Lecture 20: Generative Models, Part 2

Admin: A4

A4 due yesterday, many people still working

Admin: A5

A5 Released last night

Recurrent networks, image captioning, Transformers

Due Tuesday April 12th at 11:59pm ET

Justin Johnson Lecture 20 - 3 March 30, 2022

Admin: Project Proposal

If you want to propose your own project:

Need to submit a project proposal by tomorrow, 4/1 on Piazza

Justin Johnson Lecture 20 - 4 March 30, 2022

Last Time: Supervised vs Unsupervised Learning

Supervised Learning

Unsupervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Data: x

Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Discriminative Model:

Learn a probability distribution p(y|x)

Data: x

Generative Model:

Learn a probability distribution p(x)

Density Function

p(x) assigns a positive number to each possible x; higher numbers mean x is more likely Density functions are **normalized**:

$$\int_X p(x)dx = 1$$

Different values of x compete for density

Conditional Generative Model: Learn p(x|y)

Justin Johnson Lecture 20 - 6 March 30, 2022

Discriminative Model: Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Discriminative model: No way for the model to handle unreasonable inputs; it must give label distributions for all images

Workey image is CCO Public Dollia

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Generative model: All possible images compete with each other for probability mass

Requires deep image understanding! Is a dog more likely to sit or stand? How about 3-legged dog vs 3-armed monkey?

Justin Johnson Lecture 20 - 8 March 30, 2022

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Recall Bayes' Rule:

We can build a conditional generative model from other components!

Last Time: Taxonomy of Generative Models

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Justin Johnson Lecture 20 - 10 March 30, 2022

Last Time: Autoregressive Models

Explicit Density Function

$$p(x) = p(x_1, x_2, x_3, ..., x_T)$$

$$= p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) ...$$

$$= \prod_{t=1}^{T} p(x_t | x_1, ..., x_{t-1})$$

Train by maximizing log-likelihood of training data

Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016

Van den Oord et al, "Conditional Image Generation with PixelCNN Decoders", NeurIPS 2016

PixelRNN

PixelCNN

Last Time: Variational Autoencoders

Jointly train **encoder** q and **decoder** p to maximize the **variational lower bound** on the data likelihood

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Encoder Network

$$q_{\phi}(z \mid x) = N(\mu_{z\mid x}, \Sigma_{z\mid x})$$

$$\mu_{z\mid x} \qquad \Sigma_{z\mid x}$$

Decoder Network

$$p_{\theta}(x \mid z) = N(\mu_{x\mid z}, \Sigma_{x\mid z})$$

$$\mu_{x\mid z} \qquad \Sigma_{x\mid z}$$

Example: Fully-Connected VAE

x: 28x28 image, flattened to 784-dim vector

z: 20-dim vector

Encoder Network

$$q_{\phi}(z \mid x) = N(\mu_{z|x}, \Sigma_{z|x})$$

Decoder Network

$$p_{\theta}(x \mid z) = N(\mu_{x\mid z}, \Sigma_{x\mid z})$$

Justin Johnson Lecture 20 - 13 March 30, 2022

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

1. Run input data through **encoder** to get a distribution over latent codes

Justin Johnson Lecture 20 - 15 March 30, 2022

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!

$$-D_{KL}(q_{\phi}(z|x), p(z)) = \int_{Z} q_{\phi}(z|x) \log \frac{p(z)}{q_{\phi}(z|x)} dz$$

$$= \int_{Z} N(z; \mu_{z|x}, \Sigma_{z|x}) \log \frac{N(z; 0, I)}{N(z; \mu_{z|x}, \Sigma_{z|x})} dz$$

$$= \frac{1}{2} \sum_{i=1}^{J} \left(1 + \log \left(\left(\Sigma_{z|x}\right)_{j}^{2}\right) - \left(\mu_{z|x}\right)_{j}^{2} - \left(\Sigma_{z|x}\right)_{j}^{2}\right)$$

Closed form solution when q_{ϕ} is diagonal Gaussian and p is unit Gaussian! (Assume z has dimension J)

Justin Johnson Lecture 20 - 17 March 30, 2022

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- 1. Run input data through **encoder** to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output
- Run sampled code through decoder to get a distribution over data samples

Justin Johnson Lecture 20 - 19 March 30, 2022

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

- 1. Run input data through **encoder** to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output
- Run sampled code through decoder to get a distribution over data samples
- 5. Original input data should be likely under the distribution output from (4)!

Justin Johnson Lecture 20 - 20 March 30, 2022

Reconstructed data

Variational Autoencoders

Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

- 1. Run input data through **encoder** to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output
- Run sampled code through decoder to get a distribution over data samples
- 5. Original input data should be likely under the distribution output from (4)!
- 6. Can sample a reconstruction from (4)

Data

After training we can generate new data!

Sample z from prior p(z)

After training we can generate new data!

- Sample z from prior p(z)
- Run sampled z through decoder to get distribution over data x

Justin Johnson Lecture 20 - 23 March 30, 2022

After training we can generate new data!

- Sample z from prior p(z)
- Run sampled z through decoder to get distribution over data x
- 3. Sample from distribution in (2) to generate data

Justin Johnson Lecture 20 - 24 March 30, 2022

32x32 CIFAR-10

Labeled Faces in the Wild

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017.

Justin Johnson Lecture 20 - 25 March 30, 2022

The diagonal prior on p(z) causes dimensions of z to be independent

"Disentangling factors of variation"

Vary z₁

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

Justin Johnson Lecture 20 - 26 March 30, 2022

After training we can edit images

1. Run input data through **encoder** to get a distribution over latent codes

Justin Johnson Lecture 20 - 27 March 30, 2022

After training we can edit images

- Run input data through encoder to get a distribution over latent codes
- 2. Sample code z from encoder output

Justin Johnson Lecture 20 - 28 March 30, 2022

After training we can edit images

- 1. Run input data through **encoder** to get a distribution over latent codes
- 2. Sample code z from encoder output
- 3. Modify some dimensions of sampled code

Justin Johnson Lecture 20 - 29 March 30, 2022

After training we can **edit images**

- Run input data through encoder to get a distribution over latent codes
- 2. Sample code z from encoder output
- 3. Modify some dimensions of sampled code
- Run modified z through decoder to get a distribution over data sample

Justin Johnson Lecture 20 - 30 March 30, 2022

After training we can **edit images**

- 1. Run input data through **encoder** to get a distribution over latent codes
- 2. Sample code z from encoder output
- 3. Modify some dimensions of sampled code
- Run modified z through decoder to get a distribution over data samples
- 5. Sample new data from (4)

Justin Johnson Lecture 20 - 31 March 30, 2022

The diagonal prior on p(z) causes dimensions of z to be independent

"Disentangling factors of variation"

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

Justin Johnson Lecture 20 - 32 March 30, 2022

Degree of smile

Variational Autoencoders: Image Editing

Kulkarni et al, "Deep Convolutional Inverse Graphics Networks", NeurIPS 2014

Justin Johnson Lecture 20 - 33 March 30, 2022

Variational Autoencoder: Summary

Probabilistic spin to traditional autoencoders => allows generating data

Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:

- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian, e.g., Gaussian Mixture Models (GMMs)
- Incorporating structure in latent variables, e.g., Categorical Distributions

So far: Two types of generative models

Autoregressive models

- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

Variational models

- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Justin Johnson Lecture 20 - 35 March 30, 2022

So far: Two types of generative models

Autoregressive models

- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

Variational models

- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Can we combine them and get the best of both worlds?

Justin Johnson Lecture 20 - 36 March 30, 2022

Combining VAE + Autoregressive: Vector-Quantized Variational Autoencoder (VQ-VAE2)

Train a VAE-like model to generate multiscale grids of latent codes

VQ-VAE Encoder and Decoder Training

Use a multiscale PixelCNN to sample in latent code space

Image Generation

Razavi et al, "Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurIPS 2019

Justin Johnson Lecture 20 - 37 March 30, 2022

256 x 256 class-conditional samples, trained on ImageNet

Razavi et al, "Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurIPS 2019

256 x 256 class-conditional samples, trained on ImageNet

Redshank

Pekinese

Papillon

Drake

Spotted Salamander

Razavi et al, "Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurIPS 2019

Justin Johnson Lecture 20 - 39 March 30, 2022

1024 x 1024 generated faces, trained on FFHQ

Razavi et al, "Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurIPS 2019

1024 x 1024 generated faces, trained on FFHQ

Razavi et al, "Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurIPS 2019

Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{N} p_{\theta}(x_i|x_1,...,x_{i-1})$$

Justin Johnson Lecture 20 - 42 March 30, 2022

Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{N} p_{\theta}(x_i|x_1,...,x_{i-1})$$

Variational Autoencoders introduce a latent z, and maximize a lower bound:

$$p_{\theta}(x) = \int_{Z} p_{\theta}(x|z)p(z)dz \ge E_{z \sim q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Justin Johnson Lecture 20 - 43 March 30, 2022

Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{N} p_{\theta}(x_i|x_1,...,x_{i-1})$$

Variational Autoencoders introduce a latent z, and maximize a lower bound:

$$p_{\theta}(x) = \int_{Z} p_{\theta}(x|z)p(z)dz \ge E_{z \sim q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Generative Adversarial Networks give up on modeling p(x), but allow us to draw samples from p(x)

Justin Johnson Lecture 20 - 44 March 30, 2022

Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .

Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Justin Johnson Lecture 20 - 45 March 30, 2022

Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .

Idea: Introduce a latent variable z with simple prior p(z).

Sample $z \sim p(z)$ and pass to a **Generator Network** x = G(z)

Then x is a sample from the **Generator distribution** p_G . Want $p_G = p_{data}!$

Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .

Idea: Introduce a latent variable z with simple prior p(z). Sample $z \sim p(z)$ and pass to a **Generator Network** x = G(z) Then x is a sample from the **Generator distribution** p_G. Want p_G = p_{data}!

Train **Generator Network** G to convert z into fake data x sampled from p_G

Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .

Idea: Introduce a latent variable z with simple prior p(z). Sample $z \sim p(z)$ and pass to a **Generator Network** x = G(z) Then x is a sample from the **Generator distribution** p_G. Want p_G = p_{data}!

Justin Johnson Lecture 20 - 48 March 30, 2022

Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .

Idea: Introduce a latent variable z with simple prior p(z).

Sample $z \sim p(z)$ and pass to a **Generator Network** x = G(z)

Then x is a sample from the **Generator distribution** p_G . Want $p_G = p_{data}!$

Jointly train G and

Justin Johnson Lecture 20 - 49 March 30, 2022

Jointly train generator G and discriminator D with a minimax game

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

Jointly train generator G and discriminator D with a minimax game

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Justin Johnson Lecture 20 - 51 March 30, 2022

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Justin Johnson Lecture 20 - 52 March 30, 2022

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Justin Johnson Lecture 20 - 53 March 30, 2022

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Justin Johnson Lecture 20 - 54 March 30, 2022

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

$$= \min_{G} \max_{D} V(G, D)$$

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

$$= \min_{G} \max_{D} V(G, D)$$

For t in 1, ... T:

1. (Update D)
$$D = D + \alpha_D \frac{\partial V}{\partial D}$$

2. (Update G) $G = G - \alpha_G \frac{\partial V}{\partial G}$

2. (Update G)
$$G = G - \alpha_G \frac{\partial V}{\partial G}$$

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

$$= \min_{\mathbf{G}} \max_{\mathbf{D}} V(\mathbf{G}, \mathbf{D})$$

We are not minimizing any overall loss! No training curves to look at! For t in 1, ... T:

1. (Update D)
$$D = D + \alpha_D \frac{\partial V}{\partial D}$$

2. (Update G) $G = G - \alpha_G \frac{\partial V}{\partial G}$

2. (Update G)
$$G = G - \alpha_G \frac{\partial V}{\partial G}$$

Jointly train generator G and discriminator D with a minimax game

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

At start of training, generator is very bad and discriminator can easily tell apart real/fake, so D(G(z)) close to 0

Jointly train generator G and discriminator D with a minimax game

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

At start of training, generator is very bad and discriminator can easily tell apart real/fake, so D(G(z)) close to 0

Problem: Vanishing gradients for G

Jointly train generator G and discriminator D with a minimax game

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

At start of training, generator is very bad and discriminator can easily tell apart real/fake, so D(G(z)) close to 0

Problem: Vanishing gradients for G

Solution: Right now G is trained to

minimize log(1-D(G(z)). Instead, train G to

minimize -log(D(G(z)). Then G gets strong

gradients at start of training!

0 -2 $\log(1 - D(G(z)))$ $-\log(D(G(z)))$ 0.8 0.2 0.4 0.6 0.0 1.0 D(G(z))

Jointly train generator G and discriminator D with a minimax game

Why is this particular objective a good idea?

$$\min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log \left(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})) \right) \right] \right)$$

This minimax game achieves its global minimum when $p_G = p_{data}!$

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

(Our objective so far)

Justin Johnson Lecture 20 - 63 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} \left[\log \mathbf{D}(x) \right] + E_{x \sim p_{\mathbf{G}}} \left[\log \left(1 - \mathbf{D}(x) \right) \right] \right)$$

(Change of variables on second term)

Justin Johnson Lecture 20 - 64 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} \left[\log D(x) \right] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right)$$

$$= \min_{G} \max_{D} \int_{X} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x)\right) \right) dx$$

(Definition of expectation)

Justin Johnson Lecture 20 - 65 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} \left[\log D(x) \right] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right)$$

$$= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx$$

(Push max_D inside integral)

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right)$$

$$= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx$$

$$f(y) = a \log y + b \log(1 - y)$$

(Side computation to compute max)

Justin Johnson Lecture 20 - March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right)$$

$$= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx$$

$$= a \log x + b \log \left(1 - y \right)$$

$$f(y) = \frac{a}{a} \log y + \frac{b}{b} \log(1 - y)$$

$$f'(y) = \frac{a}{y} - \frac{b}{1-y}$$

$$\begin{aligned} & \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right) \\ & = \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right) \\ & = \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx \\ & f(y) = a \log y + b \log (1 - y) \qquad f'(y) = 0 \iff y = \frac{a}{a + b} \text{ (local max)} \\ & f'(y) = \frac{a}{y} - \frac{b}{1 - y} \end{aligned}$$

Justin Johnson Lecture 20 - 69 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} [\log \left(1 - D(x) \right)] \right)$$

$$= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx$$

$$f(y) = a \log y + b \log (1 - y) \qquad f'(y) = 0 \iff y = \frac{a}{a + b} \text{ (local max)}$$

$$f'(y) = \frac{a}{y} - \frac{b}{1 - y} \quad \text{Optimal Discriminator: } D_{G}^{*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)}$$

Justin Johnson Lecture 20 - 70 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} \left[\log D(x) \right] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right)$$

$$= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log \left(1 - D(x) \right) \right) dx$$

Optimal Discriminator:
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

Justin Johnson Lecture 20 - 71 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{\mathbf{G}} \max_{\mathbf{D}} \left(E_{x \sim p_{data}} \left[\log \mathbf{D}(x) \right] + E_{x \sim p_{\mathbf{G}}} \left[\log \left(1 - \mathbf{D}(x) \right) \right] \right)$$

$$= \min_{G} \int_{Y} \left(p_{data}(x) \log D_{G}^{*}(x) + p_{G}(x) \log \left(1 - D_{G}^{*}(x) \right) \right) dx$$

Optimal Discriminator:
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

Justin Johnson Lecture 20 - 72 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \max_{D} \left(E_{x \sim p_{data}} \left[\log D(x) \right] + E_{x \sim p_{G}} \left[\log \left(1 - D(x) \right) \right] \right)$$

$$= \min_{\mathbf{G}} \int_{X} \left(p_{data}(x) \log D_{\mathbf{G}}^{*}(x) + p_{\mathbf{G}}(x) \log \left(1 - D_{\mathbf{G}}^{*}(x) \right) \right) dx$$

$$= \min_{\mathbf{G}} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} + p_{\mathbf{G}}(x) \log \frac{p_{\mathbf{G}}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right) dx$$

Optimal Discriminator:
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

Justin Johnson Lecture 20 - 73 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{\mathbf{G}} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} + p_{\mathbf{G}}(x) \log \frac{p_{\mathbf{G}}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right) dx$$

Justin Johnson Lecture 20 - 74 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} + p_{G}(x) \log \frac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right) dx$$

$$= \min_{\mathbf{G}} \left(E_{x \sim p_{data}} \left[\log \frac{p_{data}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right] + E_{x \sim p_{\mathbf{G}}} \left[\log \frac{p_{\mathbf{G}}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right] \right)$$

(Definition of expectation)

Justin Johnson Lecture 20 - 75 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{\mathbf{G}} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} + p_{\mathbf{G}}(x) \log \frac{p_{\mathbf{G}}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right) dx$$

$$= \min_{\mathbf{G}} \left(E_{x \sim p_{data}} \left[\log \frac{2}{2} \frac{p_{data}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right] + E_{x \sim p_{\mathbf{G}}} \left[\log \frac{2}{2} \frac{p_{\mathbf{G}}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right] \right)$$

(Multiply by a constant)

Justin Johnson Lecture 20 - 76 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{\mathbf{G}} \int_{X} \left(p_{data}(x) \log \frac{p_{data}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} + p_{\mathbf{G}}(x) \log \frac{p_{\mathbf{G}}(x)}{p_{data}(x) + p_{\mathbf{G}}(x)} \right) dx$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2}{2} \frac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2}{2} \frac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

Justin Johnson Lecture 20 - 77 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

Justin Johnson Lecture 20 - 78 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

Kullback-Leibler Divergence:

$$KL(\mathbf{p}, q) = E_{x \sim \mathbf{p}} \left[\log \frac{\mathbf{p}(x)}{q(x)} \right]$$

Justin Johnson Lecture 20 - 79 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

Kullback-Leibler Divergence:

$$KL(\mathbf{p}, q) = E_{x \sim \mathbf{p}} \left[\log \frac{\mathbf{p}(x)}{q(x)} \right]$$

Justin Johnson Lecture 20 - 80 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

$$= \min_{G} \left(KL \left(p_{data}, \frac{p_{data} + p_{G}}{2} \right) + KL \left(p_{G}, \frac{p_{data} + p_{G}}{2} \right) - \log 4 \right)$$

Kullback-Leibler Divergence:

$$KL(\mathbf{p}, \mathbf{q}) = E_{x \sim \mathbf{p}} \left[\log \frac{\mathbf{p}(x)}{\mathbf{q}(x)} \right]$$

Justin Johnson Lecture 20 - 81 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

$$= \min_{\mathbf{G}} \left(KL \left(p_{data}, \frac{p_{data} + p_{\mathbf{G}}}{2} \right) + KL \left(p_{\mathbf{G}}, \frac{p_{data} + p_{\mathbf{G}}}{2} \right) - \log 4 \right)$$

Justin Johnson Lecture 20 - 82 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

$$= \min_{\mathbf{G}} \left(KL\left(p_{data}, \frac{p_{data} + p_{\mathbf{G}}}{2}\right) + KL\left(p_{\mathbf{G}}, \frac{p_{data} + p_{\mathbf{G}}}{2}\right) - \log 4 \right)$$

Jensen-Shannon Divergence:

$$JSD(\mathbf{p},q) = \frac{1}{2}KL\left(\mathbf{p},\frac{\mathbf{p}+q}{2}\right) + \frac{1}{2}KL\left(q,\frac{\mathbf{p}+q}{2}\right)$$

Justin Johnson Lecture 20 - 83 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

$$= \min_{G} \left(KL \left(p_{data}, \frac{p_{data} + p_{G}}{2} \right) + KL \left(p_{G}, \frac{p_{data} + p_{G}}{2} \right) - \log 4 \right)$$

Jensen-Shannon Divergence:

$$JSD(\mathbf{p},q) = \frac{1}{2}KL\left(\mathbf{p},\frac{\mathbf{p}+q}{2}\right) + \frac{1}{2}KL\left(q,\frac{\mathbf{p}+q}{2}\right)$$

Justin Johnson Lecture 20 - 84 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

$$= \min_{G} \left(KL \left(p_{data}, \frac{p_{data} + p_{G}}{2} \right) + KL \left(p_{G}, \frac{p_{data} + p_{G}}{2} \right) - \log 4 \right)$$

$$= \min_{G} (2 * JSD(p_{data}, p_G) - \log 4)$$

Jensen-Shannon Divergence:

$$JSD(\mathbf{p},q) = \frac{1}{2}KL\left(\mathbf{p},\frac{\mathbf{p}+q}{2}\right) + \frac{1}{2}KL\left(q,\frac{\mathbf{p}+q}{2}\right)$$

Justin Johnson Lecture 20 - 85 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} \left(E_{x \sim p_{data}} \left[\log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log \frac{2 * p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4 \right)$$

$$= \min_{\mathbf{G}} \left(\mathit{KL}\left(p_{data}, \frac{p_{data} + p_{\mathbf{G}}}{2}\right) + \mathit{KL}\left(p_{\mathbf{G}}, \frac{p_{data} + p_{\mathbf{G}}}{2}\right) - \log 4 \right)$$

$$= \min_{G} (2 * JSD(p_{data}, p_{G}) - \log 4)$$

JSD is always nonnegative, and zero only when the two distributions are equal! Thus $p_{data} = p_G$ is the global min, QED

Jensen-Shannon Divergence:

$$JSD(\mathbf{p},q) = \frac{1}{2}KL\left(\mathbf{p},\frac{\mathbf{p}+q}{2}\right) + \frac{1}{2}KL\left(q,\frac{\mathbf{p}+q}{2}\right)$$

Justin Johnson Lecture 20 - 86 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} (2 * JSD(p_{data}, p_G) - \log 4)$$

Justin Johnson Lecture 20 - 87 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} (2 * JSD(p_{data}, p_G) - \log 4)$$

Summary: The global minimum of the minimax game happens when:

1.
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$
 (Optimal discriminator for any G)

2.
$$p_G(x) = p_{data}(x)$$
 (Optimal generator for optimal D)

Justin Johnson Lecture 20 - 88 March 30, 2022

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$

$$= \min_{G} (2 * JSD(p_{data}, p_{G}) - \log 4)$$

Summary: The global minimum of the minimax game happens when:

1.
$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$
 (Optimal discriminator for any G)

2.
$$p_G(x) = p_{data}(x)$$
 (Optimal generator for optimal D)

Caveats:

- 1. G and D are neural nets with fixed architecture. We don't know whether they can actually <u>represent</u> the optimal D and G.
- 2. This tells us nothing about convergence to the optimal solution

Justin Johnson Lecture 20 - 89 March 30, 2022

Generative Adversarial Networks: Results

Generated samples

Nearest neighbor from training set

Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Generative Adversarial Networks: DC-GAN

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Generative Adversarial Networks: DC-GAN

Samples from the model look much better!

Radford et al, ICLR 2016

Generative Adversarial Networks: Interpolation

Interpolating between points in latent z space

Radford et al, ICLR 2016

Justin Johnson Lecture 20 - 93 March 30, 2022

Samples from the model

Radford et al, ICLR 2016

Radford et al, ICLR 2016

Neutral

Radford et al, ICLR 2016

Justin Johnson Lecture 20 - 96 March 30, 2022

Justin Johnson Lecture 20 - 97 March 30, 2022

Samples from the model

Radford et al, ICLR 2016

Woman

Woman with glasses

Justin Johnson Lecture 20 - 98 March 30, 2022

2017 to present: Explosion of GANs

https://github.com/hindupuravinash/the-gan-zoo

- 3D-ED-GAN Shape Inpainting using 3D Generative Adversarial Network and Recurrent
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)
- 3D-IWGAN Improved Adversarial Systems for 3D Object Generation and Reconstruction
 (althurb)
- 3D-PhysNet 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations
- 3D-RecGAN 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)
- ABC-GAN ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks (github)
- ABC-GAN GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- acGAN Face Aging With Conditional Generative Adversarial Networks
- ACGAN Coverless Information Hiding Based on Generative adversarial networks
- acGAN On-line Adaptative Curriculum Learning for GANs
- ACtuAL ACtuAL: Actor-Critic Under Adversarial Learning
- . AdaGAN AdaGAN: Boosting Generative Models
- Adaptive GAN Customizing an Adversarial Example Generator with Class-Conditional GANs
- AdvEntuRe AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
- AdvGAN Generating adversarial examples with adversarial networks
- AE-GAN AE-GAN: adversarial eliminating with GAN
- AE-OT Latent Space Optimal Transport for Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Net-
- AF-DCGAN AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization System
- AffGAN Amortised MAP Inference for Image Super-resolution
- AIM Generating Informative and Diverse Conversational Responses via Adversarial Information
 Maximization
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic
 Largette
- . ALI Adversarially Learned Inference (github)
- AlignGAN AlignGAN: Learning to Align Cross-Domain Images with Conditional Generative
 Adversarial Networks
- AlphaGAN AlphaGAN: Generative adversarial networks for natural image matting
- AM-GAN Activation Maximization Generative Adversarial Nets
- AmbientGAN AmbientGAN: Generative models from lossy measurements (github)
- AMC-GAN Video Prediction with Appearance and Motion Conditions
- AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guid Marker Discovery
- APD Adversarial Distillation of Bayesian Neural Network Posteriors
- APE-GAN APE-GAN: Adversarial Perturbation Elimination with GAN
- ARAE Adversarially Regularized Autoencoders for Generating Discrete Structures (github)
- ARDA Adversarial Representation Learning for Domain Adaptation
- ARIGAN ARIGAN: Synthetic Arabidopsis Plants using Generative Adversarial Network
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- ASDL-GAN Automatic Steganographic Distortion Learning Using a Generative Adversaria Network
- ATA-GAN Attention-Aware Generative Adversarial Networks (ATA-GANs)
- Attention-GAN Attention-GAN for Object Transfiguration in Wild Image:
- AttGAN Arbitrary Facial Attribute Editing: Only Change What You Want (github)
- AttnGAN AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks (github)
- AVID AVID: Adversarial Visual Irregularity Detection
- B-DCGAN B-DCGAN:Evaluation of Binarized DCGAN for FPGA
- b-GAN Generative Adversarial Nets from a Density Ratio Estimation Perspective
- BAGAN BAGAN: Data Augmentation with Balancing GAN
- Bayesian GAN Deep and Hierarchical Implicit Models
- Bayesian GAN Deep and Hierarchical implicit Models
- Bayesian GAN Bayesian GAN (github)
- BCGAN Bayesian Conditional Generative Adverserial Networks
- BCGAN Bidirectional Conditional Generative Adversarial networks
- BEAM Boltzmann Encoded Adversarial Machine
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BEGAN-CS Escaping from Collapsing Modes in a Constrained Space
- Bellman GAN Distributional Multivariate Policy Evaluation and Exploration with the Bellman

- BGAN Binary Generative Adversarial Networks for Image Retrieval (github)
- Bi-GAN Autonomously and Simultaneously Refining Deep Neural Network Parameters by a Bi-Generative Adversarial Network Aided Genetic Algorithm
- BicycleGAN Toward Multimodal Image-to-Image Translation (github)
- BiGAN Adversarial Feature Learning
- . BinGAN BinGAN: Learning Compact Binary Descriptors with a Regularized GAN
- BourGAN BourGAN: Generative Networks with Metric Embeddings
- BranchGAN Branched Generative Adversarial Networks for Multi-Scale Image Manifold
 Total Control of the Control of t
- BRE Improving GAN Training via Binarized Representation Entropy (BRE) Regularization

 (Editor)

 (Editor)

 (Editor)

 (Editor)
- BridgeGAN Generative Adversarial Frontal View to Bird View Synthesis
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- BubGAN BubGAN: Bubble Generative Adversarial Networks for Synthesizing Realistic Bubble
 Flour Images
- BWGAN Banach Wasserstein GAN
- C-GAN Face Aging with Contextual Generative Adversarial Nets
- C-RNN-GAN C-RNN-GAN: Continuous recurrent neural networks with adversarial training
 (althority)
- CA-GAN Composition-aided Sketch-realistic Portrait Generation
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks (github)
- CAN CAN: Creative Adversarial Networks, Generating Art by Learning About Styles and
 Designating from Style Norms
- CapsGAN CapsGAN: Using Dynamic Routing for Generative Adversarial Networks
- CapsuleGAN CapsuleGAN: Generative Adversarial Capsule Network
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial
- CatGAN CatGAN: Counled Adversarial Transfer for Domain Generation
- CausalGAN CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
- CC-GAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Network
 (Althub)
- cd-GAN Conditional Image-to-Image Translation
- CDcGAN Simultaneously Color-Depth Super-Resolution with Conditional Generative
- CE-GAN Deep Learning for Imbalance Data Classification using Class Expert Generative
 Advanced Internative
- CFG-GAN Composite Functional Gradient Learning of Generative Adversarial Mode
- CGAN Conditional Generative Adversarial Nets
- CGAN Controllable Generative Adversarial Network
- Chekhov GAN An Online Learning Approach to Generative Adversarial Networks
- ciGAN Conditional Infilling GANs for Data Augmentation in Mammogram Classification
- CinCGAN Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks
- CipherGAN Unsupervised Cipher Cracking Using Discrete GANs
- . ClusterGAN ClusterGAN: Latent Space Clustering in Generative Adversarial Networks
- CM-GAN CM-GANs: Cross-modal Generative Adversarial Networks for Common
- Representation Learning

 Coatt-GAN Are Very Talking to Ma? Represented Visual Dialog Generation through Advers
- CoAtt-GAN Are You Talking to Me? Reasoned Visual Dialog Generation through Adversarial Learning
- CoGAN Coupled Generative Adversarial Networks
- ComboGAN ComboGAN: Unrestrained Scalability for Image Domain Translation (github)
- ConceptGAN Learning Compositional Visual Concepts with Mutual Consistency
- Conditional cycleGAN Conditional CycleGAN for Attribute Guided Face Image Generation
- constrast-GAN Generative Semantic Manipulation with Contrasting GAN
- Context-RNN-GAN Contextual RNN-GANs for Abstract Reasoning Diagram Generation
 CorrGAN Correlated discrete data generation using adversarial training
- Coulomb GAN Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields
- Coulomb GAN Coulomb GANs: Provably Optimal Nash Equilibria via Potential Field
- Cover-GAN Generative Steganography with Kerckhoffs' Principle based on Generative Adversarial Networks
- cowboy Defending Against Adversarial Attacks by Leveraging an Entire GAN
- CR-GAN CR-GAN: Learning Complete Representations for Multi-view Generation
- Cramèr GAN The Cramer Distance as a Solution to Biased Wasserstein Gradients
- Cross-GAN Crossing Generative Adversarial Networks for Cross-View Person Re-identification
- CS-GAN Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CSG Speech-Driven Expressive Talking Lips with Conditional Sequential Generative Adversarial Networks
- CT-GAN CT-GAN: Conditional Transformation Generative Adversarial Network for Image Attribute Modification
- CVAE-GAN CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

GAN Improvements: Improved Loss Functions

Wasserstein GAN (WGAN)

Arjovsky, Chintala, and Bouttou, "Wasserstein GAN", 2017

WGAN with Gradient Penalty (WGAN-GP)

Gulrajani et al, "Improved Training of Wasserstein GANs", NeurIPS 2017

GAN Improvements: Higher Resolution

256 x 256 bedrooms

1024 x 1024 faces

Karras et al, "Progressive Growing of GANs for Improved Quality, Stability, and Variation", ICLR 2018

Justin Johnson Lecture 20 - 101 March 30, 2022

GAN Improvements: Higher Resolution

512 x 384 cars

Karras et al, "A Style-Based Generator Architecture for Generative Adversarial Networks", CVPR 2019

<u>Images</u> are licensed under <u>CC BY-NC 4.0</u>

Source: https://drive.google.com/drive/folders/1NFO7_vH0t98J13ckJYFd7kuaTkyeRJ86

StyleGAN2

Karras et al, "Analyzing and Improving the Image Quality of StyleGAN", CVPR 2020

Justin Johnson Lecture 20 - 104 March 30, 2022

Conditional GANs

Recall: Conditional Generative Models learn p(x|y) instead of p(x) Make generator and discriminator both take label y as an additional input!

Figure credit: Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Justin Johnson Lecture 20 - 105 March 30, 2022

Conditional GANs: Conditional Batch Normalization

Batch Normalization

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\sigma_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_{j})^{2}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_{j}}{\sqrt{\sigma_{j}^{2} + \epsilon}}$$

$$y_{i,j} = \gamma_{j} \hat{x}_{i,j} + \beta_{j}$$

Learn a separate scale and shift for each different label y

Conditional Batch Normalization

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\sigma_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_{j})^{2}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_{j}}{\sqrt{\sigma_{j}^{2} + \epsilon}}$$

$$y_{i,j} = \gamma_{j}^{y} \hat{x}_{i,j} + \beta_{j}^{y}$$

$$y_{i,j} = \boldsymbol{\gamma_j^y} \hat{x}_{i,j} + \boldsymbol{\beta_j^y}$$

Dumoulin et al, "A learned representation for artistic style", ICLR 2017

Conditional GANs: Spectral Normalization

Welsh springer spaniel

Fire truck

Daisy

Miyato et al, "Spectral Normalization for Generative Adversarial Networks", ICLR 2018

128x128 images on ImageNet

Conditional GANs: Self-Attention

Zhang et al, "Self-Attention Generative Adversarial Networks", ICML 2019

128x128 images on ImageNet

Justin Johnson Lecture 20 - 108 March 30, 2022

Conditional GANs: BigGAN

Brock et al, "Large Scale GAN Training for High Fidelity Natural Image Synthesis", ICLR 2019

512x512 images on ImageNet

Justin Johnson Lecture 20 - 109 March 30, 2022

Generating Videos with GANs

64x64 images, 48 frames

https://drive.google.com/file/d/1FjOQYdUuxPXvS8yeOhXdPQMapUQaklLi/view

128x128 images, 12 frames

https://drive.google.com/file/d/165Yxuvvu3viOy-39LhhSDGtczbWphj_i/view

Label Map to Image

Input: Label Map

Input: Style Image

Park et al, "Semantic Image Synthesis with Spatially-Adaptive Normalization", CVPR 2019

Label Map to Image

Input:

Image

Style

Input: Label Map

Park et al, "Semantic Image Synthesis with Spatially-Adaptive Normalization", CVPR 2019

Conditioning on more than labels! Text to Image

This bird is red and brown in color, with a stubby beak

A bird with a medium orange bill white body gray wings and webbed feet

This small black bird has a short, slightly curved bill and long legs

A group of people on skis stand in the snow

A street sign on a stoplight pole in the middle of a day

Zhang et al, "StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.", TPAMI 2018
Zhang et al, "StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks.", ICCV 2017
Reed et al, "Generative Adversarial Text-to-Image Synthesis", ICML 2016

Justin Johnson Lecture 20 - 113 March 30, 2022

Text to Image: DALL-E

Step 1: Train VQ-VAE (discrete grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt, sample new image codes; pass through VQ-VAE decoder to generate images

Ramesh et al, "Zero-Shot Text-to-Image Generation", ICML 2021

Text to Image: DALL-E

Step 1: Train VQ-VAE (discrete grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt, sample new image codes; pass through VQ-VAE decoder to generate images

an illustration of a baby hedgehog in a christmas sweater walking a dog

Ramesh et al, "Zero-Shot Text-to-Image Generation", ICML 2021

Text to Image: DALL-E

Step 1: Train VQ-VAE (discrete grid of latent codes)

Step 2: Train autoregressive
Transformer model to predict
sequence of latent codes
(Giant model on 250M
image/text pairs)

Step 3: Given text prompt, sample new image codes; pass through VQ-VAE decoder to generate images

a neon sign that reads "backprop". a neon sign that reads "backprop". backprop neon sign

Ramesh et al, "Zero-Shot Text-to-Image Generation", ICML 2021

VQ-GAN

Esser et al, "Taming Transformers for High-Resolution Image Synthesis", CVPR 2021

VQ-GAN (Semantic Segmentation to Image)

Esser et al, "Taming Transformers for High-Resolution Image Synthesis", CVPR 2021

Justin Johnson Lecture 20 - 118 March 30, 2022

Image Super-Resolution: Low-Res to High-Res

bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original

Ledig et al, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network", CVPR 2017

Justin Johnson Lecture 20 - 119 March 30, 2022

Image-to-Image Translation: Pix2Pix

Isola et al, "Image-to-Image Translation with Conditional Adversarial Nets", CVPR 2017

Justin Johnson Lecture 20 - 120 March 30, 2022

Unpaired Image-to-Image Translation: CycleGAN

Zhu et al, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV 2017

Justin Johnson Lecture 20 - 121 March 30, 2022

Unpaired Image-to-Image Translation: CycleGAN

Input Video: Horse Output Video: Zebra

https://www.youtube.com/watch?v=9reHvktowLY

Zhu et al, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV 2017

Justin Johnson Lecture 20 - 122 March 30, 2022

GANs: Not just for images! Trajectory Prediction

Gupta, Johnson, Li, Savarese, Alahi, "Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks", CVPR 2018

Justin Johnson Lecture 20 - 123 March 30, 2022

GAN Summary

Jointly train two networks:

Discriminator: Classify data as real or fake

Generator: Generate data that fools the discriminator

Under some assumptions, generator converges to true data distribution Many applications! Very active area of research!

Justin Johnson Lecture 20 - 124 March 30, 2022

Taxonomy of Generative Models

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Justin Johnson Lecture 20 - 125 March 30, 2022

Generative Models Summary

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{N} p_{\theta}(x_i|x_1, ..., x_{i-1})$$

Good image quality, can evaluate with perplexity. Slow to generate data, needs tricks to scale up.

Variational Autoencoders introduce a latent z, and maximize a lower bound:

$$p_{\theta}(x) = \int_{Z} p_{\theta}(x|z)p(z)dz \ge E_{z \sim q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Latent z allows for powerful interpolation and editing applications.

Generative Adversarial Networks give up on modeling p(x), but allow us to draw samples from p(x). Difficult to evaluate, but best qualitative results today

Justin Johnson Lecture 20 - 126 March 30, 2022

Next Time: Visualizing Models and Generating Images