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Lecture 14:
Image Segmentation
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Admin: Midterm + A3 Grades

2

Midterm grades: Should be out tomorrow

A3 grades: Later this week or early next week
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A4 Update

3

Will be out tomorrow (?!?)

Due 2 weeks after release – will update calendar
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Last Time: Localization Tasks

4

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Last Time: Fast R-CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features
Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class
Category	and	box	
transform	per	region

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast R-CNN: Apply differentiable 
cropping to shared image features

“Slow” R-CNN: Apply differentiable 
cropping to shared image features
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Last Time: Region Proposal Network (RPN)

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

Conv

Anchor is 
object?

2K x 5 x 6

Anchor 
transforms
4K x 5 x 6

At test-time, sort all K*5*6 boxes 
by their positive score, take top 
300 as our region proposals

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
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Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Jointly train with 4 losses:

1. RPN classification: anchor box is 
object / not an object

2. RPN regression: predict transform 
from anchor box to proposal box

3. Object classification: classify 
proposals as background / object 
class

4. Object regression: predict transform 
from proposal box to object box

Last Time: Faster R-CNN
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Last Time: Feature Pyramid Network (FPN)

8

Add top down
connections that feed 
information from high 
level features back down 
to lower level features

Efficient multiscale 
features where all levels 
benefit from the whole 
backbone! Widely used 
in practice

224 x 224 Image

Stem

Stage 2

Stage 3

Stage 4

Stage 5

Object 
Detector

Object 
Detector

Object 
Detector

28 x 28 feats

14 x 14 feats

7 x 7 feats Object 
Detector

56 x 56 feats

2x upsample

+1x1 conv

1x1 conv

1x1 conv

+

+

2x upsample

2x upsample

Lin et al, “Feature Pyramid Networks 
for Object Detection”, ICCV 2017

Faster R-CNN with RPN: Detector at each level 
gets its own RPN to produce proposals; proposals 
from all levels route to a shared second stage
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Two Stage Object Detectors

Faster R-CNN is a 
Two-stage object detector

First stage: Run once per image
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset

Question: Do we really 
need the second stage?
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Single-Stage Detectors: RetinaNet

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

Conv

Anchor 
classification

2K*(C+1) x 5 x 6

Anchor 
transforms
4K x 5 x 6

Similar to RPN – but rather 
than classify anchors as 
object/no object, directly 
predict object category 
(among C categories) or 
background

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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Single-Stage Detectors: RetinaNet

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

Conv

Anchor 
classification

2K*(C+1) x 5 x 6

Anchor 
transforms
4K x 5 x 6

Problem: class imbalance –
many more background 
anchors vs non-background

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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Single-Stage Detectors: RetinaNet

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

Conv

Anchor 
classification

2K*(C+1) x 5 x 6

Anchor 
transforms
4K x 5 x 6

Problem: class imbalance –
many more background 
anchors vs non-background

Solution: new loss function 
(Focal Loss); see paper

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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Single-Stage Detectors: RetinaNet

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

Figure credit: Lin et al, ICCV 2017
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Single-Stage Detectors: RetinaNet
Single-Stage detectors can be much faster than two-stage detectors

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017 Figure credit: Lin et al, ICCV 2017
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Single-Stage Detectors: RetinaNet
Single-Stage detectors can be much faster than two-stage detectors

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017 Figure credit: Lin et al, ICCV 2017

Faster R-CNN 
with Feature 
Pyramid 
Network
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Anchor-Free Detectors

16

Can we do object detection without anchors?

CornerNet: Law and Deng, “CornerNet: Detecting Objects as Paired Keypoints”, ECCV 2018

CenterNet: Zhou et al, “Objects as Points”, arXiv 2019

FCOS: Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019
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Single-Stage Detectors: FCOS

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

CNN

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

“Anchor-free” detector
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Single-Stage Detectors: FCOS

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

CNN

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

“Anchor-free” detector
Classify points as positive if 
they fall into a GT box, or 
negative if they don’t

Train independent per-
category logistic regressors

Class scores
C x 5 x 6
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Single-Stage Detectors: FCOS

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

CNN

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

“Anchor-free” detector

For positive points, also 
regress distance to left, right, 
top, and bottom of ground-
truth box (with L2 loss)

T

B

L R

Class scores
C x 5 x 6

Box edges
4 x 5 x 6
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Single-Stage Detectors: FCOS

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

CNN

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

“Anchor-free” detector

For positive points, also 
regress distance to left, right, 
top, and bottom of ground-
truth box (with L2 loss)

T

B

L R
Class scores
C x 5 x 6

Box edges
4 x 5 x 6
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Single-Stage Detectors: FCOS

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

CNN

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

“Anchor-free” detector
Finally, predict “centerness” 
for all positive points (using 
logistic regression loss)

T

B

L R

Class scores
C x 5 x 6
Box edges
4 x 5 x 6

𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑒𝑠𝑠 =
min 𝐿, 𝑅
max(𝐿, 𝑅) ⋅

min(𝑇, 𝐵)
max(𝑇, 𝐵)

Ranges from 1 at box center to 0 at box edge

Centerness
1 x 5 x 6



Justin Johnson March 14, 2022Lecture 15 - 22

Single-Stage Detectors: FCOS

CNN

Run backbone CNN to get 
features aligned to input image

Each feature corresponds 
to a point in the input

Input Image
(e.g. 3 x 640 x 480)

Image features
(e.g. 512 x 5 x 6)

CNN

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

“Anchor-free” detector
Test-time: predicted 
“confidence” for the box from 
each point is product of its 
class score and centerness

T

B

L R

Class scores
C x 5 x 6
Box edges
4 x 5 x 6

𝑐𝑒𝑛𝑡𝑒𝑟𝑛𝑒𝑠𝑠 =
min 𝐿, 𝑅
max(𝐿, 𝑅) ⋅

min(𝑇, 𝐵)
max(𝑇, 𝐵)

Ranges from 1 at box center to 0 at box edge

Centerness
1 x 5 x 6
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Single-Stage Detectors: FCOS

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019

“Anchor-free” detector

FCOS also uses a Feature Pyramid Network with heads shared across stages
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

0.5
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 1/1 = 1.0
Recall = 1/3 = 0.33

0.5

Pr
ec

isi
on

Recall 1.0



Justin Johnson March 14, 2022Lecture 15 - 28

Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 2/2 = 1.0
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/3 = 0.67
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/4 = 0.5
Recall = 2/3 = 0.67

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

Match: > 0.5 IoU

Precision = 3/5 = 0.6
Recall = 3/3 = 1.0

0.5

Pr
ec

isi
on

Recall 1.0
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Pr
ec

isi
on

Recall 1.0

Dog AP = 0.86
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.10

All ground-truth dog boxes

0.5

Pr
ec

isi
on

Recall 1.0

Dog AP = 0.86
How to get AP = 1.0: Hit all GT 
boxes with IoU > 0.5, and have no 
“false positive” detections ranked 
above any “true positives”
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for 

each category

Dog AP = 0.86
Cat AP = 0.80
Car AP = 0.65

mAP@0.5 = 0.77
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Evaluating Object Detectors: 
Mean Average Precision (mAP)

mAP@0.5 = 0.77
mAP@0.55 = 0.71
mAP@0.60 = 0.65
…
mAP@0.95 = 0.2

COCO mAP = 0.4

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for 

each category
4. For “COCO mAP”: Compute mAP@thresh for each IoU

threshold (0.5, 0.55, 0.6, …, 0.95) and take average
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Computer Vision Tasks: Object Detection

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
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Computer Vision Tasks: Semantic Segmentation

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
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Semantic Segmentation

Cow

Grass

SkyTre
es

Label each pixel in the image 
with a category label

Don’t differentiate instances, 
only care about pixels

This image is CC0 public domain

Grass

Cat

Sky Trees

https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/
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Semantic Segmentation Idea: Sliding Window

Full image

Extract 
patch

Classify center 
pixel with CNN

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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Semantic Segmentation Idea: Sliding Window

Full image

Extract 
patch

Classify center 
pixel with CNN

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Problem: Very inefficient! Not 
reusing shared features 
between overlapping patches
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Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional 
layers to  make predictions for pixels all at once!

Loss function: Per-Pixel cross-entropy
Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015
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Summary: Beyond Image Classification

42

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Conv Conv Conv Conv argmax

Design a network as a bunch of convolutional 
layers to  make predictions for pixels all at once!

Problem #1: Effective receptive 
field size is linear in number of 
conv layers: With L 3x3 conv 
layers, receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015
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Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Conv Conv Conv Conv argmax

Design a network as a bunch of convolutional 
layers to  make predictions for pixels all at once!

Problem #1: Effective receptive 
field size is linear in number of 
conv layers: With L 3x3 conv 
layers, receptive field is 1+2L

Problem #2: Convolution on 
high res images is expensive! 
Recall ResNet stem aggressively 
downsamples

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015
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Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Input:
3 x H x W Predictions:

H x W
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Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Input:
3 x H x W Predictions:

H x W

Downsampling:
Pooling, strided
convolution

Upsampling:
???
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In-Network Upsampling: “Unpooling”

1
3

2
4

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Input 
C x 2 x 2

Output
C x 4 x 4

Bed of Nails
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In-Network Upsampling: “Unpooling”

1
3

2
4

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

Input 
C x 2 x 2

Output
C x 4 x 4

Nearest Neighbor

1
3

2
4

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Input 
C x 2 x 2

Output
C x 4 x 4

Bed of Nails
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In-Network Upsampling: Bilinear Interpolation

Input: C x 2 x 2 Output: C x 4 x 4

1 2

3 4

1.00 1.25 1.75 2.00

1.50 1.75 2.25 2.50

2.50 2.75 3.25 3.50

3.00 3.25 3.75 4.00

Use two closest neighbors in x and y 
to construct linear approximations
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In-Network Upsampling: Bicubic Interpolation

Input: C x 2 x 2 Output: C x 4 x 4

1 2

3 4

0.68 1.02 1.56 1.89

1.35 1.68 2.23 2.56

2.44 2.77 3.32 3.65

3.11 3.44 3.98 4.32

Use three closest neighbors in x and y to 
construct cubic approximations
(This is how we normally resize images!)
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In-Network Upsampling: “Max Unpooling”

5
7

6
8

1
3

2
5

6
2

3
1

1
7

2
3

2
4

1
8

Pair each downsampling layer 
with an upsampling layer

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Max Pooling: Remember 
which position had the max

Max Unpooling: Place into
remembered positions

1
3

2
4

0
0

0
1

2
0

0
0

0
3

0
0

0
0

0
4

Rest 
of 

net
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Learnable Upsampling: Transposed Convolution
Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4
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Learnable Upsampling: Transposed Convolution
Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between input 
and filter
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Learnable Upsampling: Transposed Convolution
Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between input 
and filter
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Learnable Upsampling: Transposed Convolution
Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2
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Learnable Upsampling: Transposed Convolution
Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product 
between input 
and filter
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Learnable Upsampling: Transposed Convolution
Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product 
between input 
and filter
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Learnable Upsampling: Transposed Convolution
Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product 
between input 
and filter

Convolution with stride > 1 is “Learnable Downsampling”
Can we use stride < 1 for “Learnable Upsampling”?
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Learnable Upsampling: Transposed Convolution

Output: 4 x 4Input: 2 x 2

3 x 3 convolution transpose, stride 2
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Learnable Upsampling: Transposed Convolution

Input: 2 x 2

Weight filter by 
input value and 
copy to output

3 x 3 convolution transpose, stride 2

Output: 4 x 4
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Learnable Upsampling: Transposed Convolution
3 x 3 convolution transpose, stride 2

Input: 2 x 2

Weight filter by 
input value and 
copy to output

Filter moves 2 pixels in output
for every 1 pixel in input

Output: 4 x 4
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Learnable Upsampling: Transposed Convolution
3 x 3 convolution transpose, stride 2

Input: 2 x 2

Weight filter by 
input value and 
copy to output

Filter moves 2 pixels in output
for every 1 pixel in input

Sum where 
output overlaps

Output: 4 x 4
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Learnable Upsampling: Transposed Convolution
3 x 3 convolution transpose, stride 2

Input: 2 x 2

Weight filter by 
input value and 
copy to output

Output: 4 x 4

This gives 5x5 output – need to trim one 
pixel from top and left to give 4x4 output

Sum where 
output overlaps
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Transposed Convolution: 1D example

a
b

x
y
z

ax
ay
az+bx

by
bz

Input Filter Output
Output has copies of 
filter weighted by input

Stride 2: Move 2 pixels 
output for each pixel in 
input

Sum at overlaps
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Transposed Convolution: 1D example

a
b

x
y
z

ax
ay
az+bx

by
bz

Input Filter Output This has many names:

- Deconvolution (bad)!
- Upconvolution
- Fractionally strided
convolution
- Backward strided
convolution
- Transposed Convolution

(best name)
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Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

𝑥 𝑦 𝑧 0 0 0
0 𝑥 𝑦 𝑧 0 0
0 0 𝑥 𝑦 𝑧 0
0 0 0 𝑥 𝑦 𝑧

0
𝑎
𝑏
𝑐
𝑑
0

=

𝑎𝑦 + 𝑏𝑧
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧
𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧
𝑐𝑥 + 𝑑𝑦

�⃗� ∗ �⃗� = 𝑋�⃗�
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Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Transposed convolution multiplies by 
the transpose of the same matrix: 

When stride=1, transposed conv is just a 
regular conv (with different padding rules)

𝑥 𝑦 𝑧 0 0 0
0 𝑥 𝑦 𝑧 0 0
0 0 𝑥 𝑦 𝑧 0
0 0 0 𝑥 𝑦 𝑧

0
𝑎
𝑏
𝑐
𝑑
0

=

𝑎𝑦 + 𝑏𝑧
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧
𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧
𝑐𝑥 + 𝑑𝑦

�⃗� ∗ �⃗� = 𝑋�⃗� �⃗� ∗! �⃗� = 𝑋!�⃗�
𝑥 0 0 0
𝑦 𝑥 0 0
𝑧 𝑦 𝑥 0
0 𝑧 𝑦 𝑥
0 0 𝑧 𝑦
0 0 0 𝑧

𝑎
𝑏
𝑐
𝑑

=

𝑎𝑥
𝑎𝑦 + 𝑏𝑥

𝑎𝑧 + 𝑏𝑦 + 𝑐𝑥
𝑏𝑧 + 𝑐𝑦 + 𝑑𝑥
𝑐𝑧 + 𝑑𝑦
𝑑𝑧
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Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication 

Transposed convolution multiplies by 
the transpose of the same matrix: 

Example: 1D conv, kernel 
size=3, stride=2, padding=1

�⃗� ∗ �⃗� = 𝑋�⃗� �⃗� ∗! �⃗� = 𝑋!�⃗�

𝑥 𝑦 𝑧 0 0 0
0 0 𝑥 𝑦 𝑧 0

0
𝑎
𝑏
𝑐
𝑑
0

= 𝑎𝑦 + 𝑏𝑧
𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧
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Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication 

Transposed convolution multiplies by 
the transpose of the same matrix: 

Example: 1D conv, kernel 
size=3, stride=2, padding=1

When stride>1, transposed convolution 
cannot be expressed as normal conv

�⃗� ∗ �⃗� = 𝑋�⃗� �⃗� ∗! �⃗� = 𝑋!�⃗�

𝑥 𝑦 𝑧 0 0 0
0 0 𝑥 𝑦 𝑧 0

0
𝑎
𝑏
𝑐
𝑑
0

= 𝑎𝑦 + 𝑏𝑧
𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧

𝑥 0
𝑦 0
𝑧 𝑥
0 𝑦
0 𝑧
0 0

𝑎
𝑏 =

𝑎𝑥
𝑎𝑦

𝑎𝑧 + 𝑏𝑥
𝑏𝑦
𝑏𝑧
0
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Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Input:
3 x H x W Predictions:

H x W

Downsampling:
Pooling, strided
convolution

Upsampling:
Iinterpolation, 
transposed conv

Loss function: Per-Pixel cross-entropy
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Cow

Grass

SkyTre
es

Computer Vision Tasks
Object Detection: Detects individual 
object instances, but only gives box

Semantic Segmentation: Gives per-
pixel labels, but merges instances
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Things and Stuff

Cow

Grass

SkyTre
es

Things: Object categories 
that can be separated into 
object instances 
(e.g. cats, cars, person)

Stuff: Object categories 
that cannot be separated 
into instances 
(e.g. sky, grass, water, trees)

This image is CC0 public domain

Grass

Cat

Sky Trees

https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/
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Cow

Grass

Sky
Tre

es

Computer Vision Tasks
Object Detection: Detects individual 
object instances, but only gives box
(Only things!)

Semantic Segmentation: Gives per-
pixel labels, but merges instances
(Both things and stuff)
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Computer Vision Tasks: Instance Segmentation

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
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This image is CC0 public domain

Computer Vision Tasks: Instance Segmentation
Instance Segmentation: 
Detect all objects in the 
image, and identify the 
pixels that belong to each 
object (Only things!)

Cow

Cow

https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/
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This image is CC0 public domain

Computer Vision Tasks: Instance Segmentation
Instance Segmentation: 
Detect all objects in the 
image, and identify the 
pixels that belong to each 
object (Only things!)

Approach: Perform 
object detection, then 
predict a segmentation 
mask for each object!

Cow

Cow

https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/
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Object Detection:
Faster R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NeurIPS 2015
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Instance Segmentation:
Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

Mask 
Prediction
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Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

RoI Align Conv

Classification Scores: C 
Box coordinates (per class): 
4 * C

CNN
+RPN

Conv

Predict a mask for 
each of C classes:

C x 28 x 28

256 x 14 x 14 256 x 14 x 14
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Mask R-CNN: Example Training Targets
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Mask R-CNN: Example Training Targets
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Mask R-CNN: Example Training Targets
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Mask R-CNN: Example Training Targets
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Mask R-CNN: Very Good Results!
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Cow

Cow Cow

Grass

SkyTre
es

Instance Segmentation: Separate 
object instances, but only things

Semantic Segmentation: Identify both things 
and stuff, but doesn’t separate instances

Beyond Instance Segmentation
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Beyond Instance Segmentation: Panoptic Segmentation

Cow #1
Cow #2

Cow #1
Cow #2

Grass

Trees

SkyLabel all pixels in 
the image (both 
things and stuff)

For “thing” 
categories also 
separate into 
instances

Kirillov et al, “Panoptic Segmentation”, CVPR 2019
Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019
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Kirillov et al,  “Panoptic Feature Pyramid Networks”, CVPR 2019

Beyond Instance Segmentation: Panoptic Segmentation
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Beyond Instance Segmentation: Human Keypoints

Person image is CC0 public domain

Represent the pose of a human 
by locating a set of keypoints

e.g. 17 keypoints:
- Nose
- Left / Right eye
- Left / Right ear
- Left / Right shoulder
- Left / Right elbow
- Left / Right wrist
- Left / Right hip
- Left / Right knee
- Left / Right ankle

https://www.publicdomainpictures.net/en/view-image.php?image=238189&picture=man-standing
http://creativecommons.org/publicdomain/zero/1.0/
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Mask R-CNN:
Instance Segmentation

He et al, “Mask R-CNN”, ICCV 2017

Mask 
Prediction

Keypoint
estimation
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Mask R-CNN:
Keypoint Estimation

He et al, “Mask R-CNN”, ICCV 2017

Mask 
Prediction

Keypoint
prediction

Keypoint
estimation
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Mask R-CNN: Keypoints

He et al, “Mask R-CNN”, ICCV 2017

RoI Align Conv…

Classification Scores: C 
Box coordinates (per class): 4 * C
Segmentation mask: C x 28 x 28

CNN
+RPN

256 x 14 x 14
Keypoint masks:

K x 56 x 56

Left ankle Right ankle

…

One mask for each of 
the K different keypoints

Ground-truth has one “pixel” turned on 
per keypoint. Train with softmax loss
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Joint Instance Segmentation and Pose Estimation

He et al, “Mask R-CNN”, ICCV 2017
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General Idea: Add Per-
Region “Heads” to 
Faster / Mask R-CNN!

He et al, “Mask R-CNN”, ICCV 2017

Mask 
Prediction

Keypoint
prediction

Keypoint
estimation

Per-Region Heads:
Each receives the features after 
RoI Pool / RoI Align, makes 
some prediction per-region
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Dense Captioning:
Predict a caption 
per region!

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional 
Localization Networks for Dense Captioning”, CVPR 2016

Caption 
prediction 
(LSTM)

Per-Region Heads:
Each receives the features after 
RoI Pool / RoI Align, makes 
some prediction per-region
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Dense Captioning

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
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Dense Captioning

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
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3D Shape Prediction: 
Predict a 3D triangle 
mesh per region!

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019

Mesh 
predictor

Per-Region Heads:
Each receives the features after 
RoI Pool / RoI Align, makes 
some prediction per-region
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3D Shape Prediction: Mask R-CNN + Mesh Head

He, Gkioxari, Dollár, and 
Girshick, “Mask R-CNN”, 
ICCV 2017

Mask R-CNN: 
2D Image -> 2D shapes

Mesh R-CNN: 
2D Image -> 3D shapes

Gkioxari, Malik, and Johnson, 
“Mesh R-CNN”, ICCV 2019

More details 
next time!
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Summary: Many Computer Vision Tasks!

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Next Time:
Recurrent Neural Networks


