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Lecture 19:
Generative Models, Part 1
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Admin: Midterm grades
Many students did worse on midterm than homework; this is typical!
Overall course will be curved if needed (but only to your benefit)

2

WI2022 Midterm Grade Distribution
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Admin: Midterm grades
Many students did worse on midterm than homework; this is typical!
Overall course will be curved if needed (but only to your benefit)
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WI2022 Midterm Grade Distribution FA2020 Course Grade Cutoffs / Distribution

A+: 98% / 5.8%
A: 90.5% / 58.7%
A-: 88.5% / 11.6%
B+: 86 / 11.6%
B: 81 / 5.8%
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Admin: A4
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Object Detection: FCOS, Faster R-CNN

Due Tuesday, 3/29/2022, 11:59pm ET

See Piazza for updates to Faster R-CNN:
- Small changes to improve mAP
- Hand-grading rubric
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Admin: A5
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Recurrent networks, Transformers

Should be out tonight, due Monday April 11, 11:59pm ET
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Last Time: Vision Transformer (ViT)
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Today:
Generative Models, Part 1

7



Justin Johnson March 28, 2022Lecture 19 -

Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

DOG, DOG, CAT
This image is CC0 public domain

Object Detection
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Semantic Segmentation

GRASS, CAT, TREE, SKY

10
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Image captioning

A cat sitting on a 
suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

11

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.
12
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Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Clustering
(e.g. K-Means)

This image is CC0 public domain
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https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Dimensionality Reduction
(e.g. Principal Components Analysis)

This image from Matthias Scholz  is CC0 public domain

3D 2D

14

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Feature Learning
(e.g. autoencoders)

15
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Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Density Estimation

Images left and right are CC0 public domain

16

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.
17
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y) Cat

Data: x

Label: y

18
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y) Cat

Data: x

Label: y

Probability Recap:

Density Function
p(x) assigns a positive 
number to each possible 
x; higher numbers mean 
x is more likely

19

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density functions 
are normalized:

Different values of x 
compete for density 



Justin Johnson March 28, 2022Lecture 19 -

Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Data: x

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density Function
p(x) assigns a positive number 
to each possible x; higher 
numbers mean x is more likely

Density functions 
are normalized:

Different values of x 
compete for density 

P(cat|.      )

P(dog|.      )

20
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|.      )

P(dog|.      )

P(cat|      )

P(dog|      )

Discriminative model: the possible labels for 
each input ”compete” for probability mass. 
But no competition between images

Dog image is CC0 Public Domain

21

https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|      )
P(dog|      )

Discriminative model: No way for the model 
to handle unreasonable inputs; it must give 
label distributions for all images

Monkey image is CC0 Public Domain

P(cat|      )

P(dog|      )

22

https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|      )
P(dog|      )

Discriminative model: No way for the model 
to handle unreasonable inputs; it must give 
label distributions for all images

P(cat|      )
P(dog|      )

Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

23

https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Generative model: All possible images compete 
with each other for probability mass

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      )

P(      )

P(      )
P(      )

…

24

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Generative model: All possible images compete 
with each other for probability mass

Requires deep image understanding! Is a dog more likely to 
sit or stand? How about 3-legged dog vs 3-armed monkey?

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      )

P(      )

P(      )
P(      )

…

25

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/


Justin Johnson March 28, 2022Lecture 19 -

Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Generative model: All possible images compete 
with each other for probability mass

Model can “reject” unreasonable inputs by 
assigning them small values

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      )

P(      )

P(      )
P(      )

…
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Conditional Generative Model: Each possible 
label induces a competition among all images

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      |cat) P(      |cat)

P(      |cat)

P(      |cat)

…
P(      |dog) P(      |dog)

P(      |dog)
P(      |dog)
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

28

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

We can build a conditional generative 
model from other components!

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

Conditional 
Generative Model

Discriminative Model

Prior over labels

(Unconditional) 
Generative Model

29

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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What can we do with a discriminative model?

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data
Feature learning (with labels)

30
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What can we do with a generative model?

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

31
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What can we do with a generative model?

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

Assign labels, while rejecting outliers!
Generate new data conditioned on input labels

32
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Taxonomy of Generative Models

Generative models

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

33
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

34
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)

35
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)

36
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial 
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)

37
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial 
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)

We will talk 
about these

38
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Autoregressive models

39
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Explicit Density Estimation
Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

40
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Explicit Density Estimation
Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(#), 𝑥(%), … 𝑥 & , train the model by solving:

Maximize probability of training data 
(Maximum likelihood estimation)𝑊∗ = argmax

(
2

)
𝑝(𝑥 ) )

41
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Explicit Density Estimation
Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(#), 𝑥(%), … 𝑥 & , train the model by solving:

Maximize probability of training data 
(Maximum likelihood estimation)𝑊∗ = argmax

(
2

)
𝑝(𝑥 ) )

= argmax
*

∑) log 𝑝(𝑥 ) ) Log trick to exchange product for sum

42
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Explicit Density Estimation
Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(#), 𝑥(%), … 𝑥 & , train the model by solving:

Maximize probability of training data 
(Maximum likelihood estimation)𝑊∗ = argmax

(
2

)
𝑝(𝑥 ) )

= argmax
*

∑) log 𝑝(𝑥 ) )

= argmax
*

∑) log 𝑓(𝑥 ) ,𝑊)

Log trick to exchange product for sum

This will be our loss function! 
Train with gradient descent

43
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Explicit Density: Autoregressive Models
Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥!, 𝑥", 𝑥#, … , 𝑥$
Assume x consists of 
multiple subparts:

44
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Explicit Density: Autoregressive Models
Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥!, 𝑥", 𝑥#, … , 𝑥$
Assume x consists of 
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥!, 𝑥", 𝑥#, … , 𝑥$
= 𝑝 𝑥! 𝑝 𝑥" 𝑥!)𝑝 𝑥# 𝑥!, 𝑥")…

Break down probability 
using the chain rule:

45
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Explicit Density: Autoregressive Models
Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥!, 𝑥", 𝑥#, … , 𝑥$
Assume x consists of 
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥!, 𝑥", 𝑥#, … , 𝑥$
= 𝑝 𝑥! 𝑝 𝑥" 𝑥!)𝑝 𝑥# 𝑥!, 𝑥")…
= ∏%&!

$ 𝑝 𝑥% 𝑥!, … , 𝑥%'!)

Break down probability 
using the chain rule:

Probability of the next subpart 
given all the previous subparts

46
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Explicit Density: Autoregressive Models
Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥!, 𝑥", 𝑥#, … , 𝑥$
Assume x consists of 
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥!, 𝑥", 𝑥#, … , 𝑥$
= 𝑝 𝑥! 𝑝 𝑥" 𝑥!)𝑝 𝑥# 𝑥!, 𝑥")…
= ∏%&!

$ 𝑝 𝑥% 𝑥!, … , 𝑥%'!)

Break down probability 
using the chain rule:

Probability of the next subpart 
given all the previous subparts

x0

h1

p(x1)

x1

h2

p(x2)

x2

h3

p(x3)

x3

h4

p(x4) We’ve already 
seen this! 
Language 
modeling with 
an RNN!

47
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above 
and to the left:
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above 
and to the left:
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PixelRNN

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above 
and to the left:

Problem: Very slow during both 
training and testing; N x N image 
requires 2N-1 sequential steps
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PixelCNN

Still generate image pixels starting from corner

Dependency on previous pixels now modeled 
using a CNN over context region

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016
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PixelCNN

Still generate image pixels starting from corner

Dependency on previous pixels now modeled 
using a CNN over context region

Training: maximize likelihood of training images

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Softmax loss 
at each pixel
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PixelCNN

Still generate image pixels starting from corner

Dependency on previous pixels now modeled 
using a CNN over context region

Training: maximize likelihood of training images

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Softmax loss 
at each pixel

Training is faster than PixelRNN
(can parallelize convolutions since context 
region values known from training images)

Generation must still proceed sequentially
=> still slow
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PixelRNN: Generated Samples

32x32 CIFAR-10 32x32 ImageNet
Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

61



Justin Johnson March 28, 2022Lecture 19 -

Autoregressive Models: PixelRNN and PixelCNN
Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)

Pros:
- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data 

gives good evaluation metric
- Good samples

Con:
- Sequential generation => slow
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Variational Autoencoders
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Variational Autoencoders

PixelRNN / PixelCNN explicitly parameterizes density function with a neural 
network, so we can train to maximize likelihood of training data:

Variational Autoencoders (VAE) define an intractable density that we 
cannot explicitly compute or optimize

But we will be able to directly optimize a lower bound on the density

p!(𝑥) =&
"#$

%

𝑝! 𝑥" 𝑥$, … , 𝑥"&$)
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Variational Autoencoders
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(Regular, non-variational) Autoencoders
Unsupervised method for learning feature vectors from raw data x, without any labels

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful 
information (maybe object identities, 
properties, scene type, etc) that we 
can use for downstream tasks

Input Data
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(Regular, non-variational) Autoencoders
Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful 
information (maybe object identities, 
properties, scene type, etc) that we 
can use for downstream tasks
But we can’t observe features!

Input Data
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(Regular, non-variational) Autoencoders
Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Idea: Use the features to reconstruct the input data with a decoder
“Autoencoding” = encoding itself

Decoder

Reconstructed 
input data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Input Data
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

'𝑥 − 𝑥 !
!

Input Data

Does not use any 
labels! Just raw data!
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

'𝑥 − 𝑥 !
!

Input Data

Does not use any 
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

'𝑥 − 𝑥 !
!

Input Data

Does not use any 
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers

Features need to be 
lower dimensional
than the data
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Decoder

Reconstructed 
input data

After training, 
throw away decoder
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Classifier

Predicted Label

Loss function 
(Softmax, etc)

Fine-tune
encoder
jointly with
classifier

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)
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(Regular, non-variational) Autoencoders

Encoder

Input data

Features

Autoencoders learn latent features for data without any labels!
Can use features to initialize a supervised model
Not probabilistic: No way to sample new data from learned model

Decoder

Reconstructed 
input data
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Variational Autoencoders

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data
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Variational Autoencoders

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 
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Variational Autoencoders

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

If we could observe the z for each x, then 
could train a conditional generative model
p(x|z)

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Ok, can compute this with decoder network

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Ok, we assumed Gaussian prior for z

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝' 𝑥 = *𝑝' 𝑥, 𝑧 𝑑𝑧 = *𝑝' 𝑥 𝑧 𝑝' 𝑧 𝑑𝑧

Problem: Impossible to integrate over all z!

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, compute with 
decoder network

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, we assumed 
Gaussian prior

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Problem: No way 
to compute this!𝑝' 𝑥 =

𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Solution: Train 
another network 

(encoder) that learns 
𝑞! 𝑧 𝑥) ≈ 𝑝" 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝' 𝑥 =
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑝' 𝑧 𝑥)

≈
𝑝' 𝑥 𝑧)𝑝' 𝑧
𝑞( 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Use encoder to compute 𝑞) 𝑧 𝑥) ≈ 𝑝* 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is 
generated from unobserved (latent) 
representation z
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Variational Autoencoders

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+) 𝑞( 𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))

Decoder network inputs 
latent code z, gives 
distribution over data x

Encoder network inputs 
data x, gives distribution 
over latent codes z

If we can ensure that 
𝑞( 𝑧 𝑥) ≈ 𝑝' 𝑧 𝑥), 

then we can approximate 

𝑝' 𝑥 ≈
𝑝' 𝑥 𝑧)𝑝(𝑧)
𝑞( 𝑧 𝑥)

Idea: Jointly train both 
encoder and decoder
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥)

Bayes’ Rule
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

Multiply top and bottom by qΦ(z|x)
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= log 𝑝( 𝑥 𝑧 − log
𝑞) 𝑧|𝑥
𝑝(𝑧) + log

𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

Split up using rules for logarithms
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= log 𝑝( 𝑥 𝑧 − log
𝑞) 𝑧|𝑥
𝑝(𝑧) + log

𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

c

c

c

Split up using rules for logarithms
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= log 𝑝( 𝑥 𝑧 − log
𝑞) 𝑧|𝑥
𝑝(𝑧) + log

𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

log 𝑝( 𝑥 = 𝐸*~,'(*|/) log 𝑝((𝑥)
We can wrap in an 
expectation since it 
doesn’t depend on z
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Variational Autoencoders

log 𝑝( 𝑥 = 𝐸*~,'(*|/) log 𝑝((𝑥)
We can wrap in an 
expectation since it 
doesn’t depend on z

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )

Data reconstruction
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )
KL divergence between prior, and 
samples from the encoder network
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )
KL divergence between encoder 
and posterior of decoder
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )
KL is >= 0, so dropping this term gives a 
lower bound on the data likelihood:
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Variational Autoencoders

log 𝑝((𝑥) = log
𝑝( 𝑥 𝑧)𝑝(𝑧)
𝑝( 𝑧 𝑥) = log

𝑝( 𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝( 𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥 )

log 𝑝+ 𝑥 ≥ 𝐸,~.!(,|0)[log 𝑝+(𝑥|𝑧)] − 𝐷12 𝑞3 𝑧 𝑥 , 𝑝 𝑧
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Variational Autoencoders

log 𝑝+ 𝑥 ≥𝐸,~.!(,|0)[log 𝑝+(𝑥|𝑧)] − 𝐷12 𝑞3 𝑧 𝑥 , 𝑝 𝑧

Jointly train encoder q and decoder p to maximize 
the variational lower bound on the data likelihood
Also called Evidence Lower Bound (ELBo)

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+)𝑞( 𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))
Encoder Network Decoder Network
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Example: Fully-Connected VAE
x: 28x28 image, flattened to 784-dim vector
z: 20-dim vector

x: 784

𝑝' 𝑥 | 𝑧 = 𝑁(𝜇)|+ , Σ)|+)𝑞( 𝑧 | 𝑥 = 𝑁(𝜇+|) , Σ+|))
Encoder Network Decoder Network

Linear(784->400)

Linear(400->20) Linear(400->20)

μz|x: 20 ∑z|x: 20

z: 20

Linear(20->400)

Linear(400->768) Linear(400->768)

μx|z: 768 ∑x|z: 768
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Variational Autoencoders

Input 
Data

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound
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Variational Autoencoders

Input 
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

108



Justin Johnson March 28, 2022Lecture 19 -

Variational Autoencoders

Input 
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
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Variational Autoencoders

Input 
Data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!

−𝐷!" 𝑞# 𝑧 𝑥 , 𝑝 𝑧 = 4
$
𝑞# 𝑧 𝑥 log

𝑝 𝑧
𝑞# 𝑧 𝑥

𝑑𝑧

= 4
$
𝑁 𝑧; 𝜇%|', Σ%|' log

𝑁 𝑧; 0, 𝐼
𝑁 𝑧; 𝜇%|', Σ%|'

𝑑𝑧

=
1
2
A

()*

+
1 + log Σ%|' (

,
− 𝜇%|' (

,
− Σ%|' (

,

Closed form solution when 
𝑞) is diagonal Gaussian and 
p is unit Gaussian! 
(Assume z has dimension J)
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Variational Autoencoders

Sample z from

Input 
Data

Latent 
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
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Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent 
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples
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Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent 
code

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples
5. Original input data should be likely under 

the distribution output from (4)!
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Variational Autoencoders

Sample z from

Sample x from

Input 
Data

Decoder

Latent 
code

Reconstructed 
data

Encoder

𝐸"~$#("|')[log 𝑝)(𝑥|𝑧)] − 𝐷*+ 𝑞, 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 
variational lower bound

1. Run input data through encoder to get a 
distribution over latent codes

2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output
4. Run sampled code through decoder to get a 

distribution over data samples
5. Original input data should be likely under 

the distribution output from (4)!
6. Can sample a reconstruction from (4)
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Latent 
code

After training we can 
generate new data!

1. Sample z from prior p(z)
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Decoder

Latent 
code

After training we can 
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to 

get distribution over data x
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Variational Autoencoders: Generating Data

Sample z from 
prior p(z)

Sample x from
Decoder

Latent 
code

Sampled 
data

After training we can 
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to 

get distribution over data x
3. Sample from distribution in (2) to 

generate data

117



Justin Johnson March 28, 2022Lecture 19 -

Variational Autoencoders: Generating Data
32x32 CIFAR-10 Labeled Faces in the Wild

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. 
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Variational Autoencoders

Vary z1

Vary z2

The diagonal prior on p(z) causes 
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders

Input 
Data

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes
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Variational Autoencoders

Sample z from

Input 
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
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Variational Autoencoders

Sample z from

Input 
Data

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code

Modified code
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Variational Autoencoders

Sample z from

Input 
Data

Decoder

Latent code

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a 

distribution over data sample

Modified code

123



Justin Johnson March 28, 2022Lecture 19 -

Variational Autoencoders

Sample z from

Sample x from

Input 
Data

Decoder

Latent code

Edited 
data

Encoder

After training we can edit images

1. Run input data through encoder to get a 
distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled code
4. Run modified z through decoder to get a 

distribution over data samples
5. Sample new data from (4)

Modified code
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Variational Autoencoders

Vary z1

Degree of smile

Vary z2

Head pose

The diagonal prior on p(z) causes 
dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders: Image Editing

Kulkarni et al, “Deep Convolutional Inverse Graphics Networks”, NeurIPS 2014
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Variational Autoencoder: Summary
Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian, e.g., Gaussian Mixture Models (GMMs)
- Incorporating structure in latent variables, e.g., Categorical Distributions
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Next Time:
Generative Models, part 2

More Variational Autoencoders,
Generative Adversarial Networks
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