution p4.,(x). Want to sample from pg4.t..

Idea: Introduce a latent variable z with simple prior p(z).
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution p;. Want pg = pyat.!

Generator Generated
Network Sample

Sample :
z from p, .

Train Generator Network G to convert
z into fake data x sampled from pg

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks

Setup: Assume we have data x; drawn from distribution p4.,(x). Want to sample from pg4.t..

Idea: Introduce a latent variable z with simple prior p(z).
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution p;. Want pg = pyat.!

Generator Generated Discriminator
Network Sample Network
Sample
P Z G :} — Fake
z from p, 1 b

Train Generator Network G to convert

z into fake data x sampled from pg
by “fooling” the discriminator D Train Discriminator Network D to

Real Sample  c|3ssify data as real or fake (1/0)

— Real

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks

Setup: Assume we have data x; drawn from distribution p4.,(x). Want to sample from pg4.t..

Idea: Introduce a latent variable z with simple prior p(z).
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution p;. Want pg = pyat.!

Generator Generated Discriminator
Network Sample Network
Sample
P Z G :} — Fake
z from p, 1 b

Train Generator Network G to convert

z into fake data x sampled from pg
by “fooling” the discriminator D Train Discriminator Network D to

Real Sample  c|3ssify data as real or fake (1/0)

— Real

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

mGin max (Ex~pdata [log D(x)| + E;—p(2) [log (1 — D(G(Z)))D

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (ExNPdata [log DCO)| + E,<p(2) [log (1 - D(a( )))D

D
Generator Generated Discriminator
Network Sample Network
Sample
. — Fak

} | —|—> Real

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Discriminator wants
D(x) = 1 for real data
A

( \

min max (Ex~pdata [log D(x)] + E, () [log (1 — D( (z)))])
Generator Generated Discriminator
Network Sample Network

—|—> Real

Sample X

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Discriminator wants Discriminator wants
D(x) = 1 for real data D(x) = 0 for fake data
A A
( \ [ \
min max (Ex~pdata [log D(x)] + E, () [log (1 — D( (z)))])
Generator Generated Discriminator
Network Sample Network

—|—> Real

Sample X

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Discriminator wants Discriminator wants
D(x) = 1 for real data D(x) = 0 for fake data
A A
( \ [ \
min max (Ex~pdata [log D(x)] + E, () [log (1 — D( (z)))])
Generator Generated Discriminator
Network Sample Network

—|—> Real

Sample X

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ex~pdata [log D(x)] + E,~p») [log (1 — D(G( )))D

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ex~pdata [log D(x)] + E,~p») [log (1 — D(G( )))D

= min max V(G,D)

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (ExNPdata [log DGO + E,<p(2) [log (1 - D(a( )))D

D
— min mﬁx V(G, D) Fortinl, .. T:
1. (Update D) D = D + aDZ—Z
2. (UpdateG) G =G —«a ?

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (ExNPdata [log DCO)| + E,<p(2) [log (1 - D(a( )))D

D
— min mﬁx V(G, D) Fortinl, .. T:
av
1. (Update D) D =D 4+ ap —
We are not minimizing any overall glI;
loss! No training curves to look at! 2. (UpdateG) G =G —a,.—

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (ExNPdata [log D(x)| + E;~p(2) llog (1 — D(G( )))D

At start of training, generator is very bad
and discriminator can easily tell apart 21
real/fake, so D(G(z)) close to O

41 — log(1-D(G(2))

0.0 0.2 0.4 0.6 0.8 1.0
D(G(z))

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (Ey.p,... [10g DOO] + E, . [log (1 = D(6(2)))])

D
. . 4 -
At start of training, generator is very bad
and discriminator can easily tell apart 21
real/fake, so D(G(z)) close to O
Problem: Vanishing gradients for G 0
_2 .
4] = log(1l —D(G(2))
00 02 04 06 08 10
Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014 D(G(Z))
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (Ex~pdata [log D(x)| + E;~p(2) llog (1 - D( (Z)))D

4
At start of training, generator is very bad

and discriminator can easily tell apart 21 I
real/fake, so D(G(z)) close to O

Problem: Vanishing gradients for G o]

Solution: Right now G is trained to 21 ~

minimize log(1-D(G(z)). Instead, train G to log(1 = D(G(2))

minimize —log(D(G(z)). Then G gets strong -4 — ~log(b(G(2))

gradients at start of training! 00 02 04 06 08 10
Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014 D(G(Z))
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Generative Adversarial Networks: Optimality

Jointly train generator G and discriminator D with a minimax game

Why is this particular objective a good idea?

min max (Ex~pdata [log D(x)] + E,~p») [log (1 — D(G( )))D

This minimax game achieves its global minimum when pg = py.t.!

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

(Our objective so far)
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mDaX(Ex"’pdata [log D(x)] 4 Ex~p, |log(1 — D(x))])

(Change of variables on second term)
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mDaX(Ex"’pdata [log D(x)] 4 Ex~p, |log(1 — D(x))])

= min maxf (pdata(x) log D(x) + p.(x) log(l — D(x)))dx
X

D

(Definition of expectation)
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mDaX(Ex"’pdata [log D(x)] 4 Ex~p, |log(1 — D(x))])

= minj mgx(pdam(x) log D(x) + p.(x) log(l — D(x))) dx
X

(Push max, inside integral)
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Generative Adversarial Networks: Optimality

min max (Ex~pdata llog D(x)| + E, () llog (1 — D(G( )))D
= min mgx(Exwdata [log D(x)] + Ex~p, [log(1 — D(x))])
= minj mgx(pdam(x) log D(x) + log(l — D(x))) dx
X
f(y) =alogy + /log(l—y)

(Side computation to compute max)
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mgx(Exwdata [log D(x)] + Ex~p, [log(1 — D(x))])

= minj mgx(pdam(x) log D(x) + log(l — D(x))) dx
X
f(y) =alogy + /log(1l—y)
a
FO)=3 1=
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mgx(Exwdata [log D(x)] + Ex~p, [log(1 — D(x))])

= minj mgx(pdam(x) log D(x) + log(l — D(x))) dx
X

fly) =alogy+rlogl—y) [f(¥)=0y= % (local max)

F'y) =-
)=y

1—y
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mg‘X(Exwdata [log D(x)] + Ex~p, [log(1 — D(x))])

= minj mgx(pdam(x) log D(x) + log(l — D(x))) dx
X

fly) =alogy+rlogl—y) [f(¥)=0y= % (local max)

Fy) = -
Y=y

Pdata(X)
Pdata(X)+

1 —y Optimal Discriminator: D/ (x) =
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mg‘X(Exwdata [log D(x)] + Ex~p, [log(1 — D(x))])

= minj mgx(pdam(x) log D(x) + p.(x) log(l — D(x))) dx
X

Pdata(X)
Pdata(X)+p;(x)

Optimal Discriminator: D/ (x) =
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mg‘X(Exwdata [log D(x)] + Ex~p, [log(1 — D(x))])

= minf (pdata(x) log D/ (x) + p.(x) log(l — D/ (x)))dx
X

Pdata(X)
Pdata(X)+p;(x)

Optimal Discriminator: D/ (x) =
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min mg‘X(Exwdata [log D(x)] + Ex~p, [log(1 — D(x))])

= minf (pdata(x) log D/ (x) + p.(x) log(l — D/ (x)))dx
X

Pdata (x) p (X) ) dx

— mian (pdata (x)log Paata(X) + po(x) +pq(x) log Paata(X) + s (x)

Pdata(X)
Pdata(X)+p;(x)

Optimal Discriminator: D/ (x) =
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

Pdata (x) p (X) ) dx

— mian (pdata (x)log Paata(X) + po(x) +Pq(x) log Paata(x) + pe (%)
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

o pdata(x) p (X)

- m”‘fx (Pacea () l0g L=t p () log 0o
. Paata(X) pe(x)

B (Ep [1 B Paara 00 + po Gyl T Exp llogpdam &) + p. (%) )

(Definition of expectation)
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

Pdata (x) p (X)
Paata(X) + e (x) +po(x)log Paata(X) +p (x)) dx

[ (panato
X

X~Pdata

[l 2 Paata(X)

2 P (x)
8 Paaca () + P T o )

= min (E 00 —
2 Paata(x) + pe (%)

(Multiply by a constant)
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

_ Pdata (x) p (x)
= min (x) lo +pe(x)lo ) dx
L (pdata gpdata (x) + p (x) p gpdata (x) + [ (x)
. 2 Paata(X) 2 P (%)
A N SHEE Py W Y
( X~Pdata g 2 pdata (x) -|— p (x) xX~P g 2 pdata (x) + p (x)
. 2 * Paata(X) 2% p; (%)
= min| E, . [l + E, . [lo — lo 4)
( X~Pdata gpdata(x) +p (.X') xX~p gpdata(x) +p (X) 8
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2*pe(x)
pdata(x) + p; (x)

X~Pdata

[l 2 * Pdata (x)
O

= min (e (087G

+ Exp llog — log 4)
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2 * pi(x)
pdata(x) + p; (x)

[l 2 * Pdata (x)
O

= min (e (087G

X~Pdata T Exep llog — log 4)

Kullback-Leibler Divergence:

KL(p,q) = Exp [logzgi
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2% pg(x)
Pdata (X) + Pc (x)

: 2 * Pdata (X) [
= E, . | E... |l
i (B 1985 (5| B 108

— log 4)

Kullback-Leibler Divergence:

KL(p,q) = Exp [logzgg
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2% pg(x)
Pdata (X) + Pc (x)

: 2 * Pdata (X) [
= E, . | E... |l
i (B 1985 (5| B 108

+ +
— min (KL (pdata’pdataz pG) + KL (pG’pdataZ pG) _ log 4)

— log 4)

Kullback-Leibler Divergence:

KL(p,q) = Exp [logzgg
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2 * pi(x)
pdata(x) + p; (x)

— min (E [log 2 * Paata(*)
pdata(x) TP (x)

X~Pdata T Exep llog — log 4)

+ +
— min (KL (pdata»pdataz p ) + KL (P ’pdataz p ) _ log 4)
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2 * pi(x)
pdata(x) + p; (x)

[log 2 * Pdata (x)
Paata(X) + pe(x)

+ +
— min (KL (pdata»pdataz p ) + KL (P ’pdataz p ) _ log 4)

= min (E

X~Pdata T Exep llog — log 4)

Jensen-Shannon Divergence:
1 + 1 n
]SD(p»CI)=§KL(p,¥>+§KL(q,p CI)

2
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2 * pi(x)
pdata(x) + p; (x)

[l 2 * Pdata (x)
O

= min (e (087G

X~Pdata

+ +
— min (KL (pdata’pdataz pG) + KL (pG’pdataZ pG) _ log 4)

+ Exp llog — log 4)

Jensen-Shannon Divergence:
1 + 1 n
]SD(p»CI)=§KL(p,¥>+§KL(q,p CI)

2
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2 * pi(x)
pdata(x) + p; (x)

[l 2 * Pdata (x)
O

= min (e (087G

X~Pdata

+ +
— min (KL (pdata’pdataz pG) + KL (pG’pdataZ pG) _ log 4)

= min(2 * JSD(Paqta,s) — log4)

Jensen-Shannon Divergence:
1 + 1 n
]SD(p»CI)=§KL(p,¥>+§KL(q,p CI)

+ Exp llog — log 4)

2
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Generative Adversarial Networks: Optimality
min max (Ex~pdata llog D(x)| + E, () llog (1 — D( ( )))D

2 * pi(x)
pdata(x) + p; (x)

— min (E [log 2 * Paata(*)
pdata(x) TP (X)

X~Pdata T Exep llog — log 4)

+ +
— min (KL (pdata»pdataz p ) + KL (pG’pdataZ p ) _ log 4)

= min(2 * JSD(Paqtqa, ;) — log4)

JSD is always nonnegative, and zero only  Jensen-Shannon Divergence:
when the two distributions are equal! p + q) 1 ( D + q)

1
Thus pyats = Pg is the global min, QED JSD(p,q) = EKL (P»T + EKL q

2
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min(2 * JSD(Paqta, P;) — log4)
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Generative Adversarial Networks: Optimality

min max (ExNPdata [log D(x)] + E,~p(2) [108 (1 - D(G( )))D

= min(2 * JSD(Paqta, P;) — log4)

Summary: The global minimum of the minimax game happens when:

1' D* — pdata(x) . . . .
& (x) 2% Yo (Optimal discriminator for any G)
2.9 (%) = Paata (%) (Optimal generator for optimal D)
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Generative Adversarial Networks: Optimality

min max (Ex~pdata [log D(x)] + E, [108 (1 - D( (Z)))D
= min(2 * JSD (Pyata, Pc) — log4)

Summary: The global minimum of the minimax game happens when:

* . Pdata(x) . . ..
1. D (x) = 2% wepyo (Optimal discriminator for any G)
2.9 (%) = Paata (%) (Optimal generator for optimal D)
Caveats:

1. G and D are neural nets with fixed architecture. We don’t know
whether they can actually represent the optimal D and G.
2. This tells us nothing about convergence to the optimal solution
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Generative Adversarial Networks: Results

Generated samples

E
T S

| el e b

Nearest neighbor from training set

Goodfellow et al, “Generative Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: DC-GAN

3
A

\ =
K2
%))
=
Q
D
N

L~ 5

I\

||

100 z

|

—

Stride 2

Stride 2

Project and reshape

CONV 3 64

CONV 4 .

Generator G(2)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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|

Generative Adversarial Networks: DC-GAN

=

ls

model
look
much
better!

.,
- 5%

Radford et al,
ICLR 2016
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Generative Adversarial Networks: Interpolation

Interpolating

between
points in
latent z
space

Radford et al,
ICLR 2016
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Generative Adversarial Networks: Vector Math

Smiling Neutral Neutral

woman Man

Samples

from the <

model

Radford et al, ICLR 2016
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Generative Adversarial Networks: Vector Math

Smiling Neutral Neutral
woman woman man

Samples

from the <

model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016
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Generative Adversarial Networks: Vector Math

Smiling Neutral Neutral
woman woman man

Samples Smiling Man

from the <

model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016
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Generative Adversarial Networks: Vector Math

Man with Man w/o Woman
glasses glasses w/o glasses

Samples
from the
model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016
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Generative Adversarial Networks: Vector Math

Man with Man w/o Woman
glasses glasses w/o glasses

Woman with
glasses

Samples

from the <

model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016
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Total number of papers

2017 to present: Explosion of GANs

Cumulative number of named GAN papers by month

2014 2016 2018

Year

https://github.com/hindupuravinash/the-gan-zoo

Justin Johnson

Lecture 20 -

3D-ED-GAN - Shape Inpainting using 3D Generative Adversarial Network and Recurrent
Convolutional Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial
Modeling (github)

3D-IWGAN - Improved Adversarial Systems for 3D Object Generation and Reconstruction
(github)

3D-PhysNet - 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations
3D-RecGAN - 3D Object Reconstruction from a Single Depth View with Adversarial Learning
(github)

ABC-GAN - ABC-GAN: Adaptive Blur and Control for improved training stability of Generative
Adversarial Networks (github)

ABC-GAN - GANS for LIFE: Generative Adversarial Networks for Likelihood Free Inference
AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

acGAN - Face Aging With Conditional Generative Adversarial Networks

ACGAN - Coverless Hiding Based on ad

rsarial networks

acGAN - On-line Adaptative Curriculum Learning for GANs

ACtUAL - ACtuAL: Actor-Critic Under Adversarial Learning

AdaGAN - AdaGAN: Boosting Generative Models

Adaptive GAN - Customizing an Adversarial Example Generator with Class-Conditional GANs
AdVEntuRe - AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided
Examples

AdVGAN - Generating adversarial examples with adversarial networks

AE-GAN - AE-GAN: adversarial eliminating with GAN

AE-OT - Latent Space Optimal Transport for Generative Models

AEGAN - Learning Inverse Mapping by based Generative Adversarial Nets
AF-DCGAN - AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint
Construction in Indoor Localization System

AffGAN - Amortised MAP Inference for Image Super-resolution

AIM -
Maximization

Informative and Diverse Ci via Adversarial Information
AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic
Layouts

ALI - Adversarially Learned Inference (github)

AlignGAN - AlignGAN: Learning to Align Cross-Domain Images with Conditional Generative
Adversarial Networks

IphaGAN -

pl : adversarial networks for natural image matting
AM-GAN - Activation Maximization Generative Adversarial Nets

i - : models from lossy measurements (github)
AMC-GAN - Video Prediction with Appearance and Motion Conditions
AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide
Marker Discovery

APD - Adversarial Distillation of Bayesian Neural Network Posteriors
APE-GAN - APE-GAN: Adversarial Perturbation Elimination with GAN
ARAE - Adversarially Regularized for
ARDA - Adversarial Representation Learning for Domain Adaptation

ARIGAN - ARIGAN: Synthetic Arabidopsis Plants using Generative Adversarial Network
ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

ASDL-GAN - Automatic Steganographic Distortion Learning Using a Generative Adversarial
Network

ATA-GAN - Attention-Aware Generative Adversarial Networks (ATA-GANs)

Attenti N - N for Object in Wild Images

AttGAN - Arbitrary Facial Attribute Editing: Only Change What You Want (github)
AttnGAN - AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative
Adversarial Networks (github)

Discrete Structures (github)

AVID - AVID: Adversarial Visual Irregularity Detection
B-DCGAN - B-DCGAN:Evaluation of Binarized DCGAN for FPGA

b-GAN - Generative Adversarial Nets from a Density Ratio Estimation Perspective

BAGAN - BAGAN: Data Augmentation with Balancing GAN

Bayesian GAN - Deep and Hierarchical Implicit Models

Bayesian GAN - Bayesian GAN (github)

BCGAN - Bayesian Conditional Generative Adverserial Networks

BCGAN - Bidirectional Conditional Generative Adversarial networks

BEAM - Boltzmann Encoded Adversarial Machines

BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

BEGAN-CS - Escaping from Collapsing Modes in a Constrained Space

Bellman GAN - Distributional Multivariate Policy Evaluation and Exploration with the Bellman

99

BGAN - Binary Generative Adversarial Networks for Image Retrieval (github)
Bi-GAN - Autonomously and Simultaneously Refining Deep Neural Network Parameters by a Bi-
Generative Adversarial Network Aided Genetic Algorithm

- Toward g g (github)
BiGAN - Adversarial Feature Learning

BinGAN - BinGAN: Learning Compact Binary Descriptors with a Regularized GAN
BourGAN - BourGAN: Generative Networks with Metric Embeddings

- Branched "

Networks for Mul le Image Manifold
Learning

BRE - Improving GAN Training via Binarized
(github)
BridgeGAN - Generative Adversarial Frontal View to Bird View Synthesis

Entropy (BRE) Reg

BS-GAN - Boundary-Seeking Generative Adversarial Networks
BubGAN - BubGAN: Bubble
Flow Images

BWGAN - Banach Wasserstein GAN

C-GAN - Face Aging with Contextual Generative Adversarial Nets

Networks for Realistic Bubbly

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

(github)

CA-GAN - C ided Sketch-realistic Portrait

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer
with ive Adversarial Networks (github)

CAN - CAN: Creative Adversarial Networks, Generating Art by Learning About Styles and
Deviating from Style Norms

CapsGAN - CapsGAN: Using Dynamic Routing for Generative Adversarial Networks

CapsuleGAN - CapsuleGAN: Generative Adversarial Capsule Network

CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial
Networks

CatGAN - CatGAN: Coupled Adversarial Transfer for Domain Generation

CausalGAN - CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
CC-GAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
(github)

cd-GAN - Conditional Image-to-Image Translation
CDCGAN - Color-Depth Super-Resol
Adversarial Network

with Conditional Generative

CE-GAN - Deep Learning for Imbalance Data Classification using Class Expert Generative
Adversarial Network

CFG-GAN - Composite Functional Gradient Learning of Generative Adversarial Models

CGAN - Conditional Generative Adversarial Nets

CGAN - Controllable Generative Adversarial Network

Chekhov GAN - An Online Learning Approach to Generative Adversarial Networks

CIGAN - Conditional Infilling GANS for Data in c

CinCGAN - Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial
Networks

CipherGAN - Unsupervised Cipher Cracking Using Discrete GANs
ClusterGAN - ClusterGAN : Latent Space Clustering in Generative Adversarial Networks
CM-GAN - CM-GANS: Cross-modal Generative Adversarial Networks for Common
Representation Learning

CoAtt-GAN - Are You Talking to Me? Reasoned Visual Dialog Generation through Adversarial
Learning

CoGAN - Coupled Generative Adversarial Networks

ComboGAN - ComboGAN: Unrestrained Scalability for Image Domain Translation (github)
ConceptGAN - Learning Compositional Visual Concepts with Mutual Consistency
Conditional cycleGAN - Conditional CycleGAN for Attribute Guided Face Image Generation

N - Semantic with C GAN

Context-RNN-GAN - Contextual RNN-GANS for Abstract Reasoning Diagram Generation
CorrGAN - Correlated discrete data generation using adversarial training

Coulomb GAN - Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields
Cover-GAN - Generative Steganography with Kerckhoffs' Principle based on Generative
Adversarial Networks

cowboy - Defending Against Adversarial Attacks by Leveraging an Entire GAN

CR-GAN - CR-GAN: Learning Complete Representations for Multi-view Generation

Cramér GAN - The Cramer Distance as a Solution to Biased Wasserstein Gradients

Cross-GAN - Crossing Generative Adversarial Networks for Cross-View Person Re-identification
CrVAE-GAN - Channel-Recurrent Variational Autoencoders

CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative
Adversarial Nets

CSG - Speech-Driven Expressive Talking Lips with Conditional Sequential Generative
Adversarial Networks

CT-GAN - CT-GAN: Conditional Transformation Generative Adversarial Network for Image
Attribute Modification

CVAE-GAN - CVAE-GAN: Fi d Image through Asy Training
CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
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https://github.com/hindupuravinash/the-gan-zoo

GAN Improvements: Improved Loss Functions
WGAN with Gradient Penalty
(WGAN-GP)

o ' 1 o
W A i | T L e
L] a
- e
I < ¥ . . \ ‘
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}
Realen sl |

Wasserstein GAN (WGAN)

==

Gulrajani et al, “Improved Training of
Arjovsky, Chintala, and Bouttou, “Wasserstein GAN”, 2017 Wasserstein GANs”, NeurlPS 2017
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GAN Improvements: Higher Resolution
256 x 256 bedrooms 1024 x 1024 faces

Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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GAN Improvements: Higher Resolution

512 x 384 cars 1024 x 1024 faces

Karras et al, “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019 Images are licensed under CC BY-NC 4.0
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https://github.com/NVlabs/stylegan
https://creativecommons.org/licenses/by-nc/4.0/

Video is licensed under CC BY-NC 4.0.

Karras et al, “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019 Source: https://drive.google.com/drive/folders/INFO7_vHOt98J13ck)YFd7kuaTkyeRJ86
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https://creativecommons.org/licenses/by-nc/4.0/
https://drive.google.com/drive/folders/1NFO7_vH0t98J13ckJYFd7kuaTkyeRJ86

StyleGAN?2
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Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020

s
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Conditional GANs

Recall: Conditional Generative Models learn p(x|y) instead of p(x)
Make generator and discriminator both take label y as an additional input!

3
4
y 128
256 -
r—*—\
512
1024 r ‘ \ : 84— PRS
) 16 Stide2 \ | = N—— -1
4 ] | T
w1007 =) ) | SE
Z S - == Stride 2
8
: Stride 2 16
Project and reshape SR
Rt CONV 3 64
CONV 4 -
G(2)

Figure credit: Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Conditional GANs: Conditional Batch Normalization

Batch Normalization Conditional Batch Normalization
1 N 1 N
i=1 i=1
o1 N , Learn a separate 1 & ,
05 = Nz(xi,j — 1) scale and shift of = Nz(xi,j — 1))
o W f(?r each X
ij = different label y Xij =
of + € 0f + €
Yij = V% + b Yij =Vi%ij+ By

Dumoulin et al, “A learned representation for artistic style”, ICLR 2017
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Conditional GANs: Spectral Normalization
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Miyato et al, “Spectral Normalization for Generative Adversarial Networks”, ICLR 2018 128x128 images on ImageNet
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Conditional GANSs: Self-Attention

Goldfish

Indigo
bunting

Redshank

Saint
Bernard

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2019 128x128 images on ImageNet
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Conditional GANs: BigGAN

2_"*» ‘

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019 512x512 images on ImageNet
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Clark et al, “Adversarial Video
Generation on Complex

Generating Videos with GANs

RAZED T

v~' l.‘I'h.r\v".
L N g | R - s SN
64x64 images, 48 frames 128x128 images, 12 frames
https://drive.google.com/file/d/1FjOQYdUuxPXvS8yeOhXdPQMapUQaklLi/view https://drive.google.com/file/d/165Yxuvvu3viOy-39LhhSDGtczbWphj i/view
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https://drive.google.com/file/d/165Yxuvvu3viOy-39LhhSDGtczbWphj_i/view
https://drive.google.com/file/d/1FjOQYdUuxPXvS8yeOhXdPQMapUQaklLi/view

Label Map to

tree mountain
| sea | grass

mage

Input: Label Map

Semantic Manipulation Using Segmentation Map
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Park et al, “Semantic Image Synthesis with Spatially-Adaptive Normalization”, CVPR 2019
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Label Map to

tree mountain
| sea | grass

mage

Input: Label Map

Semantic Manipulation Using Segmentation Map

sabew) aping Buisn uonezi|f3s

<€

Park et al, “Semantic Image Synthesis with Spatially-Adaptive Normalization”, CVPR 2019

Justin Johnson
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Conditioning on more than labels! Text to Image

The bird is Abirdwitha  This small Eggs fruit A street sign
This bird isred  short and medium orange  black bird has A group of candy nuts on a stoplight
and brown in stubby with bill white body  a short, slightly A picture of a people on skis  and meat pole in the
color, with a yellow on its gray wings and  curved bill and very clean stand in the served on middle of a

stubby beak body webbed feet long legs living room Snow white dish day

Zhang et al, “StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.”, TPAMI 2018
Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks.”, ICCV 2017
Reed et al, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
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Text to Image: DALL-E

Step 1: Train VQ-VAE (discrete
grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt,
sample new image codes; pass
through VQ-VAE decoder to

generate images

Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021
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Text to Image: DALL-E

Step 1: Train VQ-VAE (discrete
grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt,
sample new image codes; pass
through VQ-VAE decoder to

generate images

an illustration of a baby hedgehog in

a christmas sweater walking a dog
Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021
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Text to Image: DALL-E

Step 1: Train VQ-VAE (discrete
grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt,
sample new image codes; pass
through VQ-VAE decoder to

generate images

a neon sign that reads “backprop”. a neon sign

that reads “backprop”. backprop neon sign
Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021
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p(s)

f Codebook Z ) / Transformer
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Esser et al, “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021
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VQ-GAN (Semantic Segmentation to Image)

Esser et al, “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021
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Image Super-Resolution: Low-Res to High-Res

bicubic SRResNet SRGAN original
(21.59dB/0.6423)

Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2017
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Image-to-Image Translation: Pix2Pix

Labels to Street Scene Labels to Facade BW to Color

input output

Edges to Photo

Day to Night

output output input output

Isola et al, “Image-to-Image Translation with Conditional Adversarial Nets”, CVPR 2017
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Unpaired Image-to-Image Translation: CycleGAN

Monet T Photos _ . Zebras T Horses _ Summer T Winter

p ——

= A

Phtograph a Gogh o 7 ezanne ) | Ukiyo-e

Zhu et al, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017
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Unpaired Image-to-Image Translation: CycleGAN

Input Video: Horse Output Video: Zebra

Zhu et al, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017

Justin Johnson Lecture 20- 122 March 30, 2022


https://www.youtube.com/watch?v=9reHvktowLY

GANSs: Not just for images! Trajectory Prediction

Ground Truth Observed

Ground Truth Observed

Our Model Observed

Our Model Observed

Gupta, Johnson, Li, Savarese, Alahi, “Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks”, CVPR 2018

Justin Johnson
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GAN Summary

Jointly train two networks:
Discriminator: Classify data as real or fake
Generator: Generate data that fools the discriminator

Generator Generated Discriminator
Network Sample Network
Sample
P 7 » G — Fake
z from p,

} — Real

Under some assumptions, generator converges to true data distribution
Many applications! Very active area of research!
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Taxonomy of Generative Models

Model does not explicitly
Model can Generative models compute p(x), but can

compute p(x% \sainple from p(x)

Explicit density Can compute Implicit density

/ wimation to p(x) /\

Tractable density Approximate density Markov Chain Direct
Can_compute p(x) GSN Generative Adversarial
Autoregressive Networks (GANS)
NADE / MADE
NICE / RealNVP Variational Markov Chain ,
Glow We will talk
Ffiord Variational Autoencoder Boltzmann Machine about these

Figure adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Generative Models Summary

Autoregressive Models directly maximize likelihood of training data:

N
pg(x) = 1_[ Po (xi|Xy, o Xi—1)
i=1

Good image quality, can evaluate with perplexity. Slow to generate data, needs
tricks to scale up.

Variational Autoencoders introduce a latent z, and maximize a lower bound:

po(x) = j Po(x|2)p(2)dz = E,-q,(z1x)[10g Po (x12)] — Dy (a9 (212, p(2) )
Z
Latent z allows for powerful interpolation and editing applications.

Generative Adversarial Networks give up on modeling p(x), but allow us to
draw samples from p(x). Difficult to evaluate, but best qualitative results today
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Next Time:
Visualizing Models and
Generating Images
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