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Admin: A4

Object Detection: FCOS, Faster R-CNN
Due Tuesday, 3/29/2022, 11:59pm ET

Updated A4 starter code out today:
- Incorporates clarifications / documentation improvements from Piazza

- No functional code changes: you can copy-paste all your code from
previous to current version and everything should still work

- Optional: if you are not confused, can keep going with original release

Justin Johnson Lecture 17 - 2 March 21, 2022



Admin: Project

Project details are available here:
https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI12022/project.html

Project options:

- Image Classification

- Single-Image Super-Resolution

- Novel View Synthesis with NeRF
- Choose Your Own

For Choose Your Own project: need to submit a project proposal by Friday April
1, 11:59 ET. Make a private post on Piazza under tag “project-proposal”. This is
not graded, but we need to ok the project.
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https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/project.html

Last Time: Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt ¢t i ot Pt
! ! t ot bt bt
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Sequence-to-Sequence with RNNs

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

Encoder: h, = f,(x,, hi,)

h, h, * hj h,
X1 X5 X3 X4
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

From final hidden state predict:

Encoder: h, = fy(x, h,,) Initial decoder state s,
Context vector c (often c=h;)

h; > h, " hs " hy " So
X4 X5 X3 X4 " C
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos
From final hidden state predict:
Encoder: h, = f,(x, h,,)  Initial decoder state s, Y1
] ) _

Context vector c (often c=hy) ‘

hy " h, " hs " hy > So > S,

Xl Xz X3 X4 > C yo
we are eating  bread [START]

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos comiendo

From final hidden state predict:

Encoder: h, = f,y(x,, h.4) Initial decoder state s, Y1 Y2
] ) _

Context vector c (often c=h;) ‘ ‘
h; > h, " hs " hy " So "S5 T S
I S
X1 X, X3 X4 " C Yo Y1
we are eating bread [START] estamos

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x,, h,,) Initial decoder state s, Y1 Y2 ¥s Ya
(] ) _
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
1T T
X1 X5 X3 Xq " C Yo Y1 Y2 Y3
we are eating bread [START] estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x,, h,,) Initial decoder state s, Y1 Y2 Ys Ya
(] ) _
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
1T T
X1 X, X3 X4 " C Yo Y1 Y> Y3
we are eating bread Problem: Input sequence [START] estamos comiendo pan

bottlenecked through fixed-
sized vector. What if T=1000?

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(Y.1, St.1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x,, h,,) Initial decoder state s, Y1 Y2 Ys Ya
(] ) _
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
1T T
X1 X, X3 X4 " C Yo Y1 Y> Y3
we are eating bread Problem: Input sequence [START] estamos comiendo pan

bottlenecked through fixed-
sized vector. What if T=1000?

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014
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Sequence-to-Sequence with RNNs and Attention

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

From final hidden state:

Encoder: h, = fy,(x;, hy4) Initial decoder state s,

h; > h, " hs " hy " So
X1 X5 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€ = fan(Se1, i) (f. is an MLP)

From final hidden state:

(911T e1z1 e13T €14 | Initial decoder state s,
I .

h; > h, " hs " hy " So

X1 X5 X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€ = fan(Se1, i) (f. is an MLP)

dig d1y di3 dig
1 1 = 1 1 Normalize alignment scores
5 150 max f f . _ to get attention weights
From final hidden state: _
o O<ap,<1l 2a,=1
€11 €12 €13 €14 | Initial decoder state s,
O 1 A | |
h; > h, " hs " hy " So
X1 X2 X3 Xq
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

| | [ [ .
X X X X Compute (scalar) alignment scores
i ! ! ! e; = fanlSe1, i) (f5 is an MLP)
diy di CEE! dig estamos
1 1 A 1 1 Normalize alignment scores
f 150 maxT f . _ to get attention weights
From final hidden state: Y1 0<a <1 _1
e e e o . dy i 2idyi =
11 \ 12 \ 13 \ 14 Initial decoder state s,
I T 1 T | ‘ Compute context vector as linear
\ \ \ ) Y combination of hidden states
hl g hz " h3 - h4 g SO + S1 C; = Z'at h
it
] ‘ ‘ ‘ ‘ ‘ Use context vector in
decoder: s, = , Se.1, C
X; X, X; X ¢ | vo ¢ = 8ulYe1s St Ct)
we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

| [ [ [ .
X X X X Compute (scalar) alignment scores
4 4 4 4 .
€t = Fare(Se.1, i) (for is an MLP)
CER] di di3 dig
1 1 1 1 estamos ] )
Normalize alignment scores
soffmax i :
7 7 7 , _ _ to get attention weights
1 From final hidden state: Y1 0 _
. <a;<1l 2a.,=1
€11 \ €12 \ €13 \ €14 Initial decoder state s, ’ '
I T 1 T 1 : ‘ Compute context vector as linear
H \ o \ o \ " + combination of hidden states
‘ . > > S S
: ? ’ ! ° ' Ce = 2iih;
] ‘ ‘ ‘ Intuition: Context vector ‘ ‘ Use context vector in
attends to the relevant ‘ decoder: s, = g,(Yi1, St.1, Ct)
Xl Xz X3 X4 . i Cl yO
part of the input sequence
we are eating bread estamos™ = “we are
so maybe a;;=a,,=0.45, [START]
a13=a1,=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs Repeat: Use s, to compute

new context vector c,

b ¢ b ¢ X X
I\ I\ I\ I\
d
3121 a;z af %4 estamos
soffmax

i i \ i i Ve
€71 \ €77 €53 \ €24 ! T

A 2 A +

\r A\ |
hl hz o h3 h4 SO Sl

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

X X X X
4 4 L § 4
a a a a
121 ;2 ;3 %4 estamos comiendo
f 150 maxT 0 Repeat: Use s, to
e e e o Y1 Y2 | compute new context
£t £l . 1 ‘ vector ¢,
\ \ \ ‘ | Use c, to compute s,, v,
hl hz " h3 h4 SO Sl > Sz

I . 1N,

X1 X3 X3 Xy Ci1 || Yo C Y1

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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X b 4 b 4 X
N N I\ 1\
dyq djy; dy3 dyy
t t t t

<

estamos

Sequence-to-Sequence with RNNs and Attention

comiendo

Repeat: Use s, to
Y2 compute new context

eating

bread

:SO

Intuition: Context vector

attends to the relevant

part of the input sequence
“comiendo” = “eating”

so maybe a,;=a,,=0.05,
a,»,=0.1, a,3=0.8

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Ci1 1| Yo

[START]

‘ vector c,

|

Use c, to compute s,, v,

C 1 Y1

estamos

Justin Johnson
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Sequence-to-Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector estamos comiendo pan [STOP]

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

Y1 Y> Y3 Ya
h, > h, * hj h, So S — > S — > 53 — 5,
X1 Xy X3 X4 Ci | Yo C || Y1 C3 | Y2 Cs || Y3
we are eating bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French 2 g E o )
o (- 8 5 (N -8
translation é’%ggg’ﬁg@%s?% v
L
Input: “The agreement on the accord
sur
European Economic Area was la
signed in August 1992” zone
économique
européenne
Output: “l'accord sur la zone a
, . , été
économique européenne a signé
été signé en ao(t 1992.” en

ao(t
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French g : §
o Q o =
translation o ° 5
© il wl

Input: “The agreement on the Diagonal attention means  Jaccord

. words correspond in order
European Economic Area was

signed in August 1992

zone
économique
européenne

Output: “L'accord sur la zone
économique européenne a
été signé en aout 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a

Example: English to French 2 5 i
. @ C
translation 2 25 8
© W w <
Input: “The agreement on the Diagonal attention means accord
words correspond in order
was
signed in August 1992” zone
économique
européenne
Output: “L'accord sur la
a

été signé en aout 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French 2 5 i
. @ C
translation 2 ° 5
© i
Input: “The agreement on the Diagonal attention means accord
words correspond in order
was
signed in August 1992 zone
économique
européenne
Output: “L'accord sur la
3 Verb conjugation

été signé en aolt 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

The decoder doesn’t use the fact that
h, form an ordered sequence — it just
treats them as an unordered set {h;}

estamos comiendo pan [STOP]
Can use similar architecture given any
. . | Y1 Y2 Y3 Ya
set of input hidden vectors {h}!
h, > h, * hj * h, > S, S — > S — > 53 — 5,
X1 X5 X3 Xq Ci | Yo G| Y1 G|l Y2 Cs| Y3
we are eating bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Image Captioning with RNNs and Attention

CNN hy1 | hyy|hys > So

Use a CNN to compute a
grid of features for an image

Cat image is free to use under the Pixabay License

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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https://pixabay.com/photos/cat-young-animal-curious-wildcat-2083492/
https://pixabay.com/service/license/

Image Captioning with RNNs and Attention

Alignment scores
et,i,j - att(st—ll h|,J) €111 €112 €113
€121 €122 €123

€131 | €132 | €133

CNN hy1 | hyy|hys > So

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights

et,i,j - fatt(st—ll h|,J) €111 €112 | €113 111 | 9,12 | 9113

softmax

at L= SOftmaX(et,,) €121 €122 €123 T A1 122 123

2°7°

€131 €132 €133 131 | 9132 | 9133
h 1,1 h 1,2 h 1,3
CNN hy1 | hyy|hys > So
h 3,1 h 3,2 h 3,3

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et |,J = fatt(st 1, h,J) €111 | €112 | €113 111  A1,12 9113
softmax
at, e - SOftmaX(et ) €121 €122 €123 T > Q121 Q127 9123
Ct = ZI,Jat I,Jhi,j €131 €132 €133 131 | 9132 | 9133
h 1,1 h 1,2 h 1,3

CNN hy1|hys | hys

v
%)
o

<
«

) 4
Q)
[y

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Justin Johnson Lecture 17 - 29 March 21, 2022



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et |,J = fatt(st 12 h,J) €111 | €112 €113 9111 9112 9113
softmax
at, L SOftmaX(et ) €121 €122 €123 T d121 3122 3123 cat
Ct = ZI,Jat I,Jhi,j €131 €132 €133 d131 9132 9133
1 Y1
hia | hiz h\ [
CNN hy1 | hyy|hys > So
hss [N | hss |
Na
Use a CNN to compute a O— ¢ || Yo

grid of features for an image

[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Ceij = fatt(Se.1, h',j)

a; .. = softmax(e; . .) cat
Ce= 2,,ijNi
Y1
hl 1 hl 2 h1,3 ‘
CNN h2,1 hz,z h2,3 > So S1
hi, | hs; | hss \ ‘ ‘
Use a CNN to compute a C1 | Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Justin Johnson Lecture 17 - 31

March 21, 2022



Image Captioning with RNNs and Attention

Alignment scores

et I,J = fatt(st 1, h,J) €11 | €212 (€213
at’ - - SOftmaX(et ) €21 | €222 | €223 cat
Ct - ZI’Jat |,_]hi,j €231 | €232 €233
! Y1
hii|hyy | hys ‘
CNN hy1 | hyp | hys > So S1
hs, | hss  hss \ ‘ ‘
Use a CNN to compute a C1 | Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et |,J = fatt(st 1, h,J) €11 | €212 (€213 9211 | 92,12 | 9213
softmax
at’ L - SOftmaX(et ) €221 | €222 | €223 == | 3A221 9227 223 cat
Ct - ZI Jat | Jh|J €231 | €232 €233 31 | 9232 | W33
’ ’ ’
! Y1
hl 1 hl 2 h1,3 ‘

CNN hy1 | hyp | hys

So S1
h3,1 h3,2 h3,3 \ ‘ ‘

Use a CNN to compute a C1 | Yo
grid of features for an image

[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et N = fatt(st 1, h,]) €11 | €212 | €213 11 | 3212 | 213
a;.. = softmax(e;..) e ew e T as as cat
Ct — zl,jat I,jhi,j S | Gosn | Boge Bnsa Bnza Eans

! ‘\ Y1

hii|hyo | hys \ ‘

CNN hy1 | hyp | hys

So S1
h3,1 h3,2 h3,3 \ ‘ ‘

Use a CNN to compute a Ci | Yo!| | G
grid of features for an image f

[START]

Ve
U

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et I,J = att(st 1, h,j) €211 | €212 | €213 A1 | 212 | 213
a,.. = softmax(e;..) e ew e T as as cat sitting
Ct — zl,jat I,Jhi,j S | Gosn | Boge Bnsa Bnza Eans

! ‘\ Y1 Y>

hii|hyo | hys \ ‘ ‘

CNN hyi | hyy | hyg " So gibl! S2

L]

Use a CNN to compute a il Yo |G| V1
grid of features for an image f

[START] cat

Ve
U

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Each timestep of decoder

e...=f..(s.. h:. :
t,i) aft( -1 'J) uses a different context

cat sitting outside [STOP]

A, = softmax(e,..)  \ector that looks at different
C= Z,Jat I,jhi,j parts of the input image
Y1 Y> Y3 Ys
hll I"112 I"113 ‘ ‘ ‘ ‘
CNN hy1 | hyy|hys > Sg S ——> S, —> S, —> 5,
Use a CNN to compute a Ci 1/ Yo| |G| Y1 |G| VY2 Ca || Y3
grid of features for an image u $
[START] cat sitting outside

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

bird flying over body of water

s o[ v]wlv

~71%

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

A dog is standing on a hardwood floor. A stop sign is on a road with a
- mountain in the background.

A group of people sitting on a boat A giraffe standing in a forest with
in the water. trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Human Vision: Fovea

Light enters eye

Artenor chamber - Comea
(aqueous humor) '

\ Pupil < Uwea
F’-:lsten'-:-rchamber\ \ 1 "

e Inis .
Suspersory b Ciliary
ligament — e body

oflers A Lo
A\ Choroid |

4

Retina \.
detects light \\_*

Retinal ) %
blood )
vessels

Retina

7~ Macula 5
~ Fovea |

Optic disc

Optic nerve
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https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Human Vision: Fovea

The fovea is a tiny region of the
Light enters eye retina that can see with high acuity

Anterior chamber - Lomea
(aqueous humour) ™\ ‘
Postenorchamber % %

<«— Fovea

Fupil

Suspersory
ligament —
of lers

—_—_\:“ .
. P,
Sclera— gl

Vitreou i ‘}
humou \ S 10.6

0.4

Blind Spot
10.2 \

Fovea 10.0 | | | !

Optic disc

Retina
detects light

Retinal /
blood
vessels

L]
60°  40° 20°10° 0°10°20° 40°

| Optic nerve

Eye image is licensed under CC A-SA 3.0 Unported (added black arrow, green arc, and white circle) Acuity graph is licensed under CC A-SA 3.0 Unported (No changes made)
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https://en.wikipedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Human Vision: Saccades

Human eyes are constantly moving so we don’t notice

Saccade video is licensed under CC A-SA 4.0 International (no changes made)

The fovea is a tiny region of the
retina that can see with high acuity

1.0

10.8

10.6

10.4

0.2

10.0

Blind Spot\

<«— Fovea

60°

40°

20°10° 0°10°20° 40°

Acuity graph is licensed under CC A-SA 3.0 Unported (No changes made)
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https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/File:This_shows_a_recording_of_the_eye_movements_of_a_participant_looking_freely_at_a_picture.webm
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Image Captioning with RNNs and Attention

water

bird flying over

A [l

Attention weights at each
timestep kind of like
saccades of human eye >

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015 Saccade video sed under CC A-SA 4.0 International (no changes made)
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https://en.wikipedia.org/wiki/File:This_shows_a_recording_of_the_eye_movements_of_a_participant_looking_freely_at_a_picture.webm
https://creativecommons.org/licenses/by-sa/4.0/deed.en

X, Attend, and Y

“Show, attend, and tell” (Xu et al, ICML 2015)
Look at image, attend to image regions, produce question

“Ask, attend, and answer” (Xu and Saenko, ECCV 2016)
“Show, ask, attend, and answer” (Kazemi and Elqursh, 2017)
Read text of question, attend to image regions, produce answer

“Listen, attend, and spell” (Chan et al, ICASSP 2016)
Process raw audio, attend to audio regions while producing text

“Listen, attend, and walk” (Mei et al, AAAI 2016)
Process text, attend to text regions, output navigation commands

“Show, attend, and interact” (Qureshi et al, ICRA 2017)
Process image, attend to image regions, output robot control commands

“Show, attend, and read” (Li et al, AAAI 2019)
Process image, attend to image regions, output text
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Att ti I— Alignment scores Attention weights

e n O n aye r et,i,j = fatt(st-l’ hi,j) €11 | €212 | €213 Bnag | Bana | Banz
at’:’: = SOftmaX(etl') €221 | €222 | €223 m( 221 | 3222 | 3223 seagull
C = H a H h H €31 | €232 | €233 3231 | 232 | A233

Inputs: £ 21720 S v

Query vector: q (Shape: Dg)
Input vectors: X (Shape: Ny x Dy)

TET . ‘ CNN | | hyi|hy, | by 4 J <
Similarity function: f e gl ] s 0 1
haa | haz | has S ] ]
I G| Yo |G
f
[START]
O

Computation:

Similarities: e (Shape: Ny) e, =f_(q, X;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.aX; (Shape: Dy)
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Alignment scores Attention weights

Attention Layer e fudsen M) ol ol

Elt,i,l SOftl Y |aX( et,:,:) €221 | €222 | €223 —PSOftmaX 221 | 3222 | A223 seagull
C = H a H h H €31 | €37 €33 31 332 | 33
|ng : t Zl,j t,i,j' i, 31| €232 | €, 31 3232 | A3,

Query vector: g (Shape: Dg)
Input vectors: X (Shape: Ny x Dg)

e er . . ‘ CNN | | hyy|hyy | hys - g > s,
Similarity function:[dot product v il Bt S i i
sz | haz | s o]
I G| Yo| |G

)

[START]
Computation:
Similarities: e (Shape: Ny) |e;=q - X, Changes:
Attention weights: a = softmax{e] (Shape: Ny) - Use dot product for similarity

Output vector: y = >.aX, (Shape: Dy)
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Att ti I— Alignment scores Attention weights

e n O n aye r et,i,j = fatt(st-l’ hi,j) €11 | €212 | €213 Bnag | Bana | Banz
at’:’: = SOftmaX(etl') €221 | €222 | €223 m( 221 | 3222 | 3223 seagull
C = H a H h H €31 | €232 | €233 3231 | 232 | A233

Inputs: £ 21720 S v

Query vector: g (Shape: Dg)
Input vectors: X (Shape: Ny x Dq)

' g | s | g - s, . s,
Similarity function:|scaled dot product \/ CNN gl Bl I > >
hyy [ hs, [ hss \ ] ]
I Ct | Yo!| |G
)
[START]
Computation:
Similarities: e (Shape: Ny) €,=q-X{/,/Dg Changes:
Attention weights: a = softmax(e) (Shape: N,) - Use scaled dot product for similarity

Output vector: y = >.aX. (Shape: Dy)
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Attention La e r Alignment scores Attention weights
Y €= FuelSem M) oo e o o
a,..=softmax(e,..) eu e en 0% an n seagull
c.=5..a..:-h:. S | G| g S T P
Inputs: £ 21720 D~ v
Query vector: ¢ (Shape: Dg) hes by s \ |
Input vectors: X (Shape: Ny x D
p ( p X Q) CNN h2,1 hz,z h2,3 > So > Sq

Similarity function:|scaled dot product

Large similarities will cause softmax to
saturate and give vanishing gradients ] allvel |o
Recalla-b=|a||b]| cos(angle)

Suppose that a and b are constant vectors of [START]
dimension D

Then |a| = (5;@2)Y2=a+D

Computation:

Similarities: e (Shape: Ny) €,=q-X{/,/Dg Changes:

Attention weights: a = softmax(e) (Shape: N,) - Use scaled dot product for similarity
Output vector: y = >.aX. (Shape: Dy)

O
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Alignment scores Attention weights

Attention Layer e = fulsen ) e e

a,..=softmax(e,..) e cw o s s o seagull

C = H a H h H €31 | €37 €33 31 332 | 33
Inputs: t= 203 ' —~—_ V1

Query vectors:|Q (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dg)

,,,,,,,,,,,,,,,,,,

‘ \/ CNN hyt | hyy|hys > So g

I a|lvo| |e
|
[START]
Computation:
Similarities: E = QX"/,/Dg (Shape: Nq x Ny) E;; = (O, - X;)/,/Dg Changes:
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny) - Use scaled dot product for similarity
Output vectors: Y = AX (Shape: Nq x D) Y; = 3A; X - Multiple query vectors
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Atte nti O n I—a e r Alignment scores Attention weights
y et,|,] = att(st.]_) h|’J) €11 €12 €313 311 12 | A3
at’:’: = SOftmaX(etl') €221 | €222 | €223 m( 221 | 3222 | 3223 seagull
C = H a H h H €31 | €232 | €233 3231 | 232 | A233
Inputs: £ 21720 S v

Query vectors: O (Shape: Ny x Dg)
Input vectors: X (Shape: N, x Dy) :
Key matrix: \W, (Shape: Dy x Dg) DN | (NN Pan Pz | Pas 1 17
Value matrix: W,, (Shape: D, x D)

I 0 ||v] [

)

[START]

Computation: O
Key vectors: [{ = X (Shape: Ny x D)
Value Vectors: V = XW,, (Shape: Ny x D)
Similarities: E = QK" /,/Dg (Shape: Nq x Ny) E;; = (0, - ) /,/Dg Changes:
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny) - Use sfcaled dot product for similarity
Output vectors: Y = AV (Shape: Ng x D) Y; = 3A; V; - Multiple query vectors

- Separate and value
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Attention Layer

Inputs:
Query vectors: O (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation: X,
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) X,

Similarities: E = /{/Dq (Shape: Nq x Ny) E;; = (Q; - K) /{/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y, = 3,A;V,
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Attention Layer

Inputs:
Query vectors: O (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation: X, ™ K;
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) X, ™ K,

Similarities: E = /{/Dq (Shape: Nq x Ny) E;; = (Q; - K) /{/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y, = 3,A;V,
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Attention Layer

Inputs:

Query vectors: O (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation: X1 ™ Ky —  Egi4 E, 1 Es, Esq
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) X, ™ Ky, ™ Ep) E,» Es» Es,

Similarities: E = /{/Dq (Shape: Nq x Ny) E;; = (Q; - K) /{/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y; = 3 A,V I 1 1 1
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Attention Layer

Inputs:
Query vectors: O (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation:
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = /{/Dq (Shape: Nq x Ny) E;; = (Q; - K) /{/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y, = 3,A;V,

X1 » Ky ™ Eiq

X, ™ K, — By,

X3 ™ K3 — Ei;

T

A2 1 A3,1
A2 2 A3,2
A2 3 A3,3
Softmax( 1)
E2,1 E3 1
E2,2 E3 2
E2,3 E3 3
I f
Q| | Q

Justin Johnson

Lecture 17 -

53

March 21, 2022



Attention Layer

Inputs:
Query vectors: O (Shape: Ng x D) Vi ™ A A (Asp A
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

" V3 Ay A3 Asz3 Ay
Softmax( T )
Computation: 4 Xy ™ Ky —  Eyy E, 1 Es, Esq
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) X, ™ Ky, ™ Ep) E,» Es» Es,
Similarities: E = /\/Dg (Shape: Nq x Ny) E;; = (Q; - )/\/l_)lg_
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny) X3 1 % [ FRas Eas B3 TE

Output vectors: Y = AV (Shape: Ng x D) Y, = 3,A;V, T T T T
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Attention Layer

Inputs:
Query vectors: O (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Y, Y, Y, Y,

| I 1 |

Product(—), Sum(1t)

Computation:
Key vectors: [{ = X (Shape: Ny x D)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = QK" /,/D (Shape: N x Ny) E;; = (Q; - )/‘/—DL

Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y; = A, ,V,
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Self-Attention Layer

One per input vector

Inputs:
Query vectors: O (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation:

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = /\/Dq (Shape: Nq x Ny) E;; = (O, - K)) /\/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y, = 3,A;V,
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = /\/Dq (Shape: Ny x Ny) E;; = (Q; - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,

Justin Johnson Lecture 17 - 57

Q,
t

Q| &
t t
X3 X3
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Ks
Computation: K,
Query vectors: O =X
Key vectors: K = XW, (Shape: Ny x D) Ky
Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg O;l 0;2 %3
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X, X, X,

Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x D)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = /\/Dq (Shape: Ny x Ny) E;; = (Q; - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x N,)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3A; ,V,
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E2 3 E3,3
E2,2 E3,2
E2,1 E3,1
1 t
Q, Qs
1 1
X, | | X
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = /\/Dq (Shape: Ny x Ny) E;; = (Q; - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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A1,3 AZ 3 A3,3
A1,2 A2,2 A3,2
A1,1 A2,1 Az,
t
Softmax(1T")
t
E1,3 E2 3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
t t t
Q, Q, Qs
t t t
X X, X3
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Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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A1,3 A2,3 A3,3
A1,2 A2,2 A3,2
Al,l A2,1 A3,1
t
Softmax(1T")
t
E1,3 E2 3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
t t t
Q, Q, Qs
t t )
X X, X3
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Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Y, Y, Y3
4 4 1
Product(->), Sum(1)
t
A1,3 A2 3 A3,3
A1,2 A2,2 A3,2
A1,1 A2,1 Az,
t
Softmax(1T")
t
E1,3 E2 3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
t t t
Q, Q, Qs
t t )
X X, X3
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Self-Attention Layer TR —r1

Consider permuting R — !

the input vectors:
Inputs: > -
Input vectors: X (Shape: Ny x Dy) -
Key matrix: (Shape: Dy x Dg) 1
Value matrix: W, (Shape: Dy x D) Softmax(1)
Query matrix: W, (Shape: Dy x Dg) 1
Computation: —
Query vectors: O = XW,
Key vectors: [{ = X (Shape: Ny x Dg) -
Value Vectors: V = XW,, (Shape: Ny x D) t ! !
Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg : ; :
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X, X, X,
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x Dy) Queries and Keys will be
Key matrix: W, (Shape: Dy x D) the same, but permuted

Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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1 1 %

Product(->), Sum(1)

t

t

Softmax(1")

t
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Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x Dy) Similarities will be the
Key matrix: W, (Shape: Dy x Dg) same, but permuted

Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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1 1 %

Product(->), Sum(1)

t

t

Softmax(1T")

Q) Q) &
t 1 f
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Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x Dy) Attention weights will be
Key matrix: W, (Shape: Dy x D) the same, but permuted

Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x D)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x N,)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3A; ,V,
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1 1 %

Product(->), Sum(1)

A3,3 A1,3 A2,3

T

Softmax(1T")

Q) Q) &
t 1 f
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Self-Attention Layer TR —r1

t
Consider permutin
the input‘\)/ectors: ° Vo T A A0 Az
Inputs: Vi T As 4 A11 Az
Input vectors: X (Shape: Ny x Dy) Values will be the Va |+ I1A A A
Key matrix: W, (Shape: Dy x D) same, but permuted > 3.3 ;'3 2.3
Value matrix: W,, (Shape: D, x D) Softmax()
Query matrix: W, (Shape: Dy x Dg) t
Ky = Esp Eq E,»
Computation: K, = Es E. E, 1
Query vectors: O = XW,
Key vectors: (. = X (Shape: Ny x Dg) Ks 1= B3 By Eas
Value Vectors: V = XW,, (Shape: Ny x Dy) t t t
Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg ?3 0;1 C%z
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X, X, X,
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Outputs will be the
same, but permuted

Computation:
Query vectors: O = XW,
Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK" /,/D (Shape: Ny x Ny) E;; = (Q, - K;) /{/Dg

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,

Justin Johnson Lecture 17 -

Y3 Y1 Y

A
1

Product(%T), Sum()

t
TV, |7 A3,2 A1,2 Az,z
Vi ™ A;, A11 A4
Vi 7 Ass A A3

t

Softmax(1T")

1
K, = Es3, Ei> E,>
Ky = Esq Eiq E; .
Ks = Es3 Eis E;s
) 1) 1)
Q; Q, Q,
t 1) t
X3 X1 X,

68
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Self-Attention Layer R

t

Consider permuting R —

the input vectors: V2 Asa| [Ara| A2z
Inputs: Vi |7 As 4 A11 Az
Input vectors: X (Shape: Ny x Dy) Outputs will be the TV, |=I[a A A
Key matrix: W, (Shape: Dy x Dg) same, but permuted . 33 ;'3 23
Value matrix: W, (Shape: Dy x D) elf - . Softmax(1)
Query matrix: W, (Shape: Dy x Dg) © 'atten:ﬂon ayerts t

Permutation Equivariant K, |—  Es, E,, E,,

. f(s(x)) = s(f(x))

Computation: Ki = Esq Er By
Query vectors: O = XW, Self-Attention layer works K. — | e £
Key vectors: [( = X (Shape: Nyx Dq)  on sets of vectors = S 1.3 2,3
Value Vectors: V = XW,, (Shape: Ny x D) : 1 1
Similarities: E = QK™ /,/Dy (Shape: Ny x Ny) E;; = (Q; - K;) //Dg 33 (%1 C%z
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X, X, X,
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Self-Attention Layer

Self attention doesn’t
“know” the order of the

Inputs: vectors it is processing!
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)

Value matrix: W,, (Shape: D, x D)

Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = /\/Dq (Shape: Ny x Ny) E;; = (Q; - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Y, Y, Y3
4 4 1
Product(->), Sum(1)
t
A1,3 AZ 3 A3,3
A1,2 A2,2 A3,2
A1,1 A2,1 Az,
t
Softmax(1T")
t
E1,3 E2 3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
t t t
Q, Q, Qs
t t t
X X, X3
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Self-Attention Layer *Pmduct(e} —
Self attention doesn’t
“know” the order of the Vs |7 [ Ags A3 As 3
Inputs: vectors it is processing! Vo |~ 1[AL] [AL] [ As
Input vectors: X (Shape: Ny x Dy) V. |—|[A A A
Key matrix: W, (Shape: Dy x D) In order to make : L1 i’l 31
Value matrix: W, (Shape: Dy x D) processing position- Softmax(T)
- hape: Dy x Dg) aware, c.o.ncatenate or 3
Query matrix (Shape: Dy x Dq add positional encoding . = | e c
] to the input 3 L3 23 3.3
Computation: K, = Ep, E, s,
Query vectors: O =X E can be learned lookup
Key vectors: (. = X (Shape: Ny x Dy) table, or fixed function Ky |= [ E1a Exs Es 1
Value Vectors: V = XW,, (Shape: Ny x Dy) t t t
Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg ci‘l C}z %3
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X, X, X,

Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Masked Self-Attention Layer

Don’t let vectors “look ahead” in the sequence

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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t
0 0 A; 3
0 A, A3,2
A1,1 A2,1 A3,1
t
Softmax(1T")
t
-0o -co E3,3
-9 E;» E5»
E1,1 E2,1 E3,1
) 1) 1)
Q, Q, Q;
t 1) t
X1 X, )&
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Masked Self-Attention Layer

Don’t let vectors “look ahead” in the sequence
Used for language modeling (predict next word)

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = /\/Dq (Shape: Ny x Ny) E;; = (Q; - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Big cat [END]

4 4 1t
Product(->), Sum(1)
t
0 0 A;;

Al,l A2,1 A3,1

t
Softmax(1T")
t
-0o -co E3,3
-9 E, > Es>

El,l E2,1 E3,1

t t t
Q Q) |Q
f f f

[START] Big cat
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Multihead Self-Attention

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Query matrix: (Shape: Dy x Dg) Use H independent

“Attention Heads” in

) rallel
Computation: paratie

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = /\/Dq (Shape: Ny x Ny) E;; = (Q; - ;) /,/Dg
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,

Justin Johnson Lecture 17 - 74
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Multihead Self-Attention

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Query matrix: (Shape: Dy x Dg) Use H independent

“Attention Heads” in

) rall
Computation: parallel

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = /\/Dq (Shape: Ny x Ny) E;; = (Q; - ;) /,/Dg Sofit
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) P
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Multihead Self-Attention

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Query matrix: (Shape: Dy x Dg) Use H independent

“Attention Heads” in

Computation: parallel

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D) X141
Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (O, - ;) /,/Dg Split

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,
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Multihead Self-Attention

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Query matrix: (Shape: Dy x Dg) Use H independent

“Attention Heads” in

Computation: parallel

Query vectors: O =X

Key vectors: (. = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy) X11 || X2

Similat:ities: E.= /{/Dq (Shape: I\.IX X Ny) E;; = (0, - K;) //Dg Split

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) 2

Output vectors: Y = AV (Shape: Ny x D) Y; = 3/A; }V, X“

1,2

X13

Justin Johnson Lecture 17 - 77
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Multihead Self-Attention

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Query matrix: (Shape: Dy x Dg) Use H independent

“Attention Heads” in

Computation: parallel

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D) X1z || X23 || X33

e e ege . _ . _ /;
Similarities: E = QK™ /,/Dg (Shape: Ny x Ny) E;; = (Q; - K;) /,/Dg Sp"x><[/
Attention weights: A = softmax(E dim=1) (Shape Ny X Ny VA

X
Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V, . 2 X3,1
1,2 2,2 3,2
X13 X23 X33
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Multihead Self-Attention

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Query matrix: (Shape: Dy x Dg) Use H independent

“Attention Heads” in

) rallel
Computation: paratie

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = QK" /,/Dg (Shape: Ny x Ny) E;; = (

) _ _ 15) /\Dg Spli%/
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny

Output vectors: Y = AV (Shape: Ny x D) Y, = 3,A;V,

Run self-attention in parallel on each set of
input vectors (different weights per head)

Yii1 Y1 Y31 Yio Yoo Y3, Yi3  Ya3 | Y33

Va Y, Y, Yo (Y| |Ys Y, Y, Y

3
ERETS
_’ Az A Az _’ Az Ay Az —'_' Az | [Ays | [Ass
—‘_' A, | A A —‘_' A | Ay | (A3 4'_. Az | (A (A
=l (A Ay =[] [An] [An V][] (8] [An
Softmax(™) | ||l [ softmax (1)
Ks |=| Ei3 Eys Ess Ky |=| Ei3 Eys Ess Ky |= Ei3 Exs Ess
Ky || Eia 2% Es, Ky || Eia 2% Es, Ky |—/E E Es,
Ki |=[Eia| B2 | B3 Ki |=||Esa| [Ezn| |Ess K, = E E Es,
t t t t t t t t t
Q Q, Q; Q; Q, Q; Q, Q, Q
t 1 t t 1 t t t t
X121 || X31 || X31 X12 || X22 || X32 X13 || X23 || X33
X11 X21 X31
X1,2 X2,2 X3,
X1,3 X33 X33
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Multihead Self-Attention

Y1,1 Y2,1 Y3,1
Y1,2 Yz,z Y3,2
Y1,3 Y2,3 Y3,3
Inputs: Concat />di\
Input vectors: X (Shape: Ny x Dy) > | —_—
. _ Yii Y21 Y3 Yia | Yoo Y3 Yi3 Ya3 Y33
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: D, x D _ e e St
Query matrix ! ((Shappe [;( X [;/)) Use H |ndependent ﬁ: Az] [Aaa] [Ass é: As| [Ags| [Ass j: a) [Pes] [Ass
' P “Attention Heads” in e e T
. arallel - B (] i o1 o b o[ Bl B
Computation: P =g 6] o =l o o e 5 o
Q |Q |Q Q |Q |Q Ql | Q
Query vectors: O = X 5 ! 5
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: VV = XW,, (Shape: N, x D) Xo || Xo || Xa1 | Q('LZ Xoo || X2 | | Xua || Xoa || Xas
Similarities: E = /\/Dg (Shape: Ny x Ny) E;; = ) /\/Dg Split //
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) 2 " D
Output vectors: Y = AV (Shape: Ny x D) Y; = 3/A; }V, = 21 2
/ X X X
1,2 2,2 3,2
X13 X33 X33
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Y1 Y2 \E

Multihead Self-Attention 1 projecion | I

1,1 Y21 Y31
Y1) \P¥: Y3)
Y13 Y23 Y33

Inputs: Concat /><f\\

Input vec.tors: X (Shape: Ny x Dy) Voo Yoy Yas Yoo Yan | Ys, Yis Yas | Yas
Key matrix: (Shape: Dy x Dg)

Va Y, Y, Yo (Y| |Ys Yol (Y| |Ys

Value matrix: W, (Shape: Dy x D , e e et
Query matrix ! ((Shappe [;( X [;/)) Use H |ndependent ﬁ: Az] [Aaa] [Ass é: As| [Ags| [Ass j: a) [Pes] [Ass
' B “Attention Heads” in e T P
. arallel o[ [ [ o1 (] Lol e - )
Computation: P S CAlCalc N enlcalcy - [5] [a]
Q |Q |Q Q |Q |Q Ql | Q
Query vectors: O = X 5 ! 5
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: VV = XW,, (Shape: N, x D) Xo || Xo || Xa1 | Q('LZ Xoo || X2 | | Xua || Xoa || Xas
s|m||armes: E = QU 1/ Dg (Shape: I\.IX XN ;= (Q: - 1) /y/ Do Spli%//
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny 2 " D
Output vectors: Y = AV (Shape: Ny x D) Y; = 3/A; }V, = 2 >
’ X1, X2, X3
X13 X33 X33
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Example: CNN with Self-Attention

Input Image

CNN

Features:
CxHxW

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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https://pixabay.com/photos/cat-young-animal-curious-wildcat-2083492/
https://pixabay.com/service/license/

Example: CNN with Self-Attention

Queries:
C'xHxW

Input Image 1x1 Conv

_ Keys:
CNN C’'xHxW

1x1 Conv

Features:
CxHxW

Values:
C'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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Example: CNN with Self-Attention

Queries:

Attention Weights

C’ x Hx W Transpose (Hx W) x (H x W)

Input Image 1x1 Conv

_ Keys:
CNN C’'xHxW

1x1 Conv

Features:
CxHxW

Values:
C'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

Justin Johnson Lecture 17 -

softmax
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https://pixabay.com/service/license/

Example: CNN with Self-Attention

Attention Weights

Queries:
Transpose (Hx W) x (H x W)

C'xHxW

Input Image 1x1 Conv

softmax

_ Keys:
CNN C’'xHxW

1x1 Conv

Features:
CxHxW C’'xHxW

Cat image is free to use under the Pixabay License

Values: !

C’xHxW: ﬁ;®_.

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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Example: CNN with Self-Attention

Attention Weights

Queries:
Transpose (Hx W) x (H x W)

C'xHxW

Input Image 1x1 Conv

softmax

CxHxH
_ Keys:
CNN C'xHxW

1x1 Conv .

Features:
CxHxW C’'xHxW

Cat image is free to use under the Pixabay License

Values: !

" Hx W Ve
CxHXW —~(x }— 1x1 Conv

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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Example: CNN with Self-Attention

Residual Connection
e Attention Weights
C’ x Hx W Transpose (Hx W) x (H x W)
Input Image 1x1 Conv softmax
AR CxHxW
_ Keys: 3
CNN C’'xHxW —@—
- Features: 3. Gelny 1
Cat image is f ouseunderthe‘;;:baxLicense C X H X W C’ X H X W
Values: f
"X Hx W ~
C xHXW | ~(x )— 1x1 Conv
1x1 Conv

Self-Attention Module

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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Three Ways of Processing Sequences
Recurrent Neural Network

YiT— Yo Y3 " VY4

I R

X4 X, X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; “sees” the whole
sequence

(-) Not parallelizable: need to
compute hidden states sequentially

Justin Johnson Lecture 17 - 88 March 21, 2022



Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Y1 > Y2 > Y3 > Ya Y1 Y> Y3 Ys

X1 X5 X3 X4 X1 X5 X3 X4
Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need to
one RNN layer, h; ”sees” the whole stack many conv layers for outputs
sequence to “see” the whole sequence
(-) Not parallelizable: need to (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel
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Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution Self-Attention

Y1 " Y2 " Y3 " Yy Y1 Y2 Y3 Ya [ A R

‘ ‘ ‘ ‘ I ] x ‘ I _’_> Al'l A;J Aa'l

X1 X5 X3 X4 X1 X5 X3 X4 S
Works on Ordered Sequences Works on Multidimensional Grids Works on Sets of Vectors
(+) Good at long sequences: After (-) Bad at long sequences: Need to (-) Good at long sequences: after one
one RNN layer, h; ”sees” the whole stack many conv layers for outputs self-attention layer, each output
sequence to “see” the whole sequence “sees” all inputs!
(-) Not parallelizable: need to (+) Highly parallel: Each output can (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel be computed in parallel

(-) Very memory intensive
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Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Self-Attention

Attention is all you

Vaswani et al, NeurlPS 2017

need

Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need to
one RNN layer, h; ”sees” the whole stack many conv layers for outputs
sequence to “see” the whole sequence

(-) Not parallelizable: need to (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel

Works on Sets of Vectors

(-) Good at long sequences: after one
self-attention layer, each output
“sees” all inputs!

(+) Highly parallel: Each output can
be computed in parallel

(-) Very memory intensive

Justin Johnson Lecture 17 - 91
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The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Justin Johnson

All vectors interact
with each other

Lecture 17 -

t
Self-Attention
1 t t t
I 1 1 1
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The Transformer

Residual connection {?
All vectors interact Self-Attention
with each other - t t t
I I I
X1 X, X3 X4

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Recall Layer Normalization:
Given hy, ..., hy  (Shape: D)

scale: y (Shape: D)
shift: 5 (Shape: D)
w = (3 hi;)/D (scalar)
o= (3 (h; - 1:)2/D)Y2 (scalar) Layer Normalization
Zi = (hi*' w) / o, Residual connection =(J:r)
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
Ba et al, 2016 I ! ! !
X4 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Recall Layer Normalization:

Given hy, ..., hy  (Shape: D) N
scz.ale: Y (Shape: D) MLp independently MlLP MILP MILP MILP
shift: 5 (Shape: D) on each vector | * f
w = (3 h;;)/D (scalar) |
o= (3 (h; - 1:)2/D)Y2 (scalar) Layer Normalization
Zi = (hi*' )/ o, Residual connection =(J:r)
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
I I I I

Ba et al, 2016

X4 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Recall Layer Normalization:

Given h,, .. hy  (Shape: D) Residual connection {?
5C5_3|95 Y (Shape: D) MLP independently MlLP MILP MILP MILP
shift: 5 (Shape: D) on each vector f * f
w = (3 hi;)/D (scalar)
o= (3 (h; - 1:)2/D)Y2 (scalar) Layer Normalization
Zi = (hi*' ) / o Residual connection =(J:r)
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
Ba et al, 2016 I ! ! I
X1 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer wl lwl [vwl v
i t 1 1

Layer Normalization

Recall Layer Normalization: Aual . ‘
Givenh,, .., hy  (Shape: D) Residual connection Q“r)
: : | |
scz?le. Y (Shape: D) MLp independently MLP MILP MLP MILP
shift: 5 (Shape: D) on each vector f * f
w = (3 hi;)/D (scalar)
o= (3 (h; - 1:)2/D)Y2 (scalar) Layer Normalization
2= (hi- W) / oy Residual connection =(J:r)
—_ *
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
Ba et al, 2016 I ! ! I
X4 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer ”

Y2 Y3 Ya
I i I I
Transformer Block: Layer Normalization
Input: Set of vectors x :Q:r)
Output: Set of vectors y

| | | |
MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work =Q:,)
independently per vector

Self-Attention
ot f t t
Highly scalable, highly t t ! !
parallelizable X X X x
1 2 3 4

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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Post-Norm Transformer i " Vs Va
f f f f

Layer Normalization

:
I I I I
MLP MLP MLP MLP

IS
] ] Layer Normalization
after residual connections (:)
(+
Self-Attention
-t t t {
1 1 ] 1
X1 X X3 X4

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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Pre-Norm Transformer

IS

inside residual connections

Gives more stable training,
commonly used in practice —

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018

Justin Johnson Lecture 17 - 101

Y1 Y2 Y3 Ys
1 1 1 ]
@{}
| | | |
MLP MLP MLP MLP
I
Layer Normalization
&

Y
Self-Attention
)

Layer Normalization
t t t t
| ! ! !
X4 X, X3 X4
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t t t |

The Transformer

e (o] [we]
wie] (] [wie] [we]
Transformer Block: :
Input: Set of vectors x s
Output: Set of vectorsy A Transformer is a sequence | }} |

of transformer blocks —
Self-attention is the only ] (e Dae] (7]
interaction between vectors! Vaswani et al: :

12 blocks, D4=512, 6 heads L
Layer norm and MLP work E
independently per vector —

o] ][] [we]

Highly scalable, highly ¢
parallelizable e

! ! ! !

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer: Transfer Learning

“ImageNet Moment for Natural Language Processing”

Pretraining:
Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:
Fine-tune the Transformer on your own NLP task

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018

Justin Johnson Lecture 17 - 103

t t t |

Layer Normalization

|

I
‘Me | M| mee | MLP |

Layer Normalization

Self-Attention

Layer Normalization

Mp | M| mee | ML |

Layer Normalization

Self-Attention

Layer Normalization

‘MW“MW“MW“MW‘

Layer Normalization

Self-Attention
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base 8x P100 (12 hours)

Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB
BERT-Large 24 1024 16 340M 13 GB

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)

Yang et al, XLNet: Generalized Autoregressive Pretraining for Language Understanding", 2019
Liu et al, "RoBERTa: A Robustly Optimized BERT Pretraining Approach", 2019
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base

Transformer-Large 12
BERT-Base 12
BERT-Large 24
XLNet-Large 24
RoBERTa 24
GPT-2 48

1024
768

1024
1024
1024
1600

Radford et al, "Language models are unsupervised multitask learners", 2019

16
12
16
16

16
?

213M
110M
340M
~340M
355M
1.5B

13 GB
13 GB
126 GB
160 GB
40 GB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

Justin Johnson

Lecture 17 -

0y
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base

Transformer-Large 12
BERT-Base 12
BERT-Large 24
XLNet-Large 24
RoBERTa 24
GPT-2 48
Megatron-LM 72

1024
768

1024
1024
1024
1600
3072

16
12
16
16
16
?

32

Shoeybi et al, "Megatron-LM: Training Multi-Billion Parameter Languge Models using Model Parallelism", 2019

213M
110M
340M
~340M
355M
1.5B
8.3B

13 GB
13 GB
126 GB
160 GB
40 GB
174 GB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

512x V100 GPU (9 days)

Justin Johnson
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 48 1600 ? 1.5B 40 GB

Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)
Turing-NLG 78 4256 28 17B ? 256x V100 GPU

Microsoft, "Turing-NLG: A 17-billion parameter language model by Microsoft", 2020
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base

Transformer-Large 12
BERT-Base 12
BERT-Large 24
XLNet-Large 24
RoBERTa 24
GPT-2 48
Megatron-LM 72
Turing-NLG 78
GPT-3 96

Brown et al, "Language Models are Few-Shot Learners", arXiv 2020

1024
768
1024
1024
1024
1600
3072
4256
12,288

16
12
16
16
16
?

32
28
96

213M
110M
340M
~340M
355M
1.5B
8.3B
178
175B

13 GB
13 GB
126 GB
160 GB
40 GB
174 GB

694GB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

512x V100 GPU (9 days)

256x V100 GPU
?
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Scaling up Transformers
m—mmmm

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 48 1600 ? 1.5B 40 GB

Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)
Turing-NLG 78 4256 28 17B ? 256x V100 GPU

GPT-3 96 12,288 96 175B 694GB ?

Gopher 80 16,384 128 280B 10.55TB  4096x TPUv3 (38 days)

Rae et al, “Scaling Language Models: Methods, Analysis, & Insights from Training Gopher”, arXiv 2021
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Scaling up Transformers

$3,768,320 on Google Cloud (eval price)

I S e 7 P

Transformer-Base

Transformer-Large 12
BERT-Base 12
BERT-Large 24
XLNet-Large 24
RoBERTa 24
GPT-2 48
Megatron-LM 72
Turing-NLG 78
GPT-3 96
Gopher 80

1024
768
1024
1024
1024
1600
3072
4256
12,288
16,384

16
12
16
16
16
?
32
28
96
128

Rae et al, “Scaling Language Models: Methods, Analysis, & Insights from Training Gopher”, arXiv 2021

213M
110M
340M
~340M
355M
1.5B
8.3B
178
175B
280B

13 GB
13 GB
126 GB
160 GB
40 GB
174 GB
?

694GB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

512x V100 GPU (9 days)

256x V100 GPU
?

10.55TB }4096x TPUv3 (38 days)

Justin Johnson
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Bold text: Input prompt written by humans
G ene rate d TeXt fro m G PT— 3 Italics: Completion by GPT-3

Title: United Methodists Agree to Historic Split
Subtitle: Those who oppose gay marriage will form their own denomination
Article:

Brown et al, "Language Models are Few-Shot Learners", arXiv 2020
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Bold text: Input prompt written by humans
G ene rate d TeXt fro m G PT— 3 Italics: Completion by GPT-3

Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form their own denomination

Article: After two days of intense debate, the United Methodist Church has agreed to a historic split - one
that is expected to end in the creation of a new denomination, one that will be "theologically and socially
conservative," according to The Washington Post. The majority of delegates attending the church's annual
General Conference in May voted to strengthen a ban on the ordination of LGBTQ clergy and to write new
rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these
measures have a new plan: They say they will form a separate denomination by 2020, calling their church
the Christian Methodist denomination. The Post notes that the denomination, which claims 12.5 million
members, was in the early 20th century the "largest Protestant denomination in the U.S.," but that it has
been shrinking in recent decades. The new split will be the second in the church’s history. The first occurred
in 1968, when roughly 10 percent of the denomination left to form the Evangelical United Brethren Church.
The Post notes that the proposed split "comes at a critical time for the church, which has been losing
members for years," which has been "pushed toward the brink of a schism over the role of LGBTQ people in
the church.”" Gay marriage is not the only issue that has divided the church. In 2016, the denomination was
split over ordination of transgender clergy, with the North Pacific regional conference voting to ban them
from serving as clergy, and the South Pacific regional conference voting to allow them.
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GPT-3: Programming by prompt

Bold text: Input prompt written by humans
Italics: Completion by GPT-3

Poor English input: | eated the purple berries.

Good English output: | ate the purple berries.

Poor English input: Thank you for picking me as your designer. I'd appreciate it.

Good English output: Thank you for choosing me as your designer. | appreciate it.

Poor English input: The mentioned changes have done. or | did the alteration that you
requested. or | changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or | made the alteration
that you requested. or | changed things you wanted and made the modifications.

Poor English input: I'd be more than happy to work with you in another project.

Good English output:

Brown et al, "Language Models are Few-Shot Learners", arXiv 2020
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GPT-3: Programming by prompt

Input / Output examples
Test example

Italics: Completion by GPT-3
Poor English input: | eated the purple berries.

Good English output: | ate the purple berries.

Poor English input: Thank you for picking me as your designer. I'd appreciate it.

Good English output: Thank you for choosing me as your designer. | appreciate it.

Poor English input: The mentioned changes have done. or | did the alteration that you
requested. or | changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or | made the alteration
that you requested. or | changed things you wanted and made the modifications.

Poor English input: I'd be more than happy to work with you in another project.

Good English output:

Brown et al, "Language Models are Few-Shot Learners", arXiv 2020
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GPT-3: Programming by prompt

Input / Output examples
Test example

Italics: Completion by GPT-3
Poor English input: | eated the purple berries.

Good English output: | ate the purple berries.

Poor English input: Thank you for picking me as your designer. I'd appreciate it.

Good English output: Thank you for choosing me as your designer. | appreciate it.

Poor English input: The mentioned changes have done. or | did the alteration that you
requested. or | changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or | made the alteration
that you requested. or | changed things you wanted and made the modifications.

Poor English input: I'd be more than happy to work with you in another project.

Good English output: /'d be more than happy to work with you on another project.

Brown et al, "Language Models are Few-Shot Learners", arXiv 2020
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https://www.gwern.net/GPT-3#successes

GPT-3: Literary Style Transfer

Topic: humor: literary parodies and homages, pastiches, style parodies.
Parodies of the fantasy novel series Harry Potter in the style of various famous authors:
By Ernest Hemingway:

"It was a cold day on Privet Drive. A child cried. Harry felt nothing.
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https://www.gwern.net/GPT-3#successes

GPT-3: Literary Style Transfer

Topic: humor: literary parodies and homages, pastiches, style parodies.

Parodies of the fantasy novel series Harry Potter in the style of various famous authors:

By Ernest Hemingway:

"It was a cold day on Privet Drive. A child cried. Harry felt nothing. He was dryer than dust. He had been silent too long. He
had not felt love. He had scarcely felt hate. Yet the Dementor’s Kiss killed nothing. Death didn’t leave him less dead than he

had been a second before. It wasn’t about living or dying really. It wasn’t about death. It was about the Dark Lord, his creator,
his engenderer. He was not resurrected. He was created again. He was whole again in the courtyard of Malfoy Manor."
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https://www.gwern.net/GPT-3#successes

GPT-3: Literary Style Transfer

Topic: humor: literary parodies and homages, pastiches, style parodies.

Parodies of the fantasy novel series Harry Potter in the style of various famous authors:

By Ernest Hemingway:

"It was a cold day on Privet Drive. A child cried. Harry felt nothing. He was dryer than dust. He had been silent too long. He
had not felt love. He had scarcely felt hate. Yet the Dementor’s Kiss killed nothing. Death didn’t leave him less dead than he
had been a second before. It wasn’t about living or dying really. It wasn’t about death. It was about the Dark Lord, his creator,
his engenderer. He was not resurrected. He was created again. He was whole again in the courtyard of Malfoy Manor."

By Jane Austen:

“It is a truth universally acknowledged, that a broken Harry is in want of a book. This he knows to his cost; pressing that
wretched nose against the window of a bookstore in Diagon Alley the last thing before he goes into hiding for several years,
where upon, he goes straight to Azkaban.”
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https://www.gwern.net/GPT-3#successes

GPT-3: Literary Style Transfer

Topic: humor: literary parodies and homages, pastiches, style parodies.

Parodies of the fantasy novel series Harry Potter in the style of various famous authors:

By Ernest Hemingway:

"It was a cold day on Privet Drive. A child cried. Harry felt nothing. He was dryer than dust. He had been silent too long. He
had not felt love. He had scarcely felt hate. Yet the Dementor’s Kiss killed nothing. Death didn’t leave him less dead than he
had been a second before. It wasn’t about living or dying really. It wasn’t about death. It was about the Dark Lord, his creator,
his engenderer. He was not resurrected. He was created again. He was whole again in the courtyard of Malfoy Manor."

By Jane Austen:

“It is a truth universally acknowledged, that a broken Harry is in want of a book. This he knows to his cost; pressing that
wretched nose against the window of a bookstore in Diagon Alley the last thing before he goes into hiding for several years,
where upon, he goes straight to Azkaban.”

By Arthur Conan Doyle:

“Harry pushed at the swinging doors of the bookshop hard, and nearly knocked himself unconscious. He staggered in with his
ungainly package, his cheeks scarlet with cold and the shame of having chosen the wrong month to go Christmas shopping. The
proprietor of the store, however, didn’t cast even a cursory glance at him, being far more interested in an enormous hunk of
wood lying in the middle of the floor, which certainly looked like a gallows. Yes, the proprietor said to a reedy old man wearing
a bowler hat and a forlorn expression that made Harry want to kick him, | can rent you such a gallows for a small fee.”
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Ssummary

Adding Attention to RNN
models lets them look at
different parts of the
input at each timestep

A dog is standing on a hardwood floor.

Generalized Self-Attention
is new, powerful neural
network primitive
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Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Transformers are a new
neural network model
that only uses attention
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Next Time: Vision Transformers!
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