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Lecture 20:
Generative Models, Part 2
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Admin: A4
A4 due yesterday, many people still working
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Admin: A5
A5 Released last night

Recurrent networks, image captioning, Transformers

Due Tuesday April 12th at 11:59pm ET
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Admin: Project Proposal
If you want to propose your own project:

Need to submit a project proposal by tomorrow, 4/1 on Piazza
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Last Time: Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.
5
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Last Time: Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Data: x

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density Function
p(x) assigns a positive number 
to each possible x; higher 
numbers mean x is more likely

Density functions 
are normalized:

Different values of x 
compete for density 

P(cat|.      )

P(dog|.      )
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Last Time: Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|      )
P(dog|      )

Discriminative model: No way for the model 
to handle unreasonable inputs; it must give 
label distributions for all images

Monkey image is CC0 Public Domain

P(cat|      )

P(dog|      )
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https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
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Last Time: Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Generative model: All possible images compete 
with each other for probability mass

Requires deep image understanding! Is a dog more likely to 
sit or stand? How about 3-legged dog vs 3-armed monkey?

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      )

P(      )

P(      )
P(      )

…
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Last Time: Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

We can build a conditional generative 
model from other components!

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

Conditional 
Generative Model

Discriminative Model

Prior over labels

(Unconditional) 
Generative Model
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Last Time: Taxonomy of Generative Models

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial 
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)

We will talk 
about these
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Last Time: Autoregressive Models

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Explicit Density Function
𝑝 𝑥 = 𝑝 𝑥", 𝑥#, 𝑥$, … , 𝑥%

= 𝑝 𝑥" 𝑝 𝑥# 𝑥")𝑝 𝑥$ 𝑥", 𝑥#)…
= ∏&'"

% 𝑝 𝑥& 𝑥", … , 𝑥&(")

Train by maximizing 
log-likelihood of 
training data

PixelRNN

PixelCNN
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Last Time: Variational Autoencoders

log 𝑝) 𝑥 ≥𝐸*~,!(*|/)[log 𝑝)(𝑥|𝑧)] − 𝐷12 𝑞3 𝑧 𝑥 , 𝑝 𝑧

Jointly train encoder q and decoder p to maximize 
the variational lower bound on the data likelihood

𝑝! 𝑥 | 𝑧 = 𝑁(𝜇"|$ , Σ"|$)𝑞% 𝑧 | 𝑥 = 𝑁(𝜇$|" , Σ$|")
Encoder Network Decoder Network

12
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Example: Fully-Connected VAE
x: 28x28 image, flattened to 784-dim vector
z: 20-dim vector

x: 784

𝑝! 𝑥 | 𝑧 = 𝑁(𝜇"|$ , Σ"|$)𝑞% 𝑧 | 𝑥 = 𝑁(𝜇$|" , Σ$|")
Encoder Network Decoder Network

Linear(784->400)

Linear(400->20) Linear(400->20)

μz|x: 20 ∑z|x: 20

z: 20

Linear(20->400)

Linear(400->768) Linear(400->768)

μx|z: 768 ∑x|z: 768
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Variational Autoencoders

Input 
Data

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

14
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Variational Autoencoders

Input 
Data

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

15
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Variational Autoencoders

Input 
Data

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!

16
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Variational Autoencoders

Input 
Data

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!

−𝐷!" 𝑞# 𝑧 𝑥 , 𝑝 𝑧 = .
$
𝑞# 𝑧 𝑥 log

𝑝 𝑧
𝑞# 𝑧 𝑥

𝑑𝑧

= .
$
𝑁 𝑧; 𝜇%|', Σ%|' log

𝑁 𝑧; 0, 𝐼
𝑁 𝑧; 𝜇%|', Σ%|'

𝑑𝑧

=
1
2
;

()*

+
1 + log Σ%|' (

,
− 𝜇%|' (

,
− Σ%|' (

,

Closed form solution when 
𝑞! is diagonal Gaussian and 
p is unit Gaussian! 
(Assume z has dimension J)

17
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Variational Autoencoders

Sample z from

Input 
Data

Latent 
code

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output

18
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Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent 
code

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples

19



Justin Johnson March 30, 2022Lecture 20 -

Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent 
code

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples
5. Original input data should be likely under 

the distribution output from (4)!
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Variational Autoencoders

Sample z from

Sample x from

Input 
Data

Decoder

Latent 
code

Reconstructed 
data

Encoder

𝐸"~$!("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples
5. Original input data should be likely under 

the distribution output from (4)!
6. Can sample a reconstruction from (4)

21
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Latent 
code

After training we can 
generate new data!

1. Sample z from prior p(z)

22
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Decoder

Latent 
code

After training we can 
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to 

get distribution over data x

23
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Sample x from
Decoder

Latent 
code

Sampled 
data

After training we can 
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to 

get distribution over data x
3. Sample from distribution in (2) to 

generate data

24
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Variational Autoencoders: Generating Data
32x32 CIFAR-10 Labeled Faces in the Wild

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. 

25
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Variational Autoencoders

Vary z1

Vary z2

The diagonal prior on p(z) causes 
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

26
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Variational Autoencoders

Input 
Data

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

27
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Variational Autoencoders

Sample z from

Input 
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output

28
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Variational Autoencoders

Sample z from

Input 
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code

Modified code

29
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Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a 

distribution over data sample

Modified code

30
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Variational Autoencoders

Sample z from

Sample x from

Input 
Data

Decoder

Latent code

Edited 
data

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a 

distribution over data samples
5. Sample new data from (4)

Modified code

31
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Variational Autoencoders

Vary z1

Degree of smile

Vary z2

Head pose

The diagonal prior on p(z) causes 
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders: Image Editing

Kulkarni et al, “Deep Convolutional Inverse Graphics Networks”, NeurIPS 2014
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Variational Autoencoder: Summary
Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian, e.g., Gaussian Mixture Models (GMMs)
- Incorporating structure in latent variables, e.g., Categorical Distributions

34
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So far: Two types of generative models

Variational models
- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Autoregressive models
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

35
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So far: Two types of generative models

Variational models
- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Autoregressive models
- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

Can we combine them and get the best of both worlds?

36
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Combining VAE + Autoregressive:
Vector-Quantized Variational Autoencoder (VQ-VAE2)
Train a VAE-like model to generate 
multiscale grids of latent codes

Use a multiscale PixelCNN to 
sample in latent code space

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

37
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Combining VAE + Autoregressive: VQ-VAE2

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

256 x 256 class-conditional samples, trained on ImageNet

38
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Combining VAE + Autoregressive: VQ-VAE2

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

256 x 256 class-conditional samples, trained on ImageNet

Spotted Salamander

Drake

Papillon

Pekinese

Redshank

39
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Combining VAE + Autoregressive: VQ-VAE2

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

1024 x 1024 generated faces, trained on FFHQ

40
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Combining VAE + Autoregressive: VQ-VAE2

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019

1024 x 1024 generated faces, trained on FFHQ

41
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Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

𝑝" 𝑥 =%
#$%

&

𝑝"(𝑥#|𝑥%, … , 𝑥#'%)

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝" 𝑥 = +
(
𝑝" 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸)~+! 𝑧 𝑥 [log 𝑝"(𝑥|𝑧)] − 𝐷,- 𝑞! 𝑧 𝑥 , 𝑝 𝑧

Generative Adversarial Networks give up on modeling p(x), but allow us to 
draw samples from p(x)
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Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

𝑝" 𝑥 =%
#$%

&

𝑝"(𝑥#|𝑥%, … , 𝑥#'%)

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝" 𝑥 = +
(
𝑝" 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸)~+! 𝑧 𝑥 [log 𝑝"(𝑥|𝑧)] − 𝐷,- 𝑞! 𝑧 𝑥 , 𝑝 𝑧

Generative Adversarial Networks give up on modeling p(x), but allow us to 
draw samples from p(x)
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Generative Models So Far:

Autoregressive Models directly maximize likelihood of training data:

𝑝" 𝑥 =%
#$%

&

𝑝"(𝑥#|𝑥%, … , 𝑥#'%)

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝" 𝑥 = +
(
𝑝" 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸)~+! 𝑧 𝑥 [log 𝑝"(𝑥|𝑧)] − 𝐷,- 𝑞! 𝑧 𝑥 , 𝑝 𝑧

Generative Adversarial Networks give up on modeling p(x), but allow us to 
draw samples from p(x)
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Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

45
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Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).
Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pG. Want pG = pdata!

46
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Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).
Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

Train Generator Network G to convert 
z into fake data x sampled from pG

47
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Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).
Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real Sample

Real
Train  Discriminator Network D to 
classify data as real or fake (1/0)

Train Generator Network G to convert 
z into fake data x sampled from pG
by ”fooling” the discriminator D

48
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Generative Adversarial Networks

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z).
Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real Sample

Real
Train  Discriminator Network D to 
classify data as real or fake (1/0)

Train Generator Network G to convert 
z into fake data x sampled from pG
by ”fooling” the discriminator D

Jointly train G and 
D. Hopefully pG
converges to pdata!
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

50



Justin Johnson March 30, 2022Lecture 20 -

Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Discriminator wants 
D(x) = 1 for real data

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Discriminator wants 
D(x) = 1 for real data

Discriminator wants 
D(x) = 0 for fake data

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Discriminator wants 
D(x) = 1 for real data

Discriminator wants 
D(x) = 0 for fake data

Generator wants 
D(x) = 1 for fake dataSample 

z from pz
z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

= min
𝑮
max
𝑫

𝑽(𝑮,𝑫)

Train G and D using alternating gradient updates
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

= min
𝑮
max
𝑫

𝑽(𝑮,𝑫) For t in 1, … T:
1. (Update D) 𝑫 = 𝑫+ 𝛼𝑫

:𝑽
:𝑫

2. (Update G) 𝑮 = 𝑮 − 𝛼𝑮
:𝑽
:𝑮

Train G and D using alternating gradient updates
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

= min
𝑮
max
𝑫

𝑽(𝑮,𝑫) For t in 1, … T:
1. (Update D) 𝑫 = 𝑫+ 𝛼𝑫

:𝑽
:𝑫

2. (Update G) 𝑮 = 𝑮 − 𝛼𝑮
:𝑽
:𝑮

Train G and D using alternating gradient updates

We are not minimizing any overall 
loss! No training curves to look at!
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

At start of training, generator is very bad
and discriminator can easily tell apart 
real/fake, so D(G(z)) close to 0
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

At start of training, generator is very bad
and discriminator can easily tell apart 
real/fake, so D(G(z)) close to 0
Problem: Vanishing gradients for G
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Generative Adversarial Networks: Training Objective

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

At start of training, generator is very bad
and discriminator can easily tell apart 
real/fake, so D(G(z)) close to 0
Problem: Vanishing gradients for G
Solution: Right now G is trained to
minimize log(1-D(G(z)). Instead, train G to
minimize –log(D(G(z)). Then G gets strong 
gradients at start of training!
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Generative Adversarial Networks: Optimality

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

min
𝑮
max
𝑫

𝐸/~6-./. log𝑫 𝑥 + 𝐸𝒛~6(𝒛) log 1 − 𝑫 𝑮 𝒛

Jointly train generator G and discriminator D with a minimax game

This minimax game achieves its global minimum when pG = pdata!

Why is this particular objective a good idea?
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

(Our objective so far)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~60 log 1 − 𝐷 𝑥

(Change of variables on second term)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~60 log 1 − 𝐷 𝑥

= min
4
max
5

!
!

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

(Definition of expectation)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~60 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

(Push maxD inside integral)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

𝑓 𝑦 = 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦

(Side computation to compute max)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

𝑓 𝑦 = 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦

𝑓>(𝑦) =
𝑎
𝑦
−

𝑏
1 − 𝑦
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

𝑓 𝑦 = 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦

𝑓>(𝑦) =
𝑎
𝑦
−

𝑏
1 − 𝑦

𝑓> 𝑦 = 0 ⟺ 𝑦 = =
=?@

(local max)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

𝑓 𝑦 = 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦

Optimal Discriminator:  𝐷4∗ 𝑥 = 6-./.(/)
6-./. / ?60(/)

𝑓>(𝑦) =
𝑎
𝑦
−

𝑏
1 − 𝑦

𝑓> 𝑦 = 0 ⟺ 𝑦 = =
=?@

(local max)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!
max
5

𝑝<=&= 𝑥 log𝐷 𝑥 + 𝑝4 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

Optimal Discriminator:  𝐷4∗ 𝑥 = 6-./.(/)
6-./. / ?60(/)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!

𝑝<=&= 𝑥 log𝐷4∗ 𝑥 + 𝑝4 𝑥 log 1 − 𝐷4∗ 𝑥 𝑑𝑥

Optimal Discriminator:  𝐷4∗ 𝑥 = 6-./.(/)
6-./. / ?60(/)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸/~6𝑮 log 1 − 𝐷 𝑥

= min
4
!
!

𝑝<=&= 𝑥 log𝐷4∗ 𝑥 + 𝑝4 𝑥 log 1 − 𝐷4∗ 𝑥 𝑑𝑥

Optimal Discriminator:  𝐷4∗ 𝑥 = 6-./.(/)
6-./. / ?60(/)

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥

= min
=

𝐸"~C!"#" log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

(Definition of expectation)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥

= min
=

𝐸"~C!"#" log
2
2

𝑝?@A@(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

+ 𝐸"~C$ log
2
2

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

(Multiply by a constant)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=
0
>

𝑝?@A@ 𝑥 log
𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝑝= 𝑥 log

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

𝑑𝑥

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

𝐸"~C!"#" log
2
2

𝑝?@A@(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

+ 𝐸"~C$ log
2
2

𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

Kullback-Leibler Divergence:

𝐾𝐿 𝑝, 𝑞 = 𝐸"~C log
𝑝(𝑥)
𝑞(𝑥)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

Kullback-Leibler Divergence:

𝐾𝐿 𝑝, 𝑞 = 𝐸"~C log
𝑝(𝑥)
𝑞(𝑥)
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

Kullback-Leibler Divergence:

𝐾𝐿 𝑝, 𝑞 = 𝐸"~C log
𝑝(𝑥)
𝑞(𝑥)

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

Jensen-Shannon Divergence:

𝐽𝑆𝐷 𝑝, 𝑞 =
1
2
𝐾𝐿 𝑝,

𝑝 + 𝑞
2

+
1
2
𝐾𝐿 𝑞,

𝑝 + 𝑞
2
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

Jensen-Shannon Divergence:

𝐽𝑆𝐷 𝑝, 𝑞 =
1
2
𝐾𝐿 𝑝,

𝑝 + 𝑞
2

+
1
2
𝐾𝐿 𝑞,

𝑝 + 𝑞
2
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

Jensen-Shannon Divergence:

𝐽𝑆𝐷 𝑝, 𝑞 =
1
2
𝐾𝐿 𝑝,

𝑝 + 𝑞
2

+
1
2
𝐾𝐿 𝑞,

𝑝 + 𝑞
2

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

Jensen-Shannon Divergence:

𝐽𝑆𝐷 𝑝, 𝑞 =
1
2
𝐾𝐿 𝑝,

𝑝 + 𝑞
2

+
1
2
𝐾𝐿 𝑞,

𝑝 + 𝑞
2

= min
=

𝐾𝐿 𝑝?@A@ ,
𝑝?@A@ + 𝑝=

2
+ 𝐾𝐿 𝑝= ,

𝑝?@A@ + 𝑝=
2

− log 4

= min
=

𝐸"~C!"#" log
2 ∗ 𝑝?@A@(𝑥)

𝑝?@A@ 𝑥 + 𝑝=(𝑥)
+ 𝐸"~C$ log

2 ∗ 𝑝=(𝑥)
𝑝?@A@ 𝑥 + 𝑝=(𝑥)

− log 4

JSD is always nonnegative, and zero only 
when the two distributions are equal!
Thus pdata = pG is the global min, QED
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

Summary: The global minimum of the minimax game happens when:
1. 𝐷=∗ 𝑥 = C!"#" "

C!"#" " EC$(")
(Optimal discriminator for any G)

2. 𝑝= 𝑥 = 𝑝?@A@(𝑥) (Optimal generator for optimal D) 
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Generative Adversarial Networks: Optimality

min
4
max
5

𝐸/~6-./. log𝐷 𝑥 + 𝐸*~6(*) log 1 − 𝐷 𝐺 𝑧

= min
=

2 ∗ 𝐽𝑆𝐷 𝑝?@A@ , 𝑝= − log 4

Summary: The global minimum of the minimax game happens when:
1. 𝐷=∗ 𝑥 = C!"#" "

C!"#" " EC$(")
(Optimal discriminator for any G)

2. 𝑝= 𝑥 = 𝑝?@A@(𝑥) (Optimal generator for optimal D) 

Caveats: 
1. G and D are neural nets with fixed architecture. We don’t know 

whether they can actually represent the optimal D and G.
2. This tells us nothing about convergence to the optimal solution
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Generative Adversarial Networks: Results

Nearest neighbor from training set

Generated samples

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014
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Generative Adversarial Networks: DC-GAN

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator
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Generative Adversarial Networks: DC-GAN

Radford et al, 
ICLR 2016

Samples 
from the 
model 
look 
much 
better!
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Generative Adversarial Networks: Interpolation

Radford et al, 
ICLR 2016

Interpolating 
between 
points in 
latent z 
space
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Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Smiling 
woman

Neutral 
woman

Neutral 
man

Samples 
from the 
model
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Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Smiling 
woman

Neutral 
woman

Neutral 
man

Samples 
from the 
model

Average Z 
vectors, do 
arithmetic
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Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Smiling 
woman

Neutral 
woman

Neutral 
man

Smiling ManSamples 
from the 
model

Average Z 
vectors, do 
arithmetic
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Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Man with 
glasses

Man w/o 
glasses

Woman 
w/o glasses

Samples 
from the 
model

Average Z 
vectors, do 
arithmetic
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Generative Adversarial Networks: Vector Math

Radford et al, ICLR 2016

Man with 
glasses

Man w/o 
glasses

Woman 
w/o glasses

Woman with 
glassesSamples 

from the 
model

Average Z 
vectors, do 
arithmetic
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2017 to present: Explosion of GANs

https://github.com/hindupuravinash/the-gan-zoo
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https://github.com/hindupuravinash/the-gan-zoo


Justin Johnson March 30, 2022Lecture 20 -

GAN Improvements: Improved Loss Functions

Arjovsky, Chintala, and Bouttou, “Wasserstein GAN”, 2017

Wasserstein GAN (WGAN) WGAN with Gradient Penalty 
(WGAN-GP)

Gulrajani et al, “Improved Training of 
Wasserstein GANs”, NeurIPS 2017
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GAN Improvements: Higher Resolution
256 x 256 bedrooms 1024 x 1024 faces

Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018 
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GAN Improvements: Higher Resolution
512 x 384 cars 1024 x 1024 faces

Karras et al, “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019 Images are licensed under CC BY-NC 4.0
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https://github.com/NVlabs/stylegan
https://creativecommons.org/licenses/by-nc/4.0/
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Karras et al, “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019
Video is licensed under CC BY-NC 4.0. 
Source: https://drive.google.com/drive/folders/1NFO7_vH0t98J13ckJYFd7kuaTkyeRJ86
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StyleGAN2

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020
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Conditional GANs
Recall: Conditional Generative Models learn p(x|y) instead of p(x)
Make generator and discriminator both take label y as an additional input!

z

y

Figure credit: Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Conditional GANs: Conditional Batch Normalization

Dumoulin et al, “A learned representation for artistic style”, ICLR 2017

Batch Normalization

𝜇. =
1
𝑁
A
#$%

&

𝑥#,.

𝜎.0 =
1
𝑁
A
#$%

&

𝑥#,. − 𝜇.
0

C𝑥#,. =
𝑥#,. − 𝜇.

𝜎.0 + 𝜖

𝑦#,. = 𝛾. C𝑥#,. + 𝛽.

Conditional Batch Normalization

𝜇. =
1
𝑁
A
#$%

&

𝑥#,.

𝜎.0 =
1
𝑁
A
#$%

&

𝑥#,. − 𝜇.
0

C𝑥#,. =
𝑥#,. − 𝜇.

𝜎.0 + 𝜖

𝑦#,. = 𝜸𝒋
𝒚 C𝑥#,. + 𝜷𝒋

𝒚

Learn a separate 
scale and shift 
for each 
different label y
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Conditional GANs: Spectral Normalization

Miyato et al, “Spectral Normalization for Generative Adversarial Networks”, ICLR 2018 128x128 images on ImageNet
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Conditional GANs: Self-Attention

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2019 128x128 images on ImageNet

Goldfish

Indigo 
bunting

Redshank

Saint 
Bernard
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Conditional GANs: BigGAN

Brock et al, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR 2019 512x512 images on ImageNet
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Generating Videos with GANs

128x128 images, 12 frames
https://drive.google.com/file/d/165Yxuvvu3viOy-39LhhSDGtczbWphj_i/view

64x64 images, 48 frames
https://drive.google.com/file/d/1FjOQYdUuxPXvS8yeOhXdPQMapUQaklLi/view

Clark et al, “Adversarial Video 
Generation on Complex 
Datasets”, arXiv 2019
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Label Map to Image Input: Label Map

Input: 
Style 
Image

Park et al, “Semantic Image Synthesis with Spatially-Adaptive Normalization”, CVPR 2019
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Label Map to Image Input: Label Map

Input: 
Style 
Image

Park et al, “Semantic Image Synthesis with Spatially-Adaptive Normalization”, CVPR 2019
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Conditioning on more than labels! Text to Image

Zhang et al, “StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.”, TPAMI 2018
Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks.”, ICCV 2017
Reed et al, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
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Text to Image: DALL-E

Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021

114

Step 1: Train VQ-VAE (discrete 
grid of latent codes)

Step 2: Train autoregressive 
Transformer model to predict 
sequence of latent codes
(Giant model on 250M 
image/text pairs) 

Step 3: Given text prompt, 
sample new image codes; pass 
through VQ-VAE decoder to 
generate images
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Text to Image: DALL-E

Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021
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Step 1: Train VQ-VAE (discrete 
grid of latent codes)

Step 2: Train autoregressive 
Transformer model to predict 
sequence of latent codes
(Giant model on 250M 
image/text pairs) 

Step 3: Given text prompt, 
sample new image codes; pass 
through VQ-VAE decoder to 
generate images an illustration of a baby hedgehog in 

a christmas sweater walking a dog
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Text to Image: DALL-E

Ramesh et al, “Zero-Shot Text-to-Image Generation”, ICML 2021
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Step 1: Train VQ-VAE (discrete 
grid of latent codes)

Step 2: Train autoregressive 
Transformer model to predict 
sequence of latent codes
(Giant model on 250M 
image/text pairs) 

Step 3: Given text prompt, 
sample new image codes; pass 
through VQ-VAE decoder to 
generate images a neon sign that reads “backprop”. a neon sign 

that reads “backprop”. backprop neon sign
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VQ-GAN

117

Esser et al, “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021
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VQ-GAN (Semantic Segmentation to Image)

118

Esser et al, “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021
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Image Super-Resolution: Low-Res to High-Res

Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2017
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Image-to-Image Translation: Pix2Pix

Isola et al, “Image-to-Image Translation with Conditional Adversarial Nets”, CVPR 2017
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Unpaired Image-to-Image Translation: CycleGAN

Zhu et al, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017
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Unpaired Image-to-Image Translation: CycleGAN

Zhu et al, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017

https://www.youtube.com/watch?v=9reHvktowLY

Input Video: Horse Output Video: Zebra
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GANs: Not just for images! Trajectory Prediction

Gupta, Johnson, Li, Savarese, Alahi, “Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks”, CVPR 2018
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GAN Summary

Jointly train two networks:
Discriminator: Classify data as real or fake
Generator: Generate data that fools the discriminator

Sample 
z from pz

z

Generator 
Network

G

Generated 
Sample

D

Discriminator 
Network

Fake

Real

Under some assumptions, generator converges to true data distribution
Many applications! Very active area of research!
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial 
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)

We will talk 
about these
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Generative Models Summary
Autoregressive Models directly maximize likelihood of training data:

𝑝" 𝑥 =%
#$%

&

𝑝"(𝑥#|𝑥%, … , 𝑥#'%)

Good image quality, can evaluate with perplexity. Slow to generate data, needs 
tricks to scale up.

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝" 𝑥 = +
(
𝑝" 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸)~+! 𝑧 𝑥 [log 𝑝"(𝑥|𝑧)] − 𝐷,- 𝑞! 𝑧 𝑥 , 𝑝 𝑧

Latent z allows for powerful interpolation and editing applications.

Generative Adversarial Networks give up on modeling p(x), but allow us to 
draw samples from p(x). Difficult to evaluate, but best qualitative results today
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Next Time:
Visualizing Models and 

Generating Images
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