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Lecture 18:
Vision Transformers
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Admin: Grading
• A3 grades Will be out today or tomorrow
• Midterm: Submit regrade requests by tonight on Piazza
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Admin: PyTorch Tutorial
• A4 – A6 require deeper PyTorch knowledge than A1 – A3
• Instead of just PyTorch tensors, you also need to use autograd, 

modules, optimizers, learning rate schedules, etc
• We have prepared a PyTorch tutorial that walks through these 

concepts in the case of image classification:
https://piazza.com/class/kxtai72amx34p0?cid=765
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https://piazza.com/class/kxtai72amx34p0?cid=765
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Admin: A4

Object Detection: FCOS, Faster R-CNN

Due Tuesday, 3/29/2022, 11:59pm ET

Updated A4 starter code out yesterday:
- Incorporates clarifications / documentation improvements from Piazza
- No functional code changes: you can copy-paste all your code from 

previous to current version and everything should still work
- Optional: if you are not confused, can keep going with original release
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Admin: A4

• Autograder will be out (hopefully?) tomorrow
• We will give more autograder submissions (10/day)
• No tricky hidden test cases
• If you get good final AP, its very likely you are ok
• Autograding:
• Very light
• Make sure your code is vectorized
• Make sure you didn’t hardcode any image dimensions, feature 

dimensions, number of layers, etc
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Admin: Project
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Project details are available here:
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/project.html

Project options:
- Image Classification
- Single-Image Super-Resolution
- Novel View Synthesis with NeRF
- Choose Your Own

For Choose Your Own project: need to submit a project proposal by Friday April 
1, 11:59 ET. Make a private post on Piazza under tag “project-proposal”. This is 
not graded, but we need to ok the project.

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/project.html
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Today: Vision Transformers

But first…
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Recall: ever-more powerful 
compute devices have been key 
for the success of deep learning
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Best GPU money can buy: NVIDA A100

9

Memory:
Capacity: 40/80 GB HBM2
Bandwidth: 1.5/2.0 TB/sec

Compute:
FP64: 9.7 TFLOP/sec
FP32: 19.5 TFLOP/sec
BF16: 39 TFLOP/sec
FP16: 78 TFLOP/sec

FLOP = “Floating Point Operation”; one addition, multiplication, etc
TFLOP = 1 trillion FLOPs (1012)
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Best GPU money can buy: NVIDA A100

10

Memory:
Capacity: 40/80 GB HBM2
Bandwidth: 1.5/2.0 TB/sec

Compute:
FP64: 9.7 TFLOP/sec
FP32: 19.5 TFLOP/sec
BF16: 39 TFLOP/sec
FP16: 78 TFLOP/sec

Tensor Cores:
TF32: 156 TFLOP/sec
FP16/BF16: 312 TFLOP/sec

FLOP = “Floating Point Operation”; one addition, multiplication, etc
TFLOP = 1 trillion FLOPs (1012)
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Yesterday: New NVIDIA H100 GPU
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Memory:
Capacity: 40/80 GB HBM3
Bandwidth: 3.0 TB/sec (1.5x better)

Compute:
FP64: 30 TFLOP/sec (3x better)
FP32: 60 TFLOP/sec (3x better)
BF16: 120 TFLOP/sec (3x better)
FP16: 120 TFLOP/sec (1.5x better)

Tensor Cores:
TF32: 500 TFLOP/sec (3.2x better)
FP16/BF16: 1000 TFLOP/sec (3.2x better)

FLOP = “Floating Point Operation”; one addition, multiplication, etc
TFLOP = 1 trillion FLOPs (1012)
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Yesterday: New NVIDIA H100 GPU

12

Memory:
Capacity: 40/80 GB HBM3
Bandwidth: 3.0 TB/sec (1.5x better)

Compute:
FP64: 30 TFLOP/sec (3x better)
FP32: 60 TFLOP/sec (3x better)
BF16: 120 TFLOP/sec (3x better)
FP16: 120 TFLOP/sec (1.5x better)

Tensor Cores:
TF32: 500 TFLOP/sec (3.2x better)
FP16/BF16: 1000 TFLOP/sec (3.2x better)

FLOP = “Floating Point Operation”; one addition, multiplication, etc
TFLOP = 1 trillion FLOPs (1012)

What are these?
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Floating Point Formats −𝟏 𝑺 𝟐𝑬#𝒃𝒊𝒂𝒔 1 +
𝑀
2 (
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FP32

Si
gn

Exponent
(Range)

Mantissa
(Precision)

8 bits 23 bits

Floating Point Formats −𝟏 𝑺 𝟐𝑬#𝒃𝒊𝒂𝒔 1 +
𝑀
2 (

“Single precision”: Standard 
datatype for deep learning

Bits are expensive: take memory, 
takes time to move them around,
Multiplication is quadratic in #bits
Can we use fewer than 32 bits?
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FP32

Si
gn

Exponent
(Range)

Mantissa
(Precision)

FP16

8 bits 23 bits

5 bits 10 bits

Floating Point Formats −𝟏 𝑺 𝟐𝑬#𝒃𝒊𝒂𝒔 1 +
𝑀
2 (

“Half precision”: lower precision and lower 
range than FP32

Problem: Range is too small! Largest number 
is 65,504. Often overflows during training.
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FP32

Si
gn

Exponent
(Range)

Mantissa
(Precision)

FP16

BF16

8 bits 23 bits

5 bits

8 bits

10 bits

7 bits

Floating Point Formats −𝟏 𝑺 𝟐𝑬#𝒃𝒊𝒂𝒔 1 +
𝑀
2 (

“Brain Floating Point” 
(from Google Brain): 
Same range as FP32, 
lower precision.

Used in Google TPUs
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FP32

Si
gn

Exponent
(Range)

Mantissa
(Precision)

FP16

BF16

TF32

8 bits 23 bits

5 bits

8 bits

8 bits

10 bits

7 bits

10 bits

Floating Point Formats −𝟏 𝑺 𝟐𝑬#𝒃𝒊𝒂𝒔 1 +
𝑀
2 (

TF32: ”TensorFloat 32”; 
same range as FP32, same 
precision as FP16. Used in 
recent NVIDIA GPUs.

(Confusing name, it is a 
19-bit format…)



Justin Johnson March 23, 2022Lecture 18 - 18

Mixed Precision
We often need to compute dot products (for matrix multiply, convolution, etc):

𝑦 = 𝑥!𝑤! + 𝑥"𝑤" +⋯+ 𝑥#𝑤#
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Mixed Precision
We often need to compute dot products (for matrix multiply, convolution, etc):

𝑦 = 𝑥!𝑤! + 𝑥"𝑤" +⋯+ 𝑥#𝑤#

Multiplication is more expensive than addition
Idea: Multiply in low precision, add in high precision
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Mixed Precision
We often need to compute dot products (for matrix multiply, convolution, etc):

𝑦 = 𝑥!𝑤! + 𝑥"𝑤" +⋯+ 𝑥#𝑤#

Multiplication is more expensive than addition
Idea: Multiply in low precision, add in high precision

Inputs: 𝑥$, 𝑤$ in low precision (FP16, BF16, TF32)
Output: 𝑦 in high precision (FP32)

𝑦 = 𝐹𝑃32 𝑥!𝑤! + 𝐹𝑃32 𝑥"𝑤" +⋯+ 𝐹𝑃32(𝑥#𝑤#)
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Mixed Precision
We often need to compute dot products (for matrix multiply, convolution, etc):

𝑦 = 𝑥!𝑤! + 𝑥"𝑤" +⋯+ 𝑥#𝑤#

Multiplication is more expensive than addition
Idea: Multiply in low precision, add in high precision

Inputs: 𝑥$, 𝑤$ in low precision (FP16, BF16, TF32)
Output: 𝑦 in high precision (FP32)

𝑦 = 𝐹𝑃32 𝑥!𝑤! + 𝐹𝑃32 𝑥"𝑤" +⋯+ 𝐹𝑃32(𝑥#𝑤#)

Tensor Cores in NVIDIA GPUs are special hardware for mixed-precision matrix 
multiplication with different low-precision formats (TF32, BF16 best for neural nets)
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Yesterday: New NVIDIA H100 GPU

22
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Yesterday: New NVIDIA H100 GPU

23

80 GB of HBM3 memory
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Yesterday: New NVIDIA H100 GPU
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80 GB of HBM3 memory Processing cores



Justin Johnson March 23, 2022Lecture 18 -

Yesterday: New NVIDIA H100 GPU
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Yesterday: New NVIDIA H100 GPU

26

144 “Streaming Multiprocessors”:
Independent multicore 

processors

(only 132/144 are enabled due to
issues with yield)
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H100 SM

27

Each SM has 4 subunits that can each 
simultaneously execute 32 threads (1 warp)

32 FP32 cores per subunit; each can compute 
y = ax + b per clock cycle (1 multiply-add = 2 FLOPs)
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H100 SM

28

Each SM has 4 subunits that can each 
simultaneously execute 32 threads (1 warp)

32 FP32 cores per subunit; each can compute 
y = ax + b per clock cycle (1 multiply-add = 2 FLOPs)

(132 SMs/GPU) * (128 cores/SM)
* (2 FLOPs/core/cycle) * (1.775 * 109 cycles/sec)
= 60 * 109 FLOPs/GPU/sec
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H100 SM

29

Each SM has 4 subunits that can each simultaneously 
execute 32 threads (1 warp)

32 FP32 cores per subunit; each can compute 
y = ax + b per clock cycle (1 multiply-add = 2 FLOPs)

4 Tensor cores per subunit; each can do one tiny 
matrix multiply per clock: [4 x 16] * [16 x 8] = [4 x 8]
(FP16/FP32, 4*8*16*2 FLOPs = 1024 FLOPs)
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H100 GPU: Expect Bigger Models!

30
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Last Time: Attention

31

s0 s1

[START]

y0

y1

seagull

c1

CNN h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

h1,1 h1,2 h1,3

softmax

Alignment	scores Attention	weights

a2,2,1 a2,2,2 a2,2,3

a2,3,1 a2,3,2 a2,3,3

a2,1,1 a2,1,2 a2,1,3

e2,2,1 e2,2,2 e2,2,3

e2,3,1 e2,3,2 e2,3,3

e2,1,1 e2,1,2 e2,1,3et,i,j =	fatt(st-1,	hi,j)
at,:,: =	softmax(et,:,:)
ct =	∑i,jat,i,jhi,j

c2
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Last Time: Self-Attention Layer

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),   Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT / 𝐷! (Shape: NX x NX) Ei,j = (Qi · Kj ) / 𝐷!
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

32
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Last Time: Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2 x3 x4

y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After 
one RNN layer, hT ”sees” the whole 
sequence
(-) Not parallelizable: need to 
compute hidden states sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need to 
stack many conv layers for outputs 
to “see” the whole sequence
(+) Highly parallel: Each output can 
be computed in parallel

Works on Sets of Vectors
(-) Good at long sequences: after one 
self-attention layer, each output 
“sees” all inputs!
(+) Highly parallel: Each output can 
be computed in parallel
(-) Very memory intensive

33
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Last Time: Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

x1 x2 x3 x4

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transfomer block inputs a set of 
vectors, outputs a set of vectors. 

Vectors only communicate via 
(multiheaded) self-attention

34



Justin Johnson March 23, 2022Lecture 18 -

Last Time: Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Hyperparameters:
- Number of blocks
- Number of heads per block
- Width (channels per head, FFN width)

35
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Last Time: Transformers in NLP

36

Model Layers Width Heads Params Data Training

Transformer-Base 12 512 8 65M 8x P100 (12 hours)

Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)

BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)

RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)

GPT-2 48 1600 ? 1.5B 40 GB

Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)

Turing-NLG 78 4256 28 17B ? 256x V100 GPU

GPT-3 96 12,288 96 175B 694GB ?

Gopher 80 16,384 128 280B 10.55 TB 4096x TPUv3 (38 days)
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Today: How to use Attention / Transformers for Vision?

37
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Idea #1: Add attention to existing CNNs

38

Zhang et al, ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al, ”Non-local Neural Networks”, CVPR 2018

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Start from standard CNN architecture (e.g. ResNet)
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Idea #1: Add attention to existing CNNs

39

Zhang et al, ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al, ”Non-local Neural Networks”, CVPR 2018

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

Self-Attention

Self-Attention
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Idea #1: Add attention to existing CNNs

40

Zhang et al, ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al, ”Non-local Neural Networks”, CVPR 2018

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

Self-Attention

Self-Attention

Model is still a CNN! 
Can we replace 
convolution entirely?
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Idea #2: Replace Convolution with “Local Attention”

41

Input: C x H x W Output: C’ x H x W
Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019;  Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Convolution: Output at each position is inner 
product of conv kernel with receptive field in input
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Idea #2: Replace Convolution with “Local Attention”

42

Input: C x H x W Output: C’ x H x W

Query: DQ

Map center of receptive field to query

Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019;  Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019
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Idea #2: Replace Convolution with “Local Attention”

43

Input: C x H x W Output: C’ x H x W

Query: DQ
Keys: R x R x DQ
Values: R x R x C’

Map center of receptive field to query
Map each element in receptive field to key and value

Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019;  Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019
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Idea #2: Replace Convolution with “Local Attention”

44

Input: C x H x W Output: C’ x H x W

Query: DQ
Keys: R x R x DQ
Values: R x R x C’

Attention

Output: C

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention

Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019;  Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019
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Idea #2: Replace Convolution with “Local Attention”

45

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention
Replace all conv in ResNet with local attention

LR = “Local Relation”

Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019
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Idea #2: Replace Convolution with “Local Attention”

46

Hu et al, “Local Relation Networks for Image Recognition”, ICCV 2019;  Ramachandran et al, “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019
Input: C x H x W Output: C’ x H x W

Query: DQ
Keys: R x R x DQ
Values: R x R x C’

Attention

Output: C

Lots of tricky details, 
hard to implement, 
only marginally better 
than ResNets

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention
Replace all conv in ResNet with local attention
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Idea #3: Standard Transformer on Pixels

47

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Treat an image as a 
set of pixel values

Feed as input to 
standard Transformer
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Idea #3: Standard Transformer on Pixels

48

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Treat an image as a 
set of pixel values

Feed as input to 
standard Transformer

Problem: Memory use!

R x R image needs R4

elements per attention 
matrix
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Idea #3: Standard Transformer on Pixels

49

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Treat an image as a 
set of pixel values

Feed as input to 
standard Transformer

Problem: Memory use!

R x R image needs R4

elements per attention 
matrix

R=128, 48 layers, 16 
heads per layer takes 
768GB of memory for
attention matrices for a 
single example…
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Idea #4: Standard Transformer on Patches

51

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Idea #4: Standard Transformer on Patches

52

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Idea #4: Standard Transformer on Patches

53

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Idea #4: Standard Transformer on Patches

54

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Idea #4: Standard Transformer on Patches

55

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Transformer

Output vectors

Exact same as 
NLP Transformer!

+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Idea #4: Standard Transformer on Patches
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Transformer

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Idea #4: Standard Transformer on Patches
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformer (ViT)

59

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

Computer vision model
with no convolutions!

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformer (ViT)

60

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

Computer vision model
with no convolutions!

Not quite: With patch size p, first 
layer is Conv2D(pxp, 3->D, stride=p)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformer (ViT)

61

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

Computer vision model
with no convolutions!

Not quite: MLPs in Transformer 
are stacks of 1x1 convolution

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformer (ViT)

62

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

In practice: take 224x224 input image, 
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

Each attention matrix has 144 = 38,416 
entries, takes 150 KB
(or 65,536 entries, takes 256 KB)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformer (ViT)
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

In practice: take 224x224 input image, 
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

With 48 layers, 16 heads per
layer, all attention matrices
take 112 MB (or 192MB)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformer (ViT)
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned D-
dim vector per position

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

In practice: take 224x224 input image, 
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

With 48 layers, 16 heads per
layer, all attention matrices
take 112 MB (or 192MB)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformer (ViT) vs ResNets

65

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

BiT = ResNet152x4
ResNet-152x4

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

BiT = ResNet152x4

Recall: ImageNet 
dataset has 1k 
categories, 1.2M 
images

When trained on 
ImageNet, ViT
models perform 
worse than ResNets

ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ImageNet-21k has
14M images with 21k
categories

If you pretrain on 
ImageNet-21k and 
fine-tune on 
ImageNet, ViT does 
better: big ViTs match 
big ResNets

ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

JFT-300M is an 
internal Google 
dataset with 300M 
labeled images

If you pretrain on 
JFT and finetune on 
ImageNet, large 
ViTs outperform 
large ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

JFT-300M is an 
internal Google 
dataset with 300M 
labeled images

If you pretrain on 
JFT and finetune on 
ImageNet, large 
ViTs outperform 
large ResNets

ViT: 2.5k TPU-v3 core
days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU 
/ TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

Claim: ViT models have 
“less inductive bias” 
than ResNets, so need 
more pretraining data 
to learn good features

(Not sure I buy this 
explanation: “inductive 
bias” is not a well-
defined concept we 
can measure!)

ViT: 2.5k TPU-v3 core
days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU 
/ TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)
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Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

How can we 
improve the 
performance 
of ViT models 
on ImageNet?

ViT: 2.5k TPU-v3 core
days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU 
/ TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)
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Improving ViT: Augmentation and Regularization

72

Steiner et al, “How to train your ViT? Data, Augmentation, 
and Regularization in Vision Transformers”, arXiv 2021

Regularization for ViT models:
- Weight Decay
- Stochastic Depth
- Dropout (in FFN layers of 

Transformer)

Data Augmentation for ViT
models:
- MixUp
- RandAugment
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Improving ViT: Augmentation and Regularization
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Steiner et al, “How to train your ViT? Data, Augmentation, 
and Regularization in Vision Transformers”, arXiv 2021

Regularization for ViT models:
- Weight Decay
- Stochastic Depth
- Dropout (in FFN layers of 

Transformer)

Data Augmentation for ViT
models:
- MixUp
- RandAugment

More augmentation
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Improving ViT: Augmentation and Regularization
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Steiner et al, “How to train your ViT? Data, Augmentation, 
and Regularization in Vision Transformers”, arXiv 2021

Regularization for ViT models:
- Weight Decay
- Stochastic Depth
- Dropout (in FFN layers of 

Transformer)

Data Augmentation for ViT
models:
- MixUp
- RandAugment

More augmentation

ViT models:
Ti = Tiny
S = Small
B = Base
L = Large
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Improving ViT: Augmentation and Regularization
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Steiner et al, “How to train your ViT? Data, Augmentation, 
and Regularization in Vision Transformers”, arXiv 2021

Regularization for ViT models:
- Weight Decay
- Stochastic Depth
- Dropout (in FFN layers of 

Transformer)

Data Augmentation for ViT
models:
- MixUp
- RandAugment

More augmentation

ViT models:
Ti = Tiny
S = Small
B = Base
L = Large

Hybrid models: 
ResNet blocks, 
then ViT blocks
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Improving ViT: Augmentation and Regularization
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Steiner et al, “How to train your ViT? Data, Augmentation, 
and Regularization in Vision Transformers”, arXiv 2021

Regularization for ViT models:
- Weight Decay
- Stochastic Depth
- Dropout (in FFN layers of 

Transformer)

Data Augmentation for ViT
models:
- MixUp
- RandAugment

More augmentation

ViT models:
Ti = Tiny
S = Small
B = Base
L = Large

Hybrid models: 
ResNet blocks, 
then ViT blocks

Original Paper:
77.9

76.53
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Improving ViT: Augmentation and Regularization

77

Steiner et al, “How to train your ViT? Data, Augmentation, 
and Regularization in Vision Transformers”, arXiv 2021

Regularization for ViT models:
- Weight Decay
- Stochastic Depth
- Dropout (in FFN layers of 

Transformer)

Data Augmentation for ViT
models:
- MixUp
- RandAugment

ViT models:
Ti = Tiny
S = Small
B = Base
L = Large

Hybrid models: 
ResNet blocks, 
then ViT blocks

More augmentation

Original Paper:
77.9

76.53

Adding regularization is 
(almost) always helpful
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Improving ViT: Augmentation and Regularization
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Steiner et al, “How to train your ViT? Data, Augmentation, 
and Regularization in Vision Transformers”, arXiv 2021

Regularization for ViT models:
- Weight Decay
- Stochastic Depth
- Dropout (in FFN layers of 

Transformer)

Data Augmentation for ViT
models:
- MixUp
- RandAugment

ViT models:
Ti = Tiny
S = Small
B = Base
L = Large

Hybrid models: 
ResNet blocks, 
then ViT blocks

More augmentation

Original Paper:
77.9

76.53Regularization + 
Augmentation gives 
big improvements 
over original results
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Improving ViT: Augmentation and Regularization

79

Steiner et al, “How to train your ViT? Data, Augmentation, 
and Regularization in Vision Transformers”, arXiv 2021

Regularization for ViT models:
- Weight Decay
- Stochastic Depth
- Dropout (in FFN layers of 

Transformer)

Data Augmentation for ViT
models:
- MixUp
- RandAugment

ViT models:
Ti = Tiny
S = Small
B = Base
L = Large

Hybrid models: 
ResNet blocks, 
then ViT blocks

More augmentation

Original Paper:
77.9

76.53

Lots of other 
patterns in 
full results
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Improving ViT: Distillation
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Step 1: Train a teacher
model on images and 
ground-truth labels

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross 
Entropy 

Loss



Justin Johnson March 23, 2022Lecture 18 -

Improving ViT: Distillation
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Step 1: Train a teacher
model on images and 
ground-truth labels

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

Step 2: Train a 
student model to
match predictions
from the teacher

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross 
Entropy 

Loss
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Improving ViT: Distillation
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Step 1: Train a teacher
model on images and 
ground-truth labels

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

Step 2: Train a 
student model to
match predictions
from the teacher
(sometimes also to
match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross 
Entropy 

Loss

GT label:
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross 
Entropy 

Loss
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Improving ViT: Distillation
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Step 1: Train a teacher
model on images and 
ground-truth labels

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

Step 2: Train a 
student model to
match predictions
from the teacher
(sometimes also to
match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross 
Entropy 

Loss

GT label:
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross 
Entropy 

Loss

Often works better than 
training student from scratch 
(especially if teacher is 
bigger than student)
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Improving ViT: Distillation
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Step 1: Train a teacher
model on images and 
ground-truth labels

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

Step 2: Train a 
student model to
match predictions
from the teacher
(sometimes also to
match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross 
Entropy 

Loss

GT label:
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross 
Entropy 

Loss

Can also train student on 
unlabeled data! (Semi-
supervised learning)
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Improving ViT: Distillation
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Step 1: Train a teacher
CNN on ImageNet

Touvrom et al, “Training data-efficient image transformers & distillation through attention”, ICML 2021

Step 2: Train a 
student ViT to match
ImageNet predictions
from the teacher CNN 
(and match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross 
Entropy 

Loss

GT label:
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross 
Entropy 

Loss
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Improving ViT: Distillation

86

Touvrom et al, “Training data-efficient image transformers & distillation through attention”, ICML 2021

Input patches

Linear projection

Output vectors

Classification
token

+ + + + + + + + +
Positional Embedding

Predicted
class scores;
should match
ground-truth

Transformer

Distillation 
token

Predicted
class scores;
should match
teacher
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Improving ViT: Distillation
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Touvrom et al, “Training data-efficient image transformers & distillation through attention”, ICML 2021

74

76

78

80

82

84

86

Original ViT-B/16  +Distillation  +Longer training
(300 to 1000 epochs)

 +Higher resolution
 (224x224 to 384x384)

To
p1

 A
cc

ur
ac

y

ViT-B/16 on ImageNet
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Improving ViT: Distillation
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Touvrom et al, “Training data-efficient image transformers & distillation through attention”, ICML 2021

74

76

78

80

82

84

86

Original ViT-B/16  +Distillation  +Longer training
(300 to 1000 epochs)

 +Higher resolution
 (224x224 to 384x384)

To
p1

 A
cc

ur
ac

y

ViT-B/16 on ImageNet
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ViT vs CNN

89

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales
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ViT vs CNN

90

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have 
same resolution and 
number of channels

(Isotropic architecture)
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ViT vs CNN

91

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have 
same resolution and 
number of channels

(Isotropic architecture)

Can we build a hierarchical ViT model?
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Hierarchical ViT: Swin Transformer

92

C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

Divide image into 4x4 
patches and project 

to C dimensions

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer
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C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4 
patches and project 

to C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer
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Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer
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Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer
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2𝐶 ×
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Divide image into 4x4 
patches and project 

to C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8
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Linear 
projection 
from 4C to 
2C channels 
(1x1 conv)

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer
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Divide image into 4x4 
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Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer
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Merge 2x2 
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(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer
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Divide image into 4x4 
patches and project 

to C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Problem: 224x224 image
with 56x56 grid of 4x4 
patches: attention matrix 
has 564 = 9.8M entries
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Hierarchical ViT: Swin Transformer
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𝑊
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Divide image into 4x4 
patches and project 

to C dimensions

Merge 2x2 
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now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Problem: 224x224 image
with 56x56 grid of 4x4 
patches: attention matrix 
has 564 = 9.8M entries

Solution: don’t use full 
attention, instead use 
attention over patches



Justin Johnson March 23, 2022Lecture 18 -

Swin Transformer: Window Attention
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With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Window Attention
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With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend 
to all other tokens, instead divide into 
windows of M x M tokens (here M=4); only 
compute attention within each window

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Window Attention
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With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend 
to all other tokens, instead divide into 
windows of M x M tokens (here M=4); only 
compute attention within each window

Total size of all attention matrices is now:
M4(H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Window Attention
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Problem: tokens only interact with other tokens within 
the same window; no communication across windows

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Shifted Window Attention
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Solution: Alternate between normal windows and 
shifted windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Ugly detail: 
Non-square 
windows at 
edges and 
corners

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Justin Johnson March 23, 2022Lecture 18 -

Swin Transformer: Shifted Window Attention
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Solution: Alternate between normal windows and 
shifted windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Shifted Window Attention
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Solution: Alternate between normal windows and 
shifted windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin does not use positional 
embeddings, instead encodes 
relative position between patches 
when computing attention:

Standard Attention:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾"

𝐷
𝑉

𝑄,𝐾, 𝑉:𝑀# × 𝐷 (Query, Key, Value)

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Shifted Window Attention
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Solution: Alternate between normal windows and 
shifted windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin does not use positional 
embeddings, instead encodes 
relative position between patches 
when computing attention:

Attention with relative bias:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾"

𝐷
+ 𝐵 𝑉

𝑄,𝐾, 𝑉:𝑀# × 𝐷 (Query, Key, Value)
𝐵:𝑀# ×𝑀# (learned biases)

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Speed vs Accuracy
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Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Speed vs Accuracy
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Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Bonus: Swin Transformer can also 
be used as a backbone for object 
detection, instance segmentation, 
and semantic segmentation!



Justin Johnson March 23, 2022Lecture 18 -

Other Hierarchical Vision Transformers
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Liu et al, “Swin Transformer V2: Scaling 
up Capacity and Resolution”, CVPR 2022

Fan et al, “Multiscale Vision 
Transformers”, ICCV 2021

MViT Swin-V2

Li et al, “Improved Multiscale Vision Transformers 
for Classification and Detection”, arXiv 2021

Improved MViT
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Vision Transformer: Another Look

112

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches

Mix across tokens: Self-AttentionMix tokens with 
self-attention

MLP MLP MLP MLP MLP MLP MLP MLP MLP

Input vectors N x D

Apply (D->D) 
MLP to each of 

the N tokens

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformer: Another Look

113

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches

Mix across tokens: Self-AttentionMix tokens with 
self-attention

MLP MLP MLP MLP MLP MLP MLP MLP MLP

Input vectors N x D

Apply (D->D) 
MLP to each of 

the N tokens

Question: Can we 
use something 
simpler than self-
attention to mix 
across tokens?

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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MLP-Mixer: An All-MLP Architecture
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Tolstikhin et al, “MLP-Mixer: An all-MLP architecture for vision”, NeurIPS 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches

Mix across tokens: MLP

MLP MLP MLP MLP MLP MLP MLP MLP MLP

Input vectors N x D

Apply (D->D) 
MLP to each of 

the N tokens

Question: Can we 
use something 
simpler than self-
attention to mix 
across tokens?

Apply (N->N) 
MLP to each of 
the D channels

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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MLP-Mixer: An All-MLP Architecture
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Input: N x C
N patches with
C channels each

MLP 1: C -> C, 
apply to each of
the N patches

MLP 2: N -> N, 
apply to each of 
the C channels

Tolstikhin et al, “MLP-Mixer: An all-MLP architecture for vision”, NeurIPS 2021
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MLP-Mixer: An All-MLP Architecture

116

Input: N x C
N patches with
C channels each

MLP 1: C -> C, 
apply to each of
the N patches

MLP 2: N -> N, 
apply to each of 
the C channels

Equivalent to 
Conv(1x1, C->C, stride=1)

Equivalent to 
Conv(N1/2 x N1/2, C->C, groups=C)

Tolstikhin et al, “MLP-Mixer: An all-MLP architecture for vision”, NeurIPS 2021

MLP-Mixer is actually just a weird CNN???
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MLP-Mixer: An All-MLP Architecture
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Input: N x C
N patches with
C channels each

MLP 1: C -> C, 
apply to each of
the N patches

MLP 2: N -> N, 
apply to each of 
the C channels

Equivalent to 
Conv(1x1, C->C, stride=1)

Equivalent to 
Conv(N1/2 x N1/2, C->C, groups=C)

Tolstikhin et al, “MLP-Mixer: An all-MLP architecture for vision”, NeurIPS 2021

MLP-Mixer is actually just a weird CNN???Cool idea; but initial ImageNet 
results not very compelling (but 
better with JFT pretraining)
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MLP-Mixer: Many concurrent and followups

118

Touvron et al, “ResMLP: Feedforward Networks for Image 
Classification with Data-Efficient Training”, arXiv 2021, 
https://arxiv.org/abs/2105.03404

Tolstikhin et al, “MLP-Mixer: An all-MLP architecture for vision”, 
NeurIPS 2021, https://arxiv.org/abs/2105.01601

Liu et al, “Pay Attention to MLPs”, NeurIPS 2021, 
https://arxiv.org/abs/2105.08050

Yu et al, “S2-MLP: Spatial-Shift MLP Architecture for Vision”, WACV 
2022, https://arxiv.org/abs/2106.07477

Chen et al, “CycleMLP: A MLP-like Architecture for Dense 
Prediction”, ICLR 2022, https://arxiv.org/abs/2107.10224

https://arxiv.org/abs/2105.03404
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.08050
https://arxiv.org/abs/2106.07477
https://arxiv.org/abs/2107.10224
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Object Detection with Transformers: DETR
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Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

Simple object detection pipeline: directly output a set of boxes from a Transformer

No anchors, no regression of box transforms

Match predicted boxes to GT boxes with bipartite matching; train to regress box coordinates
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Object Detection with Transformers: DETR
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Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020
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Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020
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Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020
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Object Detection with Transformers: DETR
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Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020
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Object Detection with Transformers: DETR
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Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020
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Summary
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Vision Transformers have been a super hot topic the past ~1-2 years!

Very different architecture vs traditional CNNs

Applications to all tasks: classification, detection, segmentation, etc

My takeaway: Vison transformers are an evolution, not a revolution. 
We can still fundamentally solve the same problems as with CNNs.

Main benefit is probably speed: Matrix multiply is more hardware-
friendly than convolution, so ViTs with same FLOPs as CNNs can train 
and run much faster
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Next week: Generative Models
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