
Justin Johnson March 16, 2022Lecture 16 -

Lecture 16:
Recurrent Neural Networks

1

Justin Johnson March 16, 2022Lecture 16 -

Admin: A4
A4 is finally released!

Will be due Tuesday 3/29, 11:59pm ET

2

Justin Johnson March 16, 2022Lecture 16 -

Admin: Midterm Grades
Grading is nearly complete, should be released by tonight

Regrade requests: Submit a private piazza post by
Wednesday 3/23 (1 week from today

3

Justin Johnson March 16, 2022Lecture 16 -

Admin: Project
Will write up more guidelines this week, but rough sketch: Pick one of the following:
- Collect your own classification dataset, apply transfer learning
- Single-Image Super-Resolution
- Neural Radiance Fields (NeRF) for novel view synthesis
- Self-Supervised Learning (*maybe, not sure)
- Suggest your own

You get ~1 page of instructions for each with pointers to key papers, and instructions for what key
results we want to see. No starter code. You implement and turn in a Colab / Jupyter notebook (with
supporting code) that implements the model and walks through the key deliverables, similar to the
homework notebooks.

For suggest your own project, you need to provide us with a similar one-page plan for what you will
implement and we need to approve the project.

4

Justin Johnson March 16, 2022Lecture 16 -

Last Time: Localization Tasks

Classification Semantic
Segmentation

Object
Detection

Instance
Segmentation

CAT GRASS, CAT, TREE,
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

5

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

So far: “Feedforward” Neural Networks

e.g. Image classification
Image -> Label

6

Justin Johnson March 16, 2022Lecture 16 -

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning:
Image -> sequence of words

7

Justin Johnson March 16, 2022Lecture 16 -

Recurrent Neural Networks: Process Sequences

e.g. Video classification:
Sequence of images -> label

8

Justin Johnson March 16, 2022Lecture 16 -

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation:
Sequence of words -> Sequence of words

9

Justin Johnson March 16, 2022Lecture 16 -

Recurrent Neural Networks: Process Sequences

e.g. Per-frame video classification:
Sequence of images -> Sequence of labels

10

Justin Johnson March 16, 2022Lecture 16 -

Sequential Processing of Non-Sequential Data

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Classify images by taking
a series of “glimpses”

11

Justin Johnson March 16, 2022Lecture 16 -

Sequential Processing of Non-Sequential Data

Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Generate images one piece at a time!

12

Justin Johnson March 16, 2022Lecture 16 -

Sequential Processing of Non-Sequential Data

Ganin et al, “Synthesizing Programs for Images using Reinforced Adversarial Learning”, ICML 2018
https://twitter.com/yaroslav_ganin/status/1180120687131926528
Reproduced with permission

Integrate with oil
paint simulator – at
each timestep output
a new stroke

13

https://twitter.com/yaroslav_ganin/status/1180120687131926528

Justin Johnson March 16, 2022Lecture 16 -

Recurrent Neural Networks

x

RNN

y

Key idea: RNNs have an
“internal state” that is
updated as a sequence
is processed

14

Justin Johnson March 16, 2022Lecture 16 -

ℎ! = 𝑓" ℎ!#$, 𝑥!

Recurrent Neural Networks

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

15

Justin Johnson March 16, 2022Lecture 16 -

ℎ! = 𝑓" ℎ!#$, 𝑥!

Recurrent Neural Networks

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Notice: the same function and
the same set of parameters
are used at every time step.

16

Justin Johnson March 16, 2022Lecture 16 -

(Vanilla) Recurrent Neural Networks

x

RNN

y

The state consists of a single “hidden” vector h:

Sometimes called a “Vanilla RNN” or an
“Elman RNN” after Prof. Jeffrey Elman

ℎ! = 𝑓" ℎ!#$, 𝑥!

ℎ! = tanh 𝑊""ℎ!#$ +𝑊%"𝑥! + 𝑏"
𝑦! = 𝑊"&ℎ! + 𝑏&

17

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph

h0

x1

Initial hidden state
Either set to all 0,
Or learn it

18

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph

h0 fW h1

x1

19

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph

h0 fW h1 fW h2

x2x1

20

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

…

x2x1

hT

21

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph

h0 fW h1 fW h2 fW h3

x3

…

x2x1W

hT

Re-use the same weight matrix at every time-step

22

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph (Many to Many)

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1

23

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph (Many to Many)

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

24

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph (Many to Many)

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

hT

y3y2y1 L1 L2 L3 LT

L

25

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph (Many to One)

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

hT

26

Justin Johnson March 16, 2022Lecture 16 -

RNN Computational Graph (One to Many)

h0 fW h1 fW h2 fW h3

yT

…

x
W

hT

y3y2y1

27

Justin Johnson March 16, 2022Lecture 16 -

Sequence to Sequence (seq2seq)
(Many to one) + (One to many)

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

28

Justin Johnson March 16, 2022Lecture 16 -

Sequence to Sequence (seq2seq)
(Many to one) + (One to many)

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

y1 y2

…

Many to one: Encode input
sequence in a single vector

One to many: Produce
output sequence from
single input vector

fW h1 fW h2 fW

W2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

29

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

30

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

31

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Training sequence: ”hello”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

32

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Training sequence: ”hello”

Given “h”, predict “e”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

33

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Training sequence: ”hello”

Given “he”, predict “l”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

34

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Training sequence: ”hello”

Given “hel”, predict “l”

Vocabulary: [h, e, l, o]

Given characters 1, 2, …, t-1,
model predicts character t

35

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Training sequence: ”hello”

Given characters 1, 2, …, t-1,
model predicts character t

Given “hell”, predict “o”

Vocabulary: [h, e, l, o]

36

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-time, generate new
text: sample characters one
at a time, feed back to model

.03

.13

.00

.84
Softmax

“e
”Sample

37

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-time, generate new
text: sample characters one
at a time, feed back to model

.03

.13

.00

.84
Softmax

“e
”Sample

38

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-time, generate new
text: sample characters one
at a time, feed back to model

.03

.13

.00

.84
Softmax

“e
”Sample

.25

.20

.05

.50

“l
”

39

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling

Vocabulary: [h, e, l, o]

Training sequence: ”hello”

At test-time, generate new
text: sample characters one
at a time, feed back to model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l
”

“l
”

“o
”Sample

40

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling
So far: encode inputs
as one-hot-vector

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l
”

“l
”

“o
”Sample

[w11 w12 w13 w14] [1] [w11]
[w21 w22 w23 w14] [0] = [w21]
[w31 w32 w33 w14] [0] [w31]

[0]
Matrix multiply with a one-hot vector just
extracts a column from the weight matrix.
Often extract this into a separate
embedding layer

41

Justin Johnson March 16, 2022Lecture 16 -

Example: Language Modeling
So far: encode inputs
as one-hot-vector

[w11 w12 w13 w14] [1] [w11]
[w21 w22 w23 w14] [0] = [w21]
[w31 w32 w33 w14] [0] [w31]

[0]
Matrix multiply with a one-hot vector just
extracts a column from the weight matrix.
Often extract this into a separate
embedding layer

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.17

.68

.03

Embedding
layer

42

Justin Johnson March 16, 2022Lecture 16 -

Backpropagation Through Time
Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

43

Justin Johnson March 16, 2022Lecture 16 -

Backpropagation Through Time
Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

Problem: Takes a lot of
memory for long sequences!

44

Justin Johnson March 16, 2022Lecture 16 -

Truncated Backpropagation Through Time
Loss

Run forward and backward
through chunks of the sequence
instead of whole sequence

45

Justin Johnson March 16, 2022Lecture 16 -

Truncated Backpropagation Through Time
Loss

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller number
of steps

46

Justin Johnson March 16, 2022Lecture 16 -

Truncated Backpropagation Through Time
Loss

47

Justin Johnson March 16, 2022Lecture 16 -

min-char-rnn.py: 112 lines of Python

(https://gist.github.com/karp
athy/d4dee566867f8291f086)

48

https://gist.github.com/karpathy/d4dee566867f8291f086

Justin Johnson March 16, 2022Lecture 16 -

x

RNN

y

Source: Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks”, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

49

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Justin Johnson March 16, 2022Lecture 16 -

at first:

Source: Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks”, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

50

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Justin Johnson March 16, 2022Lecture 16 -

train more

at first:

Source: Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks”, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

51

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Justin Johnson March 16, 2022Lecture 16 -

train more

train more

at first:

Source: Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks”, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

52

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Justin Johnson March 16, 2022Lecture 16 -

train more

train more

train more

at first:

Source: Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks”, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

53

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Justin Johnson March 16, 2022Lecture 16 -

Source: Karpathy, “The Unreasonable Effectiveness of Recurrent Neural
Networks”, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

54

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Justin Johnson March 16, 2022Lecture 16 -

The Stacks Project: Open-Source Algebraic Geometry Textbook

Latex source
http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

55

http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING

Justin Johnson March 16, 2022Lecture 16 - 56

Justin Johnson March 16, 2022Lecture 16 - 57

Justin Johnson March 16, 2022Lecture 16 - 58

Justin Johnson March 16, 2022Lecture 16 -

Generated
C code

59

Justin Johnson March 16, 2022Lecture 16 - 60

Justin Johnson March 16, 2022Lecture 16 - 61

Justin Johnson March 16, 2022Lecture 16 -

Searching for Interpretable Hidden Units

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

62

Justin Johnson March 16, 2022Lecture 16 -

Searching for Interpretable Hidden Units

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei; reproduced with permission

63

Justin Johnson March 16, 2022Lecture 16 -

Searching for Interpretable Hidden Units

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei; reproduced with permission

quote detection cell

64

Justin Johnson March 16, 2022Lecture 16 -

Searching for Interpretable Hidden Units

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei; reproduced with permission

line length tracking cell

65

Justin Johnson March 16, 2022Lecture 16 -

if statement cell

Searching for Interpretable Hidden Units

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei; reproduced with permission

66

Justin Johnson March 16, 2022Lecture 16 -

Searching for Interpretable Hidden Units

quote/comment cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei; reproduced with permission

67

Justin Johnson March 16, 2022Lecture 16 -

Searching for Interpretable Hidden Units

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei; reproduced with permission

code depth cell

68

Justin Johnson March 16, 2022Lecture 16 -

Example: Image Captioning

Figure from Karpathy et a, “Deep Visual-Semantic Alignments
for Generating Image Descriptions”, CVPR 2015

Mao et al, “Explain Images with Multimodal Recurrent Neural Networks”, NeurIPS 2014 Deep Learning and Representation Workshop
Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015
Vinyals et al, "Show and Tell: A Neural Image Caption Generator”, CVPR 2015
Donahue et al, “Long-term Recurrent Convolutional Networks for Visual Recognition and Description”, CVPR 2015
Chen and Zitnick, “Learning a Recurrent Visual Representation for Image Caption Generation”, CVPR 2015

69

Justin Johnson March 16, 2022Lecture 16 -

Example: Image Captioning

Figure from Karpathy et a, “Deep Visual-Semantic Alignments
for Generating Image Descriptions”, CVPR 2015

Convolutional Neural Network

Recurrent
Neural
Network

70

Justin Johnson March 16, 2022Lecture 16 -

This image is CC0 public domain

X

Transfer learning: Take
CNN trained on ImageNet,
chop off last layer

71

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

This image is CC0 public domain

x0

<START>

72

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

This image is CC0 public domain

h0

x0

y0

<START>Wih

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

73

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample
word and
copy to
input

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

74

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample
word and
copy to
input

x1

h1

y1

in

in

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

75

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample
word and
copy to
input

x1

h1

y1

in

in

x2

h2

y2

str
aw

stra
w

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

76

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

This image is CC0 public domain

h0

x0

y0

<START>Wih

man

man

Sample
word and
copy to
input

x1

h1

y1

in

in

x2

h2

y2

str
aw

stra
w

x3

h3

y3

hat

hat

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

77

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

h0

x0

y0

<START>

x1

h1

y1

x2

h2

y2

man in str
aw

x3

h3

y3

x4

h4

y4

hat
<END>

man in stra
w hat

This image is CC0 public domain

Wih

Stop after sampling <END> token

Before:
ℎ! = tanh 𝑾𝒉𝒉𝒉𝒕$𝟏 +𝑾𝒙𝒉𝒙𝒕 + 𝑏'

Now:
tanh 𝑾𝒉𝒉𝒉𝒕#𝟏 +𝑾𝒙𝒉𝒙𝒕 +𝑾𝒊𝒉𝒗 + 𝑏'

78

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 16, 2022Lecture 16 -

Image Captioning: Example Results

A cat sitting on a suitcase
on the floor

A cat is sitting on a tree
branch

A dog is running in the grass
with a frisbee

A white teddy bear sitting in
the grass

Two people walking on the
beach with surfboards

Two giraffes standing in a
grassy field

A man riding a dirt bike on a
dirt track

A tennis player in action on
the court

Captions generated using neuraltalk2
All images are CC0 Public domain: cat
suitcase, cat tree, dog, bear, surfers,
tennis, giraffe, motorcycle

79

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Justin Johnson March 16, 2022Lecture 16 -

Image Captioning: Failure Cases
Captions generated using neuraltalk2
All images are CC0 Public domain: fur coat,
handstand, spider web, baseball

A woman is holding a cat
in her hand

A woman standing on a beach
holding a surfboard

A person holding a computer
mouse on a desk

A bird is perched on a
tree branch

A man in a
baseball uniform
throwing a ball

80

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Justin Johnson March 16, 2022Lecture 16 -

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

ht-1

xt

W

stack

tanh

ht

ℎ! = tanh 𝑊''ℎ!$(+𝑊)'𝑥! + 𝑏'

ℎ! = tanh 𝑊'' 𝑊')
ℎ!$(
𝑥!

+ 𝑏'

ℎ! = tanh 𝑊 ℎ!$(
𝑥!

+ 𝑏'

81

Justin Johnson March 16, 2022Lecture 16 -

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

ht-1

xt

W

stack

tanh

ht

Backpropagation from
ht to ht-1 multiplies by W
(actually Whh

T)

ℎ! = tanh 𝑊''ℎ!$(+𝑊)'𝑥! + 𝑏'

ℎ! = tanh 𝑊'' 𝑊')
ℎ!$(
𝑥!

+ 𝑏'

ℎ! = tanh 𝑊 ℎ!$(
𝑥!

+ 𝑏'

82

Justin Johnson March 16, 2022Lecture 16 -

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of
h0 involves many
factors of W
(and repeated tanh)

83

Justin Johnson March 16, 2022Lecture 16 -

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of
h0 involves many
factors of W
(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

84

Justin Johnson March 16, 2022Lecture 16 -

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of
h0 involves many
factors of W
(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale
gradient if its norm is too big

85

Justin Johnson March 16, 2022Lecture 16 -

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of
h0 involves many
factors of W
(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN architecture!

86

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

87

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM)

Vanilla RNN LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

88

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM)

Vanilla RNN LSTM

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

Two vectors at each timestep:
Cell state: 𝑐! ∈ ℝ*

Hidden state: ℎ! ∈ ℝ*

89

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Compute four “gates” per timestep:
Input gate: i+ ∈ ℝ*

Forget gate: f+ ∈ ℝ*
Output gate: o+ ∈ ℝ*

“Gate?” gate: g+ ∈ ℝ*

Vanilla RNN LSTM
𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓! ⊙ 𝑐!"# + 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

90

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM)

x

h

Previous
hidden
state (h)

W

i

f

o

g

Input vector (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑐! = 𝑓!⊙ 𝑐!"# + 𝑖!⊙𝑔!
ℎ! = 𝑜!⊙ tanh 𝑐!

91

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM)

☉ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht
stack

𝑖(
𝑓(
𝑜(
𝑔(

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ(#)
𝑥(

+ 𝑏'

𝑐(= 𝑓(⊙ 𝑐(#) + 𝑖(⊙𝑔(
ℎ(= 𝑜(⊙ tanh 𝑐(

92

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM): Gradient Flow

☉ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht
stack

Backpropagation from ct
to ct-1 only elementwise
multiplication by f, no
matrix multiply by W

𝑖(
𝑓(
𝑜(
𝑔(

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ(#)
𝑥(

+ 𝑏'

𝑐(= 𝑓(⊙ 𝑐(#) + 𝑖(⊙𝑔(
ℎ(= 𝑜(⊙ tanh 𝑐(

93

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM): Gradient Flow

c0 c1 c2 c3

Uninterrupted gradient flow!

94

Justin Johnson March 16, 2022Lecture 16 -

Long Short Term Memory (LSTM): Gradient Flow

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to
ResNet!

95

Justin Johnson March 16, 2022Lecture 16 -

𝑔(= 𝐹 𝑥,𝑊(
𝑦(= 𝑔(⊙𝐻 𝑥,𝑊' + 1 − 𝑔(⊙𝑥(

Long Short Term Memory (LSTM): Gradient Flow

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to
ResNet!

In between: Highway Networks

Srivastava et al, “Highway Networks”, ICML DL Workshop 2015

96

Justin Johnson March 16, 2022Lecture 16 -

ℎ! = tanh 𝑊 ℎ!"#
𝑥!

+ 𝑏$

𝑖!
𝑓!
𝑜!
𝑔!

=

𝜎
𝜎
𝜎

tanh

𝑊 ℎ!$(
𝑥!

+ 𝑏'

𝑐! = 𝑓! ⊙ 𝑐!$(+ 𝑖! ⊙𝑔!
ℎ! = 𝑜! ⊙ tanh 𝑐!

Single-Layer RNNs

LSTM:

time

x0 x1 x2 x3 x4 x5 x6

h0 h1 h2 h3 h4 h5 h6

y0 y1 y2 y3 y4 y5 y6

97

Justin Johnson March 16, 2022Lecture 16 -

Mutilayer RNNs

LSTM:

time

depth

x0 x1 x2 x3 x4 x5 x6

h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6

y0 y1 y2 y3 y4 y5 y6

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6

Two-layer RNN: Pass hidden
states from one RNN as inputs
to another RNN

ℎ!ℓ = tanh 𝑊
ℎ!"#ℓ

ℎ!ℓ"#
+ 𝑏$ℓ

𝑖!ℓ

𝑓!ℓ

𝑜!ℓ

𝑔!ℓ

=

𝜎
𝜎
𝜎

tanh

𝑊
ℎ!$(ℓ

ℎ!ℓ$(
+ 𝑏'ℓ

𝑐!ℓ = 𝑓!ℓ⊙ 𝑐!$(ℓ + 𝑖!ℓ⊙𝑔!ℓ
ℎ!ℓ = 𝑜!ℓ⊙ tanh 𝑐!ℓ

98

Justin Johnson March 16, 2022Lecture 16 -

Mutilayer RNNs

time

x0 x1 x2 x3 x4 x5 x6

h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6

y0 y1 y2 y3 y4 y5 y6

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6

Three-layer RNN

h3
0 h3

1 h3
2 h3

3 h3
4 h3

5 h3
6

LSTM:

ℎ!ℓ = tanh 𝑊
ℎ!"#ℓ

ℎ!ℓ"#
+ 𝑏$ℓ

𝑖!ℓ

𝑓!ℓ

𝑜!ℓ

𝑔!ℓ

=

𝜎
𝜎
𝜎

tanh

𝑊
ℎ!$(ℓ

ℎ!ℓ$(
+ 𝑏'ℓ

𝑐!ℓ = 𝑓!ℓ⊙ 𝑐!$(ℓ + 𝑖!ℓ⊙𝑔!ℓ
ℎ!ℓ = 𝑜!ℓ⊙ tanh 𝑐!ℓ

99

Justin Johnson March 16, 2022Lecture 16 -

Other RNN Variants

Gated Recurrent Unit (GRU)
Cho et al “Learning phrase representations
using RNN encoder-decoder for statistical
machine translation”, 2014
𝑟! = 𝜎 𝑊)-𝑥! +𝑊'-ℎ!$(+ 𝑏-
𝑧! = 𝜎 𝑊).𝑥! +𝑊'.ℎ!$(+ 𝑏.
=ℎ! = tanh 𝑊)'𝑥! +𝑊'' 𝑟/ ⊙ℎ!$(+ 𝑏'
ℎ! = 𝑧! ⊙ℎ!$(+ 1 − 𝑧! ⊙ =ℎ!

100

Justin Johnson March 16, 2022Lecture 16 -

Other RNN Variants

Gated Recurrent Unit (GRU)
Cho et al “Learning phrase representations
using RNN encoder-decoder for statistical
machine translation”, 2014

10,000 architectures with evolutionary search:
Jozefowicz et al, “An empirical exploration of
recurrent network architectures”, ICML 2015

𝑟! = 𝜎 𝑊)-𝑥! +𝑊'-ℎ!$(+ 𝑏-
𝑧! = 𝜎 𝑊).𝑥! +𝑊'.ℎ!$(+ 𝑏.
=ℎ! = tanh 𝑊)'𝑥! +𝑊'' 𝑟/ ⊙ℎ!$(+ 𝑏'
ℎ! = 𝑧! ⊙ℎ!$(+ 1 − 𝑧! ⊙ =ℎ!

101

Justin Johnson March 16, 2022Lecture 16 -

RNN Architectures: Neural Architecture Search

LSTM Learned Architecture

Zoph and Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017

102

Justin Johnson March 16, 2022Lecture 16 -

Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish.

- Exploding is controlled with gradient clipping.
- Vanishing is controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.

103

Justin Johnson March 16, 2022Lecture 16 -

Next Time: Attention

104

